文档库 最新最全的文档下载
当前位置:文档库 › 最优化方法练习题答案修改建议版本__删减版

最优化方法练习题答案修改建议版本__删减版

最优化方法练习题答案修改建议版本__删减版
最优化方法练习题答案修改建议版本__删减版

练习题一

1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。

2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。

答:针对一般优化模型()()min ()

..

0,1,2, 0,1,

,i j f x s t g x i m h x j p

≥===,讨论解的可行域D ,若存在一点*X D ∈,对于X D ?∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)()

,,

,K X X X ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有

(1)()k k x x ε+-<,

(1)()

()

k k k x x x ε+-<,()()(1)()k k f x f x ε+-<,

()()()

(1)()()k k k f x f x f x ε+-<,()()k f x ε

?<等等。

练习题二

1、某公司看中了例2.1中厂家所拥有的3种资源R 1、R

2、和R 3,欲出价收购(可能用于生产附加值更高的产品)。如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例2.1的对偶问题)。

解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。

确定目标函数 问题的目标很清楚——“收购价最小”。

确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。 因此有如下线性规划问题:123min 170100150w y y y =++

123123123

5210

..23518,,0y y y s t y y y y y y ++≥??++≥??≥? *2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。

答:略。

3、用单纯形法求解下列线性规划问题:

(1)???????≥≤+-≤++≤-++-=0,,4322

2..min

32131

3213213

21x x x x x x x x x x x t s x x x z ; (2)??????

?=≥=++=+-=+-+-=)

5,,2,1(052222..4min

5324323213

2 i x x x x x x x x x x t s x x z i

解:(1)引入松弛变量x 4,x 5,x 6

123456min 0*0*0*z x x x x x x =-++++

1234123

2 =2

2 5 =3..1

3 6=41,2,3,4,5,60

x x x x x x x x s t x x x x x x x x x +-+??+++?

?-++??≥?

因检验数σ2<0,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。

因检验数σ3<0,故确定x 3为换入非基变量,以x 3的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 5作为换出的基变量。

因检验数σj >0,表明已求得最优解:*(0,8/3,1/3,0,0,11/3)X =,去除添加的松弛变量,原问题的最优解为:*(0,8/3,1/3)X =。

(2

)根据题意选取x 1,x 4,x 5,为基变量:

??????

?=≥=++=+-=+-+-=)

5,,2,1(052222..4min

5324323

213

2 i x x x x x x x x x x t s x x z i

因检验数σ2<0最小,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。

因检验数σ3<0最小,故确定x 3为换入非基变量,以x 1的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 5作为换出的基变量。

因检验数σj >0,表明已求得最优解:*(9,4,1,0,0)X =。

8、某地区有A 、B 、C 三个化肥厂,供应本地甲、乙、丙、丁四个产粮区。已知各化肥厂可供应化肥的数量和各产粮区对化肥的需要量,以及各厂到各区每吨化肥的运价如表2-28所示。试制定一个使总运费最少的化肥调拨方案。

表2- 1

解:设A 、B 、C 三个化肥厂为A 1、A 2、A 3,甲、乙、丙、丁四个产粮区为B 1、B 2、B 3、B 4;c ij 为由A i 运化肥至B j 的运价,单位是元/吨;x ij 为由A i 运往B j 的化肥数量(i=1,2,3;j=1,2,3,4)单位是吨;z 表示总运费,单位为元,依题意问题的数学模型为:

3

4

11min ij ij i j z c x ===∑∑

112131122232

13233314243411121314

2122232431323334663..3

787

x x x x x x x x x s t x x x x x x x x x x x x x x x ++=??++=??++=?

++=??+++=??+++=?

+++=? 该题可以用单纯形法或matlab 自带工具箱命令(linprog )求解。

*9、求解下列不平衡运输问题(各数据表中,方框内的数字为单位价格ij c ,框外右侧的一列数为各发点的供应量i a ,框底下一行数是各收点的需求量j b ):

(1) 5 1 7 10 要求收点3的需求必须正好满足。 6 4 6 80 3 2 5 15

75 20 50

(2) 5 1 0 20 要求收点1的需求必须由发点4供应。 3 2 4 10 7 5 2 15 9 6 0 15

5 10 15 解答略。

练习题三

1、用0.618法求解问题

12)(min 30

+-=≥t t t t ?

的近似最优解,已知)(t ?的单谷区间为]3,0[,要求最后区间精度0.5ε=。 答:t=0.8115;最小值-0.0886.(调用golds.m 函数) 2、求无约束非线性规划问题

min ),,(321x x x f =12322

2124x x x x -++

的最优解

解一:由极值存在的必要条件求出稳定点:

1122f x x ?=-?,228f x x ?=?,33

2f x x ?=?,则由()0f x ?=得11x =,20x =,30x = 再用充分条件进行检验:

22

12f x ?=?,2228f x ?=?,2232f x ?=?,212

0f

x x ?=??,2130f x x ?=??,2230f x x ?=?? 即2200080002f ??

?

?= ? ???

为正定矩阵得极小点为T *(1,0,0)x =,最优值为-1。

解二:目标函数改写成

min ),,(321x x x f =222

12

3(1)41x x x -++- 易知最优解为(1,0,0),最优值为-1。

3、用最速下降法求解无约束非线性规划问题。

2

221212122)(m in x x x x x x X f +++-=

其中T x x X ),(21=,给定初始点T X )0,0(0=。

解一:目标函数()f x 的梯度112

122()()142()122()()f x x x x f x x x f x x ???

???++??

???==??-++??????????

(0)

1()1f X

???=??-??令搜索方向(1)(0)

1()1d f X -??=-?=????

再从(0)X 出发,沿(1)d 方向作一维寻优,令步长变量为λ,最优步长为1λ,则有(0)(1)0101X d λλλλ--??????

+=+=????????????

故(0)(1)2221()()()2()2()2()f x f X d λλλλλλλλλ?λ=+=--+-+-+=-=

令'1()220?λλ=-=可得11λ= (1)(0)(1)

1011011X X d λ--??????=+=+=????????????

求出(1)X 点之后,与上类似地,

进行第二次迭代:(1)1()1f X -???=??-?? 令(2)(1)1()1d f X ??

=-?=????

令步长变量为λ,最优步长为2λ,则有

(1)(2)111111X d λλλλ--??????

+=+=??????+?????? 故

(1)(2)2222()()(1)(1)2(1)2(1)(1)(1)521()

f x f X d λλλλλλλλλ?λ=+=--++-+-+++=--=令

'2()1020?λλ=-=可得 215λ= (2)(1)(2)2110.8111 1.25X X d λ--??????=+=+=???????????? (2)0.2()0.2f X ??

?=??-?? 此时所达到的精度(2)()0.2828f X ?≈ 本题最优解11.5X *-??

=????

,()1,25f X *=-

练习题四

1、石油输送管道铺设最优方案的选择问题:考察网络图4-6,设A 为出发地,F 为目的地,B ,C ,D ,E 分别为四个必须建立油泵加压站的地区。图中的线段表示管道可铺设的位置,线段旁的数字表示铺设这些管线所需的费用。问如何铺设管道才能使总费用最小?

图4- 1

解:

第五阶段:E1—F 4;E2—F 3;

第四阶段:D1—E1 —F 7;D2—E2—F 5;D3—E1—F 5;

第三阶段:C1—D1—E1 —F 12;C2—D2—E2—F 10;C3—D2—E2—F 8;C4—D3—E1—F 9;

第二阶段:B1—C2—D2—E2—F 13; B2—C3—D2—E2—F 15; 第一阶段:A —B1—C2—D2—E2—F 17; 最优解:A —B1—C2—D2—E2—F 最优值:17

2、 用动态规划方法求解非线性规划

123123max ()27,,0

f x x x x x x x =++++=??

≥?

解:1239,9,9x x x ===,最优值为9。 3、用动态规划方法求解非线性规划

22

112121212max 765..

21039,0z x x x s t x x x x x x ?=++?

+≤??

-≤?

?≥?

解:用顺序算法

阶段:分成两个阶段,且阶段1 、2 分别对应12,x x 。 决策变量:12,x x

状态变量:,i i v w 分别为第j 阶段第一、第二约束条件可供分配的右段数值。

11

11

*22211111111100(,)max {76}min{76,76}x v x w f v w x x v v w w ≤≤≤≤=+=++

*111min{,}x v w =

22*2*22221222205

22222222222205

(,)max{5(2,3)}

max{5min{7(2)6(2),7(3)6(3)}}

x x f v w x f v x w x x v x v x w x w x ≤≤≤≤=+-+=+-+-+++

由于2210,9v w ==,2**22

22222

22205

(,)(10,9)max{min{33292760,68396621}x f v w f x x x x ≤≤==-+++

可解的129.6,0.2x x ==,最优值为702.92。

4、设四个城市之间的公路网如图4-7。两点连线旁的数字表示两地间的距离。使用迭代法求各地到城市4的最短路线及相应的最短距离。

21

4

3

58

67

4

图4- 2 城市公路网

解:城市1到城市4路线——1-3-4 距离10;

城市2到城市4路线——2-4 距离8;城市3到城市4路线——3-4 距离4。

5、某公司打算在3个不同的地区设置4个销售点,根据市场部门估计,在不同地区设置不同数量的销售点每月可得到的利润如表4-19所示。试问在各地区如何设置销售点可使每月总利润最大。

表4- 1

解:

将问题分为3个阶段,k =1,2,3;

决策变量x k 表示分配给第k 个地区的销售点数;

状态变量为s k 表示分配给第k 个至第3个地区的销售点总数; 状态转移方程:s k +1=s k -x k ,其中s 1=4;

允许决策集合:D k (s k )={x k |0≤x k ≤s k }

阶段指标函数:g k (x k )表示x k 个销售点分配给第k 个地区所获得的利润;

最优指标函数f k (s k )表示将数量为s k 的销售点分配给第k 个至第3个地区所得到的最大利润,动态规划基本方程为:

1044()max [()()] 3,2,1()0

k k

k k k k k k k x s f s g x f s x k f s +≤≤=+-=???

=?? k =3时,33

3333()max[()]x s f s g x ==

1101

4 17

17

4

31616

321414

210

00

04

3210x 3*f 3(s 3) g 3(x 3)

k =2时,22

22223220()max [()()]x s f s g x f s x ≤≤=+-

0000

2,3

31

22+0

21+10 17+14 12+16 0+17 4

22721+017+1012+140+16312217+012+100+14211212+0

0+10

104

3

2

1x 2*f 2(s 2) g 2(x 2)+f 3(s 2-x 2)

k =1时,11

11112110()max[()()]x s f s g x f s x ≤≤=+-,111112104

()max[()(4)]x f s g x f x ≤≤=+-

最优解为:x 1*=2,x 2*=1,x 3*=1,f 1(4)=47,即在第1个地区设置2个销售点,第2个地区设置1个销售点,第3个地区设置1个销售点,每月可获利润47。

6、设某厂计划全年生产某种产品A 。其四个季度的订货量分别为600公斤,700公斤,500公斤和1200公斤。已知生产产品A 的生产费用与产品的平方成正比,系数为0.005。厂内有仓库可存放产品,存储费为每公斤每季度1元。求最佳的生产安排使年总成本最小。 解:四个季度为四个阶段,采用阶段编号与季度顺序一致。 设 s k 为第k 季初的库存量,则边界条件为 s 1=s 5=0

设 x k 为第k 季的生产量,设 y k 为第k 季的订货量;s k ,x k ,y k 都取实数,状态转移方程为 s k +1=s k +x k - y k 仍采用反向递推,但注意阶段编号是正向的目标函数为:

1234

4

21,,,1

()min

(0.005)i

i x x x x i f x x

s ==+∑

第一步:(第四季度) 总效果 f 4(s 4,x 4)=0.005 x 42+s 4

由边界条件有: s 5= s 4 + x 4 – y 4=0,解得:x 4*=1200 – s 4 将x 4*代入 f 4(s 4,x 4)得:

f 4*(s 4)=0.005(1200 – s 4)2+s 4=7200 –11 s 4+0.005 s 42 第二步:(第三、四季度) 总效果 f 3(s 3,x 3)=0.005 x 32+s 3+ f 4*(s 4) 将 s 4= s 3 + x 3 – 500 代入 f 3(s 3,x 3) 得:

2

33333332

3322

333333333333333332

3333

(,)0.005720011(500)

0.005(500)0.010.01160.0051513950

(,)

0.020.011608000.5,

(,)()755070.0025f s x x s x s x s x x s x s s f s x x s x x s f s x f s s s **=++-+-++-=+-+-+?=+-=?=-=-+解得

代入得

第三步:(第二、三、四季度) 总效果

f 2(s 2,x 2)=0.005 x 22+s 2+ f 3*(s 3) 将 s 3= s 2 + x 2 -700 代入 f 2(s 2,x 2) 得:

2

22222222

22222222222222

2222

(,)0.00575507(700)

0.0025(700)(,)

0.0150.005(700)70700(1,

(,)()100006(0.005f s x x s x s x s f s x x s x x s f s x f s s s **=++-+-++-?=+--=?=-=-+解得

代入得

第四步:(第一、二、三、四季度) 总效果 f 1(s 1,x 1)=0.005 x 12+s 1+ f 2*(s 2)

将 s 2= s 1 + x 1 – 600= x 1 – 600 代入 f 1(s 1,x 1) 得:

21111112

111111111112(,)0.005100006(600)

(0.0053)(600)(,)

(0.043)80600,

(,)()11800

f s x x s x x f s x x x x f s x f s **=++--+-?=-=?==解得

代入得

由此回溯:得最优生产–库存方案

x 1*=600,s 2*=0; x 2*=700,s 3*=0; x 3*=800,s 4*=300; x 4*=900。

7、某种机器可在高低两种不同的负荷下进行生产。设机器在高负荷下生产的产量函数为

g =8u 1,其中u 1为投入生产的机器数量,年完好率a =0.7;在低负荷下生产的产量函数为h =5y ,其中y 为投入生产的机器数量,年完好率为b =0.9。假定开始生产时完好机器的数量s 1=1000。试问每年如何安排机器在高、低负荷下的生产,使在5年内生产的产品总产量最高。 解:

构造这个问题的动态规划模型:

设阶段序数k 表示年度。

状态变量s k 为第k 年度初拥有的完好机器数量,同时也是第k ?1年度末时的完好机器数量。 决策变量u k 为第k 年度中分配高负荷下生产的机器数量,于是s k ?u k 为该年度中分配在低负荷下生产的机器数量。

这里s k 和u k 均取连续变量,它们的非整数值可以这样理解,如s k =0.6,就表示一台机器在k 年度中正常工作时间只占6/10;u k =0.3,就表示一台机器在该年度只有3/10的时间能在高负荷下工作。 状态转移方程为:1()0.70.9(), 1,2,

,5k k k k k k k s au b s u u s u k +=+-=+-=

k 段允许决策集合为:{}()0k k k k k D s u u s =≤≤ 设(,)k k k v s u 为第k 年度的产量,则85()k k k k v u s u =+- 故指标函数为:1

5

1,5(,)k k k k V v s u ==∑

令最优值函数f k (s k )表示由资源量s k 出发,从第k 年开始到第5年结束时所生产的产品的总产量最大值。因而有逆推关系式:

[]{}661()

()0()max 85()0.70.9() 1,2,3,4,5

k k k k k k k k k k k k u D s f s f s u s u f u s u k +∈?=??

=+-++-??=?? 从第5年度开始,向前逆推计算。 当k=5时,有:

[]{}

{}{}

555

55555655505555055505()max 85()0.70.9()max 85(5)max 35u s u s u s f s u s u f u s u u s u u s ≤≤≤≤≤≤=+-++-=+-=+

因f 5是u 5的线性单调增函数,故得最大解u 5*,相应的有:

555()8f s s =

当k=4时,有:

[]{}

[]{}{}{}

44444444

444445444044444404440440()max 85()0.70.9()max 85()80.70.9()max 13.612.2()max 1.412.2u s u s u s u s f s u s u f u s u u s u u s u u s u u s ≤≤≤≤≤≤≤≤=+-++-=+-++-=+-=+

故得最大解,u 4*=s 4,相应的有

444()13.6f s s =

依此类推,可求得

*33333*

2222*

1111

()17.50()20.80()23.7u s f s s u f s s u f s s ?==?==??==?, 相应的 , 相应的 , 相应的 因s 1=1000,故:11()23700f s = 计算结果表明:最优策略为

*****123344550,0,,,u u u s u s u s =====

即前两年应把年初全部完好机器投入低负荷生产,后三年应把年初全部完好机器投入高负荷生产。这样所得的产量最高,其最高产量为23700台。

在得到整个问题的最优指标函数值和最优策略后,还需反过来确定每年年初的状态,即从始端向终端递推计算出每年年初完好机器数。已知s 1=1000台,于是可得:

**

21111**32222**43333**54444**655550.70.9()0.9900()0.70.2()0.9810()0.70.9()0.7567()0.70.9()0.7397()0.70.9()0.7278()

s u s u s s u s u s s u s u s s u s u s s u s u s =+-===+-===+-===+-===+-==台台台台台

8、有一辆最大货运量为10t 的卡车,用以装载3种货物,每种货物的单位重量及相应单位价值

如表4-20所示。应如何装载可使总价值最大?

表4- 2

解:123,,x x x 建模设三种物品各装件

123123max(456)345100,,1,2,3

j j x x x x x x x x I j ++++≤??

≥∈=? 利用动态规划的逆序解法求此问题。

111111,(){|0}

s c D s x x s ==≤≤

21122222,(){|0}s s x D s x x s =-=≤≤ 32233333,(){|0}

s s x D s x x s =-=≤≤

状态转移方程为: 1(,),3,2,1k k k k k k s T s x s x k +==-=

该题是三阶段决策过程,故可假想存在第四个阶段,而40x =,于是动态规划的基本方程为:

11()

44()max [,()],3,2,1()0

k K k k k k k k x D s f s x f s k f s ++∈==???

=?? 3,k =

{}333330,1,,[/5]

()max

6x s f s x ==

2,k =

2

222222330,1,,[

]4

23220,1,,[

]4

()max [5()]

max [5(4)]

s x s x f s x f s x f s x ===+=

+-

1,k =

11111220,1,2,3

12110,1,2,3

()max [4()]

max [4(3)]

x x f s x f s x f s x ===+=+-

计算最终结果为12

32,1,0x x x ***===,最大价值为13 。 9、设有 A ,B ,C 三部机器串联生产某种产品,由于工艺技术问题,产品常出现次品。统计结果表明,机器 A ,B ,C 产生次品的概率分别为 p A =30%, P B =40%, P C =20%, 而产品必须经过三部机器顺序加工才能完成。为了降低产品的次品率,决定拨款 5 万元进行技术改造,以便最大限度地提高产品的成品率指标。现提出如下四种改进方案:

方案1:不拨款,机器保持原状;

方案2:加装监视设备,每部机器需款 1 万元; 方案3:加装设备,每部机器需款 2 万元;

方案4:同时加装监视及控制设备,每部机器需款 3 万元; 采用各方案后,各部机器的次品率如表4-21。

表4- 3

问如何配置拨款才能使串联系统的可靠性最大?

解:为三台机器分配改造拨款,设拨款顺序为A, B, C ,阶段序号反向编号为 k ,即第一阶段计算给机器 C 拨款的效果。

设s k为第k阶段剩余款,则边界条件为s3=5;

设x k为第k阶段的拨款额;

状态转移方程为s k-1=s k-x k;

目标函数为max R=(1-P A)(1-P B)(1-P C)

仍采用反向递推

第一阶段:对机器 C 拨款的效果

R1(s1,x1)=d1(s1,x1)?R0(s0,x0)= d1(s1,x1)

第二阶段:对机器B, C 拨款的效果

由于机器A 最多只需3 万元,故s2≥ 2

递推公式:

R2(s2,x2)=d2(s2,x2)?R1(s1,x1*)

例:R2(3,2)=d2(3,2)?R1(1,1)=(1-0.2) ?0.9=0.72

得第二阶段最优决策表

第三阶段:对机器A, B, C 拨款的效果

边界条件:s3 = 5

递推公式:

R3(s3,x3)=d3(s3,x3)?R2(s2,x2*)

例:R3(5,3)=d3(5,3)?R2(2,2)=(1-0.05) ?0.64=0.608 得第三阶段最优决策表

回溯 :有多组最优解。

I :x 3=1, x 2=3, x 1=1, R 3=0.8 ?0.9 ?0.9=0.648 II :x 3=2, x 2=2, x 1=1, R 3= 0.9?0.8?0.9=0.648 III : x 3=2, x 2=3, x 1=0, R 3= 0.9?0.9?0.8=0.648 练习题五

1、考察多目标规划问题

其中2122,21(),()1,121,2x x f x x f x x x x -+-≤≤??

==<≤?

?->?,试画出个目标函数的图形,并求出12,,,,ab pa wp R R R R R ,这里i R 是24

min ()i x f x -≤≤的最优解集。

解:

《最优化方法》复习题(含答案)

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题 1、设n n A R ?∈是对称矩阵,,n b R c R ∈∈,求1()2 T T f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵. 解 2(),()f x Ax b f x A ?=+?=. 2、设()()t f x td ?=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ?''. 解 2()(),()()T T t f x td d t d f x td d ??'''=?+=?+. 3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令 ()()()()() T T T T dd f x f x H I d f x f x f x ??=--???, 其中I 为单位矩阵,证明方向()p H f x =-?也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ?<,从而 ()()()T T f x p f x H f x ?=-?? ()()()()()()()() T T T T T dd f x f x f x I f x d f x f x f x ??=-?--???? ()()()0T T f x f x f x d =-??+?<, 所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ?是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ?≥?∈L L 的一切凸组合都属于S . 证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令1 1k i i i x x λ+==∑, 其中,0,1,2,,1i i x S i k λ∈≥=+L ,且1 1 1k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈, 结论成立),记11 1k i i i k y x λλ=+=-∑ ,有111(1)k k k x y x λλ+++=-+,

《最优化方法》复习题

《最优化方法》复习题 一、 简述题 1、怎样判断一个函数是否为凸函数. (例如: 判断函数212 2 212151022)(x x x x x x x f +-++=是否为凸函数) 2、写出几种迭代的收敛条件. 3、熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法). 见书本61页(利用单纯形表求解); 69页例题 (利用大M 法求解、二阶段法求解); 4、简述牛顿法和拟牛顿法的优缺点. 简述共轭梯度法的基本思想. 写出Goldstein 、Wolfe 非精确一维线性搜索的公式。 5、叙述常用优化算法的迭代公式. (1)0.618法的迭代公式:(1)(), ().k k k k k k k k a b a a b a λτμτ=+--??=+-? (2)Fibonacci 法的迭代公式:111(),(1,2,,1)() n k k k k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+? =+-?? =-? ?=+-?? L . (3)Newton 一维搜索法的迭代公式: 1 1k k k k x x G g -+=-. (4)推导最速下降法用于问题1min ()2 T T f x x Gx b x c = ++的迭代公式: 1()T k k k k k T k k k g g x x f x g G gx +=-? (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-??. (6)共轭方向法用于问题1min ()2 T T f x x Qx b x c = ++的迭代公式: 1()T k k k k k T k k f x d x x d d Qd +?=-. 二、计算题 双折线法练习题 课本135页 例3.9.1 FR 共轭梯度法例题:课本150页 例4.3.5 二次规划有效集:课本213页例6.3.2,

最优化方法试题

《最优化方法》试题 一、 填空题 1.设()f x 是凸集n S R ?上的一阶可微函数,则()f x 是S 上的凸函数的一阶充要条件是( ),当n=2时,该充要条件的几何意义是( ); 2.设()f x 是凸集n R 上的二阶可微函数,则()f x 是n R 上的严格凸函数( )(填‘当’或‘当且仅当’)对任意n x R ∈,2()f x ?是 ( )矩阵; 3.已知规划问题22211212121212min 23..255,0z x x x x x x s t x x x x x x ?=+---?--≥-??--≥-≥?,则在点55(,)66T x =处的可行方向集为( ),下降方向集为( )。 二、选择题 1.给定问题222121212min (2)..00f x x s t x x x x ?=-+??-+≤??-≤?? ,则下列各点属于K-T 点的是( ) A) (0,0)T B) (1,1)T C) 1(,22 T D) 11(,)22T 2.下列函数中属于严格凸函数的是( ) A) 211212()2105f x x x x x x =+-+ B) 23122()(0)f x x x x =-< C) 2 222112313()226f x x x x x x x x =+++- D) 123()346f x x x x =+- 三、求下列问题

()22121212121211min 51022 ..2330420 ,0 f x x x x x s t x x x x x x =+---≤+≤≥ 取初始点()0,5T 。 四、考虑约束优化问题 ()221212min 4..3413f x x x s t x x =++≥ 用两种惩罚函数法求解。 五.用牛顿法求解二次函数 222123123123()()()()f x x x x x x x x x x =-++-++++- 的极小值。初始点011,1,22T x ??= ???。 六、证明题 1.对无约束凸规划问题1min ()2 T T f x x Qx c x =+,设从点n x R ∈出发,沿方向n d R ∈ 作最优一维搜索,得到步长t 和新的点y x td =+ ,试证当1T d Q d = 时, 22[() ()]t f x f y =-。 2.设12*** *3(,,)0T x x x x =>是非线性规划问题()112344423min 23..10f x x x x s t x x x =++++=的最优解,试证*x 也 是非线性规划问题 144423* 123min ..23x x x s t x x x f ++++=的最优解,其中****12323f x x x =++。

最优化方法考试试题

华南农业大学期末考试试卷(A 卷) 2010--2011学年第 1 学期 考试科目: 运筹学与最优化方法 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、 用单纯形法求解下列线性规划问题(共 15 分) 12121212max 105349 ..528,0z x x x x s t x x x x =++≤?? +≤??≥?

二、灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分) 12121212max 62 ..33,0z x x x x s t x x x x =++≥?? +≤??≥? 三、解下列0-1型整数规划问题(共 10 分) 12345123451345124512345max 325232473438..116333,,,,01 z x x x x x x x x x x x x x x s t x x x x x x x x x =+--+++++≤??+-+≤?? -+-≥??=?或

四、利用库恩-塔克(K-T )条件求解以下问题(共 15 分) 22121122 121212 max ()104446..418,0f X x x x x x x x x s t x x x x =+-+-+≤??+≤??≥? 五、用内点法求解下列非线性约束最优化问题(共 15 分) 21 121 2min ()6923..3 f X x x x x s t x =-++≥??≥?

六、给定初始点(0)(1,1)T X =,用最速下降法迭代一次研究下列函数的极大值。(共 15 分) 22 121122()46222f X x x x x x x =+--- 七、某人因工作需要购置了一辆摩托车,他可以连续使用或任一年末将旧车卖掉,换一辆新车,下表列出了于第i 年末购置或更新 的车至第j 年末的各项费用的累计(含更新所需费用、运行费用及维修费用等),试据此确定该人最佳的更新策略,使从第一年至第五年末的各项费用的累计之和为最小。(共 15 分)

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的 严格局部最优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍

属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法 A 为下降算法,则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ . 13 算法迭代时的终止准则(写出三种):_____________________________________。 14 凸规划的全体极小点组成的集合是凸集。 √ 15 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式

(完整版)机械优化设计试卷期末考试及答案

第一、填空题 1.组成优化设计的数学模型的三要素是 设计变量 、目标函数 和 约束条件 。 2.可靠性定量要求的制定,即对定量描述产品可靠性的 参数的选择 及其 指标的确定 。 3.多数产品的故障率随时间的变化规律,都要经过浴盆曲线的 早期故障阶段 、 偶然故障阶段 和 耗损故障阶段 。 4.各种产品的可靠度函数曲线随时间的增加都呈 下降趋势 。 5.建立优化设计数学模型的基本原则是在准确反映 工程实际问题 的基础上力求简洁 。 6.系统的可靠性模型主要包括 串联模型 、 并联模型 、 混联模型 、 储备模型 、 复杂系统模型 等可靠性模型。 7. 函数f(x 1,x 2)=2x 12 +3x 22-4x 1x 2+7在X 0=[2 3]T 点处的梯度为 ,Hession 矩阵为 。 (2.)函数()22121212,45f x x x x x x =+-+在024X ??=????点处的梯度为120-?? ????,海赛矩阵为2442-???? -?? 8.传统机械设计是 确定设计 ;机械可靠性设计则为 概率设计 。 9.串联系统的可靠度将因其组成单元数的增加而 降低 ,且其值要比可靠 度 最低 的那个单元的可靠度还低。 10.与电子产品相比,机械产品的失效主要是 耗损型失效 。 11. 机械可靠性设计 揭示了概率设计的本质。 12. 二元函数在某点处取得极值的充分条件是()00f X ?=必要条件是该点处的海赛矩阵正定。 13.对数正态分布常用于零件的 寿命疲劳强度 等情况。 14.加工尺寸、各种误差、材料的强度、磨损寿命都近似服从 正态分布 。 15.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 模型求解 两方面的内容。 17.无约束优化问题的关键是 确定搜索方向 。 18.多目标优化问题只有当求得的解是 非劣解 时才有意义,而绝对最优解存在的可能性很小。 19.可靠性设计中的设计变量应具有统计特征,因而认为设计手册中给出的数据

北京理工大学级数学专业最优化方法期末试卷试题A卷MT.doc

课 程 编 号 : 0 7 0 0 0 2 0 3 北 京 理 工 大 学 2 0 0 7 - 2 0 0 8 学 年 第 二 学 期 2005 级数学专业最优化方法终考试卷( A 卷) 1. (20 分 )某化工厂有三种资源 A 、 B 、 C ,生产三种产品甲、乙、丙,设甲、乙、丙的产量分别为 x 1,x 2,x 3 ,其数学模型为: max z 3 x 1 2 x 2 5 x 3 1 2 x 2 3 430 ( A 资源限制 ) x x 3 x 1 2 x 3 460 ( B 资源限制 ) s.t 4 x 2 420 (C 资源限制 ) x x 1 , x 2 , x 3 0 请回答如下问题: ( 1)给出最优生产方案; ( 2)假定市场信息表明甲产品利润已上升了一倍,问生产方案应否调整? (3)假定增加一种添加剂可显着提高产品质量,该添加剂的资源限制约束为: x 1 2 x 2 3x 3 800 问最优解有何变化? 2. (12 分 )用 Newton 法求解 min f ( x ) 4 x 12 x 22 2 x 12 x 2 ,初始点取为 x 0 (1, 1)T ,迭代一步。 3.(10 分 )用 FR 共轭梯度法求解三个变量的函数 f ( x ) 的极小值,第一次迭代的搜索方向为 p 0 (1, 1,2)T ,沿 p 0 做精确线搜 索,得 x 1 ( x 11 , x 21 , x 31 )T , 设 f ( x 1 ) 2, f ( x 1 ) 2 ,求从 x 1 出发的搜索方向 p 1 。 x 11 x 21 4. (15 分 ) 给定下面的 BFGS 拟 Newton 矩阵修正公式: H k 1 ( I s k y k T )H k ( I s k y k T )T s k s k T , y k T s k y k T s k y k T s k 其中 s k x k 1 x k , y k g k 1 g k 用对应的拟 Newton 法求解: min f ( x ) x 1 2 2x 1 x 2 2 x 22 4 x 1 ,初始点取为 x 0 (0,0) T , H 0 I 。 5. (15 分 )写出问题 取得最优解的 Kuhn-Tucker ( K - T )必要条件,并通过 K - T 条件求出问题 K - T 点及相应 Lagrange 乘子。 6(12 分 ).求约束问题 在 x (0,0) T 及 x 2 (1,0) T 处的下降方向集合、可行方向集合以及可行下降方向集合,并画图表示出来 1 7( 8 分)考察优化问题 min f ( x ) s.t. x , D 设 D 为凸集, f ( x ) 为 D 上凸函数,证明: f ( x) 在 D 上取得极小值的那些点构成的集合是凸集。 8( 8 分)设 min f ( x ) 1 x T Ax b T x c ,其中 A 为对称正定矩阵, x * 为 f ( x ) 的极小值点,又设 x 0 ( x*) 可表示为 2 x 0 x * p ,其中 R 1, p 是 A 对应于特征值 的特征向量,证明:若从 x 0 出发,沿最速下降方向做精确一维搜索, 则一步达到极小值点。 课程编号 :07000203 北京理工大学 2008-2009 学年第一学期 2006 级数学专业最优化方法终考试卷( A 卷) 1. (15 分 ) 用单纯形法求解线性规划问题 2. (10 分 )写出线性规划问题 的对偶问题并证明该对偶问题没有可行解。 3. (15 分 )考虑用最速下降法迭代一步 min f ( x) x 12 2x 22 , 初始点取为 x 0 ( 1, 1)T 。( 1)采用精确一维搜索;( 2) 采用 Wolfe 条件进行不精确一维搜索,其中 0.1, 0.9 。 4. (15 分 )用 DFP 拟牛顿法求解 min f ( x) x 12 2x 22 初始点取为 x 0 1 ,初始矩阵 H 0 2 1 。 1 1 1 5. (15 分 )证明集合 S { x | x 1 2x 2 4, 2x 1 x 2 6} 是凸集,并计算原点 (0,0) 到集合 S 的最短距离。 6. (15 分 ?) 考虑问题 (1)用数学表达式写出在点 ( 1 , 5)T 处的下降可行方向集。 3 3 ( 2)假设当前点在 (0,0) T 处,求出用投影梯度法进行迭代时当前的下降可行方向(搜索方向)。 7( 7 分)证明:在精确一维搜索条件下,共轭梯度法得到的搜索方向是下降方向。

最优化计算方法课后习题答案----高等教育出版社。施光燕

习题二包括题目:P36页5(1)(4) 5(4)

习题三 包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下

5,6题 14题解如下 14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。 解:已知 (1) (4,6)T x =-,由题意得 121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----?? ?= ?+++-----?? ∴ (1)1344()56g f x -?? =?= ??? 21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------? ??= ? +--------+--?? ∴ (1)2(1)1656()()564G x f x --?? =?= ?-?? (1)1 1/8007/400()7/4001/200G x --?? = ?--?? ∴ (1)(1)11141/100()574/100d G x g -?? =-= ?-?? 15(1)解如下 15. 用DFP 方法求下列问题的极小点 (1)22 121212min 353x x x x x x ++++ 解:取 (0) (1,1)T x =,0H I =时,DFP 法的第一步与最速下降法相同 2112352()156x x f x x x ++???= ?++??, (0)(1,1)T x =,(0) 10()12f x ???= ??? (1)0.07800.2936x -??= ?-??, (1) 1.3760() 1.1516f x ???= ?-?? 以下作第二次迭代 (1)(0) 1 1.07801.2936x x δ-??=-= ?-??, (1)(0) 18.6240()()13.1516f x f x γ-??=?-?= ?-?? 0110 111011101 T T T T H H H H H γγδδδγγγ=+-

修订过的最优化方法复习题

《最优化方法》复习题 第一章 引论 一、 判断与填空题 1 )].([arg )(arg m in m ax x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(min :)(max n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题 )(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为单调下降算 法,则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

13-14(1)最优化方法期末试卷

2013-2014学年第一学期 数学计算经数专业《最优化方法》(课程)期末试卷 试卷来源:自拟 送卷人:赵俊英 打印:赵俊英 乔凤云 校对:赵俊英 一.填空题(20分) 1.最优化问题的数学模型一般为:____________________________, 可行域D 可以表 为_____________________________, 若____________________,称* x 为问题的全局最优解. 2.()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f ,则=?)(x f , =?)(2 x f . 3.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向. 4. 无约束最优化问题:min (),n f x x R ∈,若k x 是不满足最优性条件的第k 步迭代点,用共轭梯度法求解时,搜索方向k d =______________ 5. 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式为 . 6 .举出一个具有二次终止性的无约束二次规划算法: . 7.函数222 21 12313()226f x x x x x x x x =+++- (填是或不是) 严格凸函数. 二.(18分)简答题: 1. 设计求解无约束优化问题的一个下降算法,并叙述其优缺点. 2. 叙述单折线法的算法思想. 3. 写出以下线性规化问题的对偶: 1234123412341234134min ()2536..873411,762323,324712,0,0,0.f x x x x x s t x x x x x x x x x x x x x x x =-+-??-+++=?? +++≥??+++≤? ≤≥≥??

《最优化方法》复习题(含答案)

x zD 天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 判断与填空题 arg max f(x)二 arg min 以儿 “ max(x): x D 二 R n 』=-min(x): x D 二 R n ; 设f : D 5 R n > R.若x : R n ,对于一切R n 恒有f(x”)^f(x),则称x”为 设f : D 5 R n >R.若x ” ? D ,存在x ”的某邻域N ;(x”),使得对一切 x ?N .(x)恒有f(x”)::: f (x),则称x”为最优化问题 min f (x)的严格局部最 优解? 给定一个最优化问题,那么它的最优值是一个定值 ? V 非空集合D R n 为凸集当且仅当 D 中任意两点连线段上任一点属于 D . V 非空集合D R n 为凸集当且仅当D 中任意有限个点的凸组合仍属于 D . V 任意两个凸集的并集为凸集? 函数f:D R n >R 为凸集D 上的凸函数当且仅当 -f 为D 上的凹函数? V 设f : D R n >R 为凸集D 上的可微凸函数,X :D ?则对-D ,有 f (x) - f(x )乞 f (x )T (X —X )? 若c(x)是凹函数,则 D={x^R n C(x)启0}是凸集。 V f(x)的算法A 产生的迭代序列,假设算法 A 为下降算法, 则对-k ? 5,1, 2,…匚恒有 ________________ f(x k1)乞 f(x k ) ______________ ? 算法迭代时的终止准则(写出三种) : ___________________________________________________ 凸规划的全体极小点组成的集合是凸集。 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

《最优化方法》期末试题

作用: ①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。 ②仿真技术有可能对一些难以建立物理模型或数学模型的对象系统,通过仿真模型来顺利地解决预测、分析和评价等系统问题。 ③通过系统仿真,可以把一个复杂的系统化降阶成若干子系统以便于分析,并能指出各子系统之间的各种逻辑关系。 ④通过系统仿真,还能启发新的策略或新思想的产生,或能暴露出在系统中隐藏着的实质性问题。同时,当有新的要素增加到系统中时,仿真可以预先指出系统状态中可能会出现的瓶颈现象或其它的问题。 2.简述两个Wardrop 均衡原理及其适用范围。 答: Wardrop提出的第一原理定义是:在道路的利用者都确切知道网络的交通状态并试图选择最短径路时,网络将会达到平衡状态。在考虑拥挤对行驶时间影响的网络中,当网络达到平衡状态时,每个 OD 对的各条被使用的径路具有相等而且最小的行驶时间;没有被使用的径路的行驶时间大于或等于最小行 驶时间。 Wardrop提出的第二原理是:系统平衡条件下,拥挤的路网上交通流应该按照平均或总的出行成本 最小为依据来分配。 第一原理对应的行为原则是网络出行者各自寻求最小的个人出行成本,而第二原理对应的行为原则是网络的总出行成本最小。 3.系统协调的特点。 答: (1)各子系统之间既涉及合作行为,又涉及到竞争行为。 (2)各子系统之间相互作用构成一个反馈控制系统,通过信息作为“中介”而构成整体 (3)整体系统往往具有多个决策人,构成竞争决策模式。 (4)系统可能存在第三方介入进行协调的可能。 6.对已经建立了概念模型的系统处理方式及其特点、适用范围。答:对系统概念模型有三种解决方式。 1.建立解析模型方式 对简单系统问题,如物流系统库存、城市公交离线调度方案的确定、交通量不大的城市交叉口交通控制等问题,可以运用专业知识建立系统的量化模型(如解析数学模型),然后采用优化方法确定系统解决方案,以满足决策者决策的需要,有关该方面的内容见第四、五章。 在三种方式中,解析模型是最科学的,但仅限于简单交通运输系统问题,或仅是在实际工程中一定的情况下(仅以一定的概率)符合。所以在教科书上很多漂亮的解析模型,无法应用于工程实际中。 2.建立模拟仿真模型方式 对一般复杂系统,如城市轨道交通调度系统、机场调度系统、城市整个交通控制系统等问题,可以对系统概念模型中各个部件等采用变量予以量化表示,并通过系统辨识的方式建立这些变量之间关系的动力学方程组,采用一定的编程语言、仿真技术使其转化为系统仿真模型,通过模拟仿真寻找较满意的优化方案,包括离线和在线均可以,有关该方面的内容见第七章。 模拟仿真模型比解析模型更能反映系统的实际,所以在交通运输系统中被更高层次的所使用,包括

最优化方法(试题+答案)

一、 填空题 1 . 若 ()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f ,则 =?)(x f ,=?)(2x f . 2.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。 3.向量T ) 3,2,1(关于3阶单位方阵的所有线性无关的共轭向量 有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算 法: . 6.以下约束优化问题: )(01)(..)(min 212121 ≥-==+-==x x x g x x x h t s x x f 的K-K-T 条件为: . 7.以下约束优化问题: 1 ..)(min 212 2 21=++=x x t s x x x f 的外点罚函数为(取罚参数为μ) . 二、证明题(7分+8分) 1.设1,2,1,:m i R R g n i =→和m m i R R h n i ,1,:1+=→都是线性函数,证明下 面的约束问题: } ,,1{, 0)(},1{, 0)(..)(min 1112 m m E j x h m I i x g t s x x f j i n k k +=∈==∈≥=∑= 是凸规划问题。

2.设R R f →2 :连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题: } ,1{,0} 2,1{,0..) (min 11m m E i b x a m I i b x a t s x f i T i i T i +=∈=-=∈≥- 设d 是问题 1 ||||,0,0..)(min ≤∈=∈≥?d E i d a I i d a t s d x f T i T i T 的解,求证:d 是f 在x 处的一个可行方向。 三、计算题(每小题12分) 1.取初始点T x )1,1() 0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题 (迭代2步): 2 2212)(m in x x x f += 2.采用精确搜索的BFGS 算法求解下面的无约束问题: 212 2212 1)(min x x x x x f -+= 3.用有效集法求解下面的二次规划问题: . 0,001..42)(min 21212 12 221≥≥≥+----+=x x x x t s x x x x x f 4.用可行方向算法(Zoutend ij k算法或Frank Wol fe算法)求解下面的问题(初值设为)0,0() 0(=x ,计算到)2(x 即可): . 0,033..22 1)(min 212112 22121≥≥≤+-+-= x x x x t s x x x x x x f

机械优化设计期末考试试卷

机械优化设计期末复习题 一、填空题 1.组成优化设计数学模型的三要素是 设计变量 、 目标函数 、 约束条件 。 2.函数()22121212,45f x x x x x x =+-+在024X ?? =????点处的梯度为120-?? ???? ,海赛矩阵为 2442-?? ??-?? 3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用来评价设计的优劣,,同时必须是设计变量的可计算函数 。 4.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。 5.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。 6.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步长按一定的比例 递增的方法。 7.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收敛速度较 慢 。 8.二元函数在某点处取得极值的必要条件是()00f X ?= , 充分条件是该点处的海赛矩阵正定 9.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无约束优化问题,这种方法又被称为 升维 法。 10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩 11坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题 12.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。 13.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描

述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。 14.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长 。 15协调曲线法是用来解决 设计目标互相矛盾 的多目标优化设计问题的。 16.机械优化设计的一般过程中, 建立优化设计数学模型 是首要和关键的一步,它是取得正确结果的前提。 二、选择题 1、下面 方法需要求海赛矩阵。 A 、最速下降法 B 、共轭梯度法 C 、牛顿型法 D 、DFP 法 2、对于约束问题 ()()()()2212221122132min 44 g 10 g 30 g 0 f X x x x X x x X x X x =+-+=--≥=-≥=≥ 根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 , ()2 51[,]22 T X =为 。 A .内点;内点 B. 外点;外点 C. 内点;外点 D. 外点;内点 3、内点惩罚函数法可用于求解__________优化问题。 A 无约束优化问题 B 只含有不等式约束的优化问题

最优化试题及答案

m i 1 m * m j * g j (x*) 0 最优化理论、方法及应用试题 一、(30 分) 1、针对二次函数f(x) 1x T Qx b T x c,其中Q是正定矩阵,试写出最速下降算法的详细 步骤,并简要说明其优缺点? 答:求解目标函数的梯度为g(x) Qx b,g k g(x k) Qx k b,搜索方向:从X k 出发,沿g k作直线搜索以确定x k 1。 Stepl:选定X。,计算f o,g o Step2:做一维搜索,f k i min f X k tg k , x k 1 X k tg k. Step3 :判别,若满足精度要求,则停止;否则,置 k=k+1,转步2 优缺点:最速下降法在初始点收敛快, 收敛速度慢。 算法简单,在最优点附近有锯齿现象, 2、有约束优化问题 min f (x) g i(x) 0,i 1,2,L ,m s.t h j (x) 0,j 1,2,L ,l 最优解的必要条件是什么? 答:假设x*是极小值点。必要条件是f,g,h函数连续可微,而且极小值点的 所有起作用约束的梯度h(x*)(i 1,2丄,1)和g j(x*)( j 1,2,L ,m)线性无关,则* * * * 存在1 , 2丄,I, 1, 2丄,m,使得 l f(x*) i* h i(x*) i 1 j*g j(x*) 0,j 1,2,L * * * * * 1 , 2 ,L , l , 1 , 2 ,L , * 0, j 0 3、什么是起作用约束?什么是可行方向?什么是下降方向?什么是可行下降方向? 针对上述有约束优化问题,如果应用可行方向法,其可行的下降方向怎样确定?答:起作用约束:若g j(x0) 0,这时点x0处于该约束条件形成的可行域边界上, 它对x0的摄动起到某种限制作用 可行方向:x0是可行点,某方向 p,若存在实数0 0,使得它对任意

预测与决策试卷及答案解析

经济预测与决策 考试形式:闭卷考试时量:150分钟总分:100分 一.单选题1*15=15分 1.经济预测的第一步是()A A.确定预测目的,制定计划 B.搜集审核资料 C.建立预测模型 D.评价预测成果 2.对一年以上五年以下的经济发展前景的预测称为()B A.长期经济预测 B.中期经济预测 C.短期经济预测 D.近期经济预测 3.()回归模型中,因变量与自变量的关系是呈直线型的。C A.多元 B.非线性 C.线性 D.虚拟变量

4.以下哪种检验方法的零假设为:B1=B2=…=Bm=0?B A.r检验 B.F检验 C.t检验 D.DW检验 5.以数年为周期,涨落相间的波浪式起伏变动称为()D A.长期趋势 B.季节变动 C.不规则变动 D.循环变动 6. 一组数据中出现次数最多的变量值,称为()A A.众数 B.中位数 C.算术平均数 D.调和平均数 7. 通过一组专家共同开会讨论,进行信息交流和相互启发,从而诱发专家们发挥其创造性思维,促进他们产生“思维共振”,达到相互补充并产生“组合效应”的预测方法为()A A.头脑风暴法 B.德尔菲法

C.PERT预测法 D.趋势判断预测法 8.()起源于英国生物学家高尔登对人类身高的研究。B A.定性预测法 B.回归分析法 C.马尔科夫预测法 D.判别分析预测法 9.抽样调查的特点不包括()D A.经济性 B.时效性 C.适应性 D.全面性 10.下图是哪种多项式增长曲线()B A.常数多项式 B.一次多项式 C.二次多项式

D.三次多项式 11.根据历年各月的历史资料,逐期计算环比加以平均,求出季节指数进行预测的方法称为()C A.平均数趋势整理法 B.趋势比率法 C.环比法 D.温特斯法 12.经济决策按照目标的性质和行动时间的不同,分为()D A.宏观经济决策和微观经济决策 B.高层、中层和基层决策 C.定性决策和定量决策 D.战术决策和战略决策 13.()是从最好情况出发,带有一定冒险性质,反映了决策者冒进乐观的态度。B A.最大最小决策准则 B.最大最大决策准则 C.最小最小后悔值决策准则 D.等概率决策准则 14.如果某企业规模小,技术装备不良,担负不起较大的经济风险,则该企业应采用()A

最优化试题及答案

最优化理论、方法及应用试题 一、 (30分) 1、针对二次函数1()2 T T f x x Q x b x c =++,其中 Q 是正定矩阵,试写出最速下降 算法的详细步骤,并简要说明其优缺点? 答:求解目标函数的梯度为()g x Qx b =+,()k k k g g x Q x b ==+,搜索方向:从k x 出发,沿k g -作直线搜索以确定1k x +。 Step1: 选定0x ,计算00,f g Step2: 做一维搜索, ()1min k k k t f f x t g +=-,1k k k x x tg +=-. Step3:判别,若满足精度要求,则停止;否则,置k=k+1,转步2。 优缺点:最速下降法在初始点收敛快,算法简单,在最优点附近有锯齿现象,收敛速度慢。 2、有约束优化问题 m in ()()0,1,2,,.. ()0,1,2,,i j f x g x i m s t h x j l ≥=???==?? 最优解的必要条件是什么? 答:假设*x 是极小值点。必要条件是f ,g ,h 函数连续可微,而且极小值点的所有起作用约束的梯度(*)(1,2,,)i h x i l ?= 和(*)(1,2,,)j g x j m ?= 线性无关,则 存在****** 12 12,,,,,,,,l m αααβββ 使得 ()1 1* * * * * * 1 212* * (*)*(*)*(*)0 *(*)0,1,2,,,,,,,,,0 0,0 l m i i j j i i j j l m i j f x h x g x g x j m α β βα ααβββαβ==?- ?- ?===≠>≥∑∑ 3、什么是起作用约束?什么是可行方向?什么是下降方向?什么是可行下降方向?针对上述有约束优化问题,如果应用可行方向法,其可行的下降方向怎样确定? 答:起作用约束:若0()0j g x =,这时点0x 处于该约束条件形成的可行域边界上,它对0x 的摄动起到某种限制作用。 可行方向:0x 是可行点,某方向p ,若存在实数00λ>,使得它对任意

《算法设计与分析》历年期末试题整理_含答案_

《算法设计与分析》历年期末试题整理(含答案) (1)用计算机求解问题的步骤: 1、问题分析 2、数学模型建立 3、算法设计与选择 4、算法指标 5、算法分析 6、算法实 现7、程序调试8、结果整理文档编制 (2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程 (3)算法的三要素 1、操作 2、控制结构 3、数据结构算法具有以 下5 个属性: 有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。 确定性:算法中每一条指令必须有确切的含义。不存在二义性。只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限 次来实现的。 输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。 输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。 算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算 法应对其作出反应,而不是产生莫名其妙的输出结果。 效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要 的最大存储空间。一般这两者与问题的规模有关。 经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法 迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。 二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。 三、对迭代过程进行控制。在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。 编写计算斐波那契(Fibonacci)数列的第n 项函数fib(n)。 斐波那契数列为:0、1、1、2、3、……,即:

相关文档
相关文档 最新文档