文档库 最新最全的文档下载
当前位置:文档库 › 分形哲学

分形哲学

分形哲学
分形哲学

分形哲学

1 自然界中的分形现象

事实上,自然界有许多自然景物就非常象分形图形,我们可以用简单的分形程序画出一些分形,其逼真程度可以和自然界的真物照片相比,如桧树的树枝、羊凿树的叶子。

自然界由单纯的规则组成,而且这个规则涉及到自相似的所有层次,这是很自然就能想到的,这一点特性与分形非常想象,如支配羊凿树树叶的全体的规则同时也支配左右分开的树枝的一个一个小叶,而且对小叶中的小叶也是如此。

我们知道几何起源于自然界物质的抽象,我们说自然界有许多自然物体可以用分形来加以描述,如海岸线、云彩的边界。但是,应该说这些物体没有一个是真正的分形,因为用充分小的比例观测它们时,它们的分形特征就消失了。然而,在一定的比例范围内,它们表现了许多类似分形的性质,因而在这个范围内可以看成是分形。(实际上,

规则几何也是理想化的产物,自然界物体中是没有真正的直线和圆的。)

早在Mandelbrot 写书系统提出分形理论以前,他和同事Voss 等已经在计算机上绘制了大量的逼真的月球地形、类地行星、岛屿、山脉以及类似蜗牛、水母等分形图形,这就是说,从分形开始创立时,分形就是与自然界物体密切相关的,也为人类认识许多复杂的自然界物体提供了新的工具。可以说,数学上标准的分形一开始就和自然界的现象结合在一起的。为此,Mandelbrot 猜想,自然界的许多东西都是由简单步骤的重复而产生出来的,这就使我们能够解释一些让人们困惑的事件:为什么相对少量的遗传物质可以发育成复杂的结构,如肺、大脑甚至整个机体;为什么只占人体体积的5%的血管能布满人体的每一个部分。

单纯的东西容易反映其本性,而且也应以纯粹的形式来反映。如果我们认为分形性是自然原本生来就具有的,那么,作为同样从太古时代就有的羊凿树正好具备了充分反映自然性质的资格(据考证,羊凿树是3亿年前古生代石炭纪时期的主要树木)。正是因为许多基本的自然现象具有分形特征,如山脉、河流、云彩,现在有一种所谓“分形层次宇宙论”认为宇宙就是一个分形:宇宙本身才是最能反映分形性的。这个理论的基本思想是:首先将银河系比作最基本的结构(相当于生成元、发生器),其构成元素就是一个个星星,这些星星集中起来形成涡旋状的银河,在上一层宇宙(高宇宙),涡旋状的银河本身又变成构成元素,从而形成更大的涡旋状银河,再进入上一层,又由

这些更大的涡旋状银河作为构成元素进一步形成更加大的涡旋状银河系。

象这样重复相同规则的无限结构就表示了层次宇宙论所指的宇宙结构。如果这个理论是正确的话,宇宙本身就是一个最大的分形。

2 分形现象与生成哲学

世界是运动、变化和发展的。我们故意做点曲解,认为这句话说了三个层次上的演化问题。所谓“运动”是指宏观物体的位置移动,这个观念主要来自经典力学,它谈的主要是量的改变,基本不涉及物体的质的改变。“变化”则牵涉到物体成分的改变,有化学过程参与,所以有质的变化。“发展”则更高一层,它涉及系统在新的层次上重新组织、自我更新、自我否定,是真正意义上的演化,这里既有量变也有质变。

研究“发展”要用到能够进行“逾层分析”的科学理论,如统计力学、系统论、自组织理论、非线性科学等等。

《道德经》中早就讲:“道生一,一生二,二生三,三生万物。”这表达的是一种朴素的宇宙生成论。最近几年中国社会科学院金吾伦(1937- )教授则提出精致的现代“生成论”,其基本观点是宇宙间的一切都是不断生成着的,世界是动态的也是整体的。生成过程是从潜存到显现的过程,“生子”是生成的因子,它具有自主性和自组织性。

金吾伦的生成论自然哲学与分形迭代生成有不谋而合之处,实际上金吾伦一直非常重视总结、概括非线性科学理论的哲学意义。

生成哲学中的“生子”概念类似于分形理论中的“生成元”。世界在广义的迭代机制下自我进化——相当于本节开头讲的“发展”。宇宙的对称性逐渐破缺,有序性、复杂性不断增强,以至于出现山川、草木、动物、人类及人的思维。

对于生物体,20世纪最终确立的“基因”概念加强了对生命体生成过程的理解。事实上,“基因”的词根与“创世纪”、“创造”、“遗传”、“生成”、“世代”都是相同的。

世界上第一只克隆羊——多利(Dolly),诞生于英国罗斯

林研究所,右侧是其代理母亲。

生命体区别于非生命体的一个主要标志是“自我复制”,[从这种意义上讲,对待人体克隆(clone)技术应慎重,不能简单地说“可以”或者“不可以”。]基因在其中担当重任。基因负责对生命体的形态、结构、功能进行全方位的编码,其信息量想必极大,但基因存在于染色体上,染色体的个数和容量是有限的,基因所包含的信息也决不会是无限的。常识的想法是,要准确描述后代生命的性状,原则上需要无穷多信息,这在物理科学水平是无法解释通的。现在有了分形理论,这个矛盾立即消失,简单而少量的规则是可以生成复杂结构的。生命体在自我复制过程中必然大量使用分形迭代机制。

非生命界也可作类比的考虑,迭代规则是一些简单的力学、物理、

化学规律。这种想法仍然是朴素的,但也许很有用。随着科学的进步,这种自然观还必然要更新,因为它太简单,在细节上一定歪曲了自然的本来面目。不过,作为一种哲学,复杂化就失去了意义。

元胞自动机、L系统和复杂性研究都将有助于深入探索生命复制的特点,在这方面我们不得不提到先行者康韦(J.H.Conway),70年代他发明了“生命”元胞自动机游戏。

分形维数浅释

分形维数(Fractal Dimension)浅释 笔者: 喻麟佑博士(美国亚利桑那大学物理学博士)2012年3月于广州

前言: 最近,数学课下课后,有学生问我一个网上流传的数学问题,令很多学生困惑。简化以后,大意可以由下图描述: 三角形的两个斜边一直往下折,折了无穷次后,看起来不就是和底边一样了?那 么,1 + 1了?要回答类似这个问题,必须了解分形(Fractal)的原理才行。其实这两个斜边,折了无穷次后,是一个分形的结构,和一条直线是大不相同的。现在,我们来了解一下分形的原理。 正文: 分形 (Fractal) ,又称“碎形”或“残形”。这种几何形状,对很多人而言,其实并不陌生,大家或多或少都可在一些书本、杂志封面、海报或月历等地方看到过。自从20世纪80年代开始 [注一] ,“混沌 (chaos)”,“奇异吸引子 (strange attractors)”,“分形 (fractal)”, 还有与以上相关的许多新名词,如雨后春笋般呈现,且被人们所津津乐道。无论是专业人士的讨论或一般茶余饭后的闲谈皆然。 分形几何,有若干特性,例如“自相似性(self-similarity)”等等。本文由一个最耐人寻味的特性切入,那就是分形维数(Fractal Dimension)。并且,也借此讨论过程,得以对分形(碎形)有更深入的了解。

首先,众所周知,一般几何所用的维数,或维度 (Dimension) 是整数,如一 个点是0维,一条线段是1维,一个在平面上的几何图形是2维,如一个方形或一个圆形;再者,一个立方体或一个球形,则被视为3维。 然而,分形,却具有非整数的维数。这是怎么回事呢?为了解释清楚,我们 先看看一条线段(如图一): 图一 如果我们把此线段分割一次,则 1n =,12N =,12 L ε= 式中 L 是一个常数, n 是分割的次数, n N 乃分割n 次后的总碎片数, n ε是分割n 次后的每一碎片的长度 第二次分割(每个线段再分割一次): 2n =,2242N ==,22 42L L ε= = 第三次分割(每个线段再分割一次): 3n =,3382N ==,3382 L L ε= =

分形几何

分形几何 一、欧氏几何的局限性 自公元前3世纪欧氏几何基本形成至今已有2000多年。尽管此间从数学的内在发展过程中产生了射影几何、微分几何等多种几何学,但与其他几何学相比,人们在生产、实践及科学研究中更多涉及到的是欧氏几何。欧氏几何的重要性可以从人类的文明史中得到证明。欧氏几何主要是基于中小尺度上,点线、面之间的关系.这种观念与特定时期人类的实践。认识水平是相适应的,数学的发展历史告诉我们,有什么样的认识水平就有什么样的几何学。当人们全神贯注于机械运动时,头脑中的囹象多是一些囫锥曲线、线段组合,受认识主。客体的限制,欧氏几何具有很强的“人为”特征。这样说并非要否定欧氏几何的辉煌历史,只是我们应当认识到欧氏几何是人们认识、把握客观世界的一种工具、但不是唯一的工具。 进入20世纪以后,科学的发展极为迅速。特别是~~战以后,大量的新理论、新技术以及新的研究领域不断涌现,同以往相比,人们对物质世界以及人类社会的看法有了很大的不同。其结果是,有些研究对象已经很难用欧氏几何来描述了,如对植物形态的描述,对晶体裂痕的研究,等等。 美国数学家B, Mandelbrot曾出这样一个著名的问题:英格兰的海岸线到底有多长?这个问题在数学上可以理解为:用折线段拟合任意不规则的连续曲线是否一定有效?这个问题的提出实际上是对以欧氏几何为核心的传统几何的挑战,此外,在湍流的研究。自然画面的描述等方面,人们发现传统几何依然是无能为力的。人类认识领域的开拓呼唤产生一种新的能够更好地描述自然图形的几何学,在此,不妨称其为自然几何。 二、分形的产生 一些数学家在深入研究实、复分析过程中讨论了一类很特殊的集合(图形),如Cantor集、Peano曲线、KoCh曲线等,这些在连续观念下的“病态”集合往往是以反例的形式出现在不同的场合。当时它们多被用于讨论定理条件的强弱性,其更深一层意义并没有被大多数人所认识。 1975年,Mandelbrot在其《自然界中的分形几何》一书中引入了分形(fractal)这一概念。从字面意义上讲, fractal是碎块、碎片的意思,然而这并不能概括Mandelbrot的分形概念,尽管目前还没有一个让各方都满意的分形定义,但在数学上大家都认为分形有以下凡个特点: (1)具有无限精细的结构; (2)比例自相似性; (3)一般它的分数维大子它的拓扑维数; (4)可以由非常简单的方法定义,并由递 归、迭代产生等。 (1)(2)两项说明分形在结构上的内在规律性。自相似性是分形的灵魂,它使得分形的任何一个片段都包含了整个分形的信息.第(3)项说明了分形的复杂性,第(4)项则说明了分形的生成机制。图1中五条曲线自下而上,按图中所示的规律逼近Koch曲线。Koch曲线处处连续,但处处不可导,其长度为无穷大,以欧氏几何的眼光来看,这种曲线是被打入另类的,从逼近过程中每一条曲线的形态可以看出分形四条性质的种种表现。以分形的观念来考察前面提到的“病态”曲线,可以看出它们不过是各种分形。 我们把传统几何的代表欧氏几何与以分形为研究对象的分形几何作一比较,可以得到这样的结论:欧氏几何是建立在公理之上的逻辑体系.其研究的是在旋转、平移、对称变换下各种不变的量,如角度、长度、面积、体积,其适用范日主要是人造的物体。而分形的历史只有20来年,它由递归、迭代生成,主要

分形图形与分形的产生

分形图形 分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。分形的基本特征是具有标度不变性。其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。 说到分形(fractal),先来看看分形的定义。分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。而一直到八十年代,对于分形的研究才真正被大家所关注。 分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。它是数学的一个分支。我之前说过很多次,数学就是美。而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。而更由于它美的直观性,被很多艺术家索青睐。分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。而在生物界,分形的例子也比比皆是。 近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。它以其独特的手段来解决整体与部分的关系问题,利用空间结构的对称性和自相似性,采用各种模拟真实图形的模型,使整个生成的景物呈现出细节的无穷回归的性质,丰富多彩,具有奇妙的艺术魅力。分形对像没有放大极限,无论如何放大,总会看到更详细的结构。借助于分形的计算机生成,从少量的数据生成复杂的自然景物图形,使我们在仿真模拟方面前进了一大步。在分形的诸多研究课题中,分形的计算机生成问题具有明显的挑战性,它使传统数学中无法表达的形态(如山脉、花草等)得以表达,还能生成一个根本“不存在”的图形世界。分形在制造以假乱真的景物方面的进展和潜在的前途,使得无论怎样估计它的影响也不过分。可以肯定,分形图案在自然界真实物体模拟、仿真形体生成、计算机动画、艺术装饰纹理、图案设计和创意制作等具有广泛的应用价值。 分形图形简介一、关于分形与混沌 关于分形的起源,要非常准确的找出来是非常困难的。研究动态系统、非线形数学、函数分析的科学家,已数不胜数。尽管分形的早期线索已非常古老,但这一学科却还很年轻。比如关于动态系统和细胞自动机的大部分工作可以追溯到冯-诺依曼;但是,直到Mandelbrot 才如此清楚地将自然现象和人工现象中的混沌及分形同自相似性联系在一起。大家如果对此感兴趣,可进一步查阅有关资料。下面我们看一看分形的概念。 什么是分形呢?考虑到此文的意图,我们无意给出它严格的定义,就我们的目的而言,一个分形就是一个图象,但这个图象有一个特性,就是无穷自相似性。什么又是自相似呢?在自然和人工现象中,自相似性指的是整体的结构被反映在其中的每一部分中。比如海岸线,常举的例子,你看它10公里的图象(曲线),和一寸的景象(曲线)是相似的,这就是自相似性。 与分形有着千差万屡的关系的,就是混沌。混沌一词来源与希腊词汇,原意即“张开咀”,但是在社会意义上,它又老爱和无序联系在一起。解释分形和混沌的联系,要注意到分形是

分形理论

分形理论及其在水处理工程中的应用 凝聚和絮凝是混凝过程的两个重要阶段, 絮凝过程的完善程度直接影响后续处理(沉淀和过滤)的处理效果。但絮凝体结构具有复杂、易碎和不规则的特性,以往对絮凝的研究中由于缺乏适用的研究方法,通常只考虑混凝剂的投入和出水的混凝效果, 而把混凝体系当作一个―黑箱‖, 不做深入研究。即使考虑微观过程, 也只是将所有的胶粒抽象为球形, 用已有的胶体化学理论及化学动力学理论去加以解释[1],得出的结论与实验中实际观察到的胶体和絮凝体的特性有较大的差别。尽管有的研究者在理论推导和形成最终的数学表达式时引入了颗粒系数加以修正, 但理论与实验结果仍难以一致。而分形理论的提出,填补了絮凝体研究方法的空白。作为一种新兴的絮凝研究手段, ,分形理论启发了研究人员对絮凝体结构、混凝机理和动力学模型作进一步的认识。 1 分形理论的概述 1.1 分形理论的产生 1975年[2],美籍法国数学家曼德布罗特(B. B. Mandelbrot)提出了一种可以用于描绘和计算粗糙、破碎或不规则客体性质的新方法,并创造了分形(fractal) 一词来描述。 分形是指一类无规则、混乱而复杂, 但其局部与整体有相似性的体系, 自相似性和标度不变性是其重要特征。体系的形成过程具有随机性,体系的维数可以不是整数而是分数[3]。它的外表特征一般是极易破碎、无规则和复杂的,而其内部特征则是具有自相似性和自仿射性。自相似性是分形理论的核心,指局部的形态和整体的形态相似,即把考察对象的部分沿各个方向以相同比例放大后,其形态与整体相同或相似。自仿射性是指分形的局部与整体虽然不同, 但经过拉伸、压缩等操作后, 两者不仅相似, 而且可以重叠。 分形理论给部分与整体、无序与有序、有限与无限、简单与复杂、确定性与随机性等概念注入了新的内容,使人们能够以新的观念和手段探索这些复杂现象背后的本质联系。 1.2 絮凝体的分形特性 絮凝体的成长是一个随机过程, 具有非线性的特征。若不考虑絮凝体的破碎, 常规的絮凝过程是由初始颗粒通过线形随机运动叠加形成小的集团, 小集团又碰撞聚集成较大集团, 再 进一步聚集,一步一步成长为大的絮凝体。这一过程决定了絮凝体在一定范围内具有自相似性和标度不变性, 这正是分形的两个重要特征[4], 即絮凝体的形成具有分形的特点。 2 絮凝体的模拟模型 2.1 絮凝体的分形结构模型 为了更好地了解絮凝体的形成过程并尽可能地加以预测, 经过大量的研究提出了众多的絮

分形几何的应用

分形几何的应用 分形几何是法国数学家芒德布罗在1975年将具有分数维数的图形,例如科赫曲线,称为分形,建立了以这类自然界和非线性系统中出现的不光滑和不规则的几何形体为对象的数学新分支。分形几何作为一门新兴的学科已经开始逐渐发展,它的应用遍及哲学、数学、物理学、化学、地质学、水文学、气象学、天文学、地震科学、人口学、情报学、经济学、管理科学,甚至在电影、音乐、美术、书法等。下面介绍一些分形几何在当代社会中的应用。 在生命科学的研究中,科学家发现,细胞的分裂正是生物体分形的基础以及近几年来的研究表明,蛋白质的分子链具有分形特征,这就为揭开生命之谜提供了新的思维方法;而且分形在中医治病的病理中起着重要的作用,因为分形理论从人体分形着手进行分析,得出令人耳目一新的结论,以针灸为例,一个穴位是人体某一部分的缩影,是一个分形元,当人体的某一器官或部位有病时,就必然要在相应的穴位上表现出来,在穴位上产生对痛刺激敏感,皮肤电阻降低等病理生理反映,因此,对特定穴位施加刺激,就会产生治疗效果,这就是中医治病的病理分形性。 在实际工程问题中,如石油开采就可以利用分形理论进行研究则有可能大幅度地增产石油;而且分形理论为化学家深化对高分子地认识提供了有利的工具使得对凝胶形成的机理、凝胶点的确定、凝胶的生成的控制都有很好的作用。 芒德布罗经过研究不仅计算出英国西海岸线、澳大利亚海岸线、

南非海岸线、西班牙与葡萄牙的国界线的分形维数分别是1.25、1.13、1.02、1.14,还将分形应用于经济学,他测定出美国60年的棉花价格随时间变化的分形维数;在矿业应用方面,中国工程院院士谢和平教授将分形理论应用于岩石损伤力学的研究,提出了演示损伤的分形模型及演化机理;国际上的一些学者将分形应用于情报学,语言学和证券的变化进行深入的研究,得出了相应的分形维数,有了这些分形维数,专家们就可以预测出在该方面的一些结果,这有利于人类的进步。 近二十年来,国外许多大公司组织了大批科学家致力于分形的应用研究,取得了一批富有价值的成果,例如:根据分形几何原理合成了保温性能最佳的人造羽绒。分形在影视事业中也大有发展前途。20世纪80年代初,A.Fournier 将分形图形推向好莱坞影视业,致使分形在电影特技制作上大显身手,用于创作出效果奇佳的地球、宇宙中某特定地域、空间的“实景”或人世间从未有过的绚丽多彩、奇妙无比的景象。 由于分形通常是以非常简单的递归方式无穷次迭代而生成的,因此各种分形可以借助微型电子计算机编制一定的程序实现。分形的这种微机图形显示进一步帮助人们推开分形艺术宫殿的大门。 这些实例足以说明分形有强大的生命力,它对于人们认识自然界和人类社会中的某些现象的真实面貌是一个有利的数学工具。

分形几何的数学基础

课程名称(中文):分形几何的数学基础 课程名称(英文):Mathematical foundation of Fractal geometry 一)课程目的和任务: 分形几何的概念是由B.Mandelbrot 1975年首先提出的,数十年来它已迅速发展成为一门新兴的数学分支,它的应用几乎涉及到自然科学的各个领域。本课程为分形几何研究方向研究生的专业必修课程。主要内容包括:抽象空间,拓扑空间及度量空间中的测度理论基础、分形的(Hausdorff,packing及box-counting)维数理论及其计算技巧、分形的局部结构、分形的射影及分形的乘积等。其目的是使学生基本理解并掌握分形几何学基本概貌和基本研究方法及技巧,从而使他们能够阅读并理解本专业的文献资料。 二)预备知识:测度论,概率论 三)教材及参考书目: 教材:分形几何――数学基础及其应用肯尼思.法尔科内著东北大学出版社 参考书目:1)Rogers C.A. Hausdorff measures, Cambridge University Press, Cambridge, 1970. 2)文志英,分形几何的数学基础,上海科技教育出版社,上海,2000. 3)周作领,瞿成勤,朱智伟,自相似集的结构---Hausdorff测度与上凸密度(第二版),科学出版社,2010。 四)讲授大纲(中英文) 第一章数学基础 1)集合论基础 2)函数和极限 3)测度和质量分布 4)有关概率论的注记 第二章豪斯道夫测度和维数 1)豪斯道夫测度 2)豪斯道夫维数 3)豪斯道夫维数的计算――简单的例子 4)豪斯道夫维数的等价定义 5)维数的更精细定义 第三章维数的其它定义 1)计盒维数 2)计盒维数的性质与问题 3)修改的计盒维数 4)填充测度与维数 5)维数的一些其它定义 第四章计算维数的技巧 1)基本方法 2)有限测度子集 3)位势理论方法 4)傅立叶变换法 第五章分形的局部结构

分形理论

分形理论 在多年大量实践与探索的基础上,我于96年年底完成了论文<<大系统随机波动理论>>, 随后又在近一年的运作实践中不断进行了修正与完善,自信已经形成一个比较合乎现实逻辑的理论体系。该论文结合当今数学与物理学界最热门的研究领域之一--- 以变化多姿杂乱无章的自然现象为研究对象的分形理论,从最基本的概念与逻辑出发阐明了波动是基本的自然法则, 价格走势的波浪形态实属必然;阐明了黄金分割率的数学基础及价值基础, 价格波动的分形、基本形态及价量关系, 并总结了应用分析的方法与要点等等;文中也多次引用我个人对分形问题的研究成果;另外也指明了市场中流行的R.N. 埃劳特的波浪理论的基本点的不足之处。在国内基金业即将进入规范的市场化的大发展时期之际,就资金运作交易理论进行广泛的交流与探讨,肯定与进行有关基金的成立、组织、规范管理等方面的交流与探讨同样有意义。我尽力用比较通俗的语言描述并结合图表实例分析向读者介绍有关价格波动理论研究的基本内容与使用要点,供读者朋友参考。 一、分形理论与自然界的随机系统 大千世界存在很多奇形怪状的物体及扑溯迷离的自然景观, 人们很难用一般的物质运动规律来解释它们, 象变换多姿的空中行云, 崎岖的山岳地貌, 纵横交错的江河流域, 蜿蜒曲折的海岸线, 夜空中繁星的分布, 各种矿藏的分布, 生物体的发育生长及形状, 分子和原子的无规运动轨迹, 以至于社会及经济生活中的人口、噪声、物价、股票指数变化等等。欧氏几何与普通的物理规律不能描述它们的形状及运动规律, 这些客观现象的基本特征是在众 多复杂因素影响下的大系统(指包括无穷多个元素)的无规运动。通俗一点讲, 这是一个复杂的统计理论问题, 用一般的思维逻辑去解决肯定是很困难的或者说是行不通的。70年代曼德尔布罗特(Mandelbrot,B.B.)通过对这些大系统的随机运动现象的大量研究,提出了让学术界为之震惊的“分形理论”, 以企图揭示和了解深藏在杂乱无规现象内部的规律性及其物理本质,从而开辟了一个全新的物理与数学研究领域,引起了众多物理学家和数学家的极大兴趣。 所谓分形, 简单的讲就是指系统具有“自相似性”和“分数维度”。所谓自相似性即是指物体的(内禀)形似,不论采用什么样大小的测量“尺度”,物体的形状不变。如树木不管大小形状长得都差不多, 即使有些树木从来也没见过, 也会认得它是树木;不管树枝的大小如何,其形状都具有一定的相似性。所谓分形的分数维, 是相对于欧氏几何中的直线、平面、立方而言的, 它们分别对应整数一、二、三维,当然分数维度“空间”不同于人们已经习惯的整数维度空间,其固有的逻辑关系不同于整数维空间中的逻辑关系。说起来一般人可能不相信,科学家发现海岸线的长度是不可能(准确)测量的,对一个足够大的海岸线无论采用多么小的标尺去测量其长度发现该海岸长度不趋于一个确定值!用数学语言来描述即是海岸线长度与测量标尺不是一维空间的正比关系,而是指数关系,其分形维是1.52;有理由相信海岸线的形状与这个分数维有内在关系。 一个全新的概念与逻辑的诞生,人们总是有一个适应过程,但是无数事实已经证明,合理的(或者说不能推翻的)逻辑在客观现实中总能找到其存在或应用的地方的。本世纪初, 爱因斯坦将物质运动从三维空间引到四维空间去描述, 从而产生了一场科学与认识上的革命, 爱因斯坦的相对论不仅让人类“发现”了原子能,而且更重要的是其极大地推动了人们对太空与原子(和微观粒子)的认识层次与能力的提高,但愿分形理论的诞生也具有同样意义,也许在生命(生物)科学与环境科学领域将发现分形理论的重大价值。 下面结合三分法科赫曲线(KOCH)来进一步说明自相似性的意义。如附图一所示, 将一条1个单位长度的线段, 分三等份, 去掉中间的一份并用同等长度的等边三角形的两条边取代之, 随后用同样的方法不断循环地操作五次, 即得这些图形。由科赫曲线明显可以看出,

分形理论及岩石破碎的分形特征

第22卷第1期武汉冶金科技大学学报(自然科学版) Vol.22,No.11999年3月J.of Wuhan Y ejin Uni.of Sci.&T ech.(Natural Science Edition ) Mar.,1999 收稿日期:1998-11-17 作者简介:盛建龙(1964-),武汉冶金科技大学资源工程系,副教授. 文章编号:1007-5445(1999)01-0006-03分形理论及岩石破碎的分形特征 盛建龙1 刘新波1 朱瑞赓2 (1.武汉冶金科技大学资源工程系,武汉,430081;2.武汉工业大学建筑学院,武汉,430070) 摘要:介绍了分形的基本概念,分析了4种分维数的确定方法,进而探讨了岩石破碎过程中的分形特征。关键词:分形;分维;岩石破碎 中图分类号:O18;P616.3 文献标识码:A 分形几何(fractal geometry )创立于本世纪70年代,是由法国数学家曼德尔布罗特(B.B.Man 2delbrot )提出的。分形(fractal )一词是B.B.Mandel 2brot 从拉丁文fractus (断裂)创造的新词[1],意思是破碎、细片、分数、分级,等等。分形几何学主要研究一些具有自相似性(self 2similar )的不规则曲线和形状,具有自反演性(self 2reverse )的不规则图形以及具有自平方性(self 2squaring )的分形变换和自仿射(self 2affine )分形集,等等。而自相似性的不规则曲线和形状是分形几何研究的主体内容[2]。因此,分形几何学的出现,为更准确地研究自然现象的内在机理提供了一种新方法。 近年来,分形几何被广泛地应用于物理学、生物学、地理学、冶金学、材料学、计算机图形学等领域。从几何学的角度来研究不可积系统即耗散结构图形或浑沌吸引子图形的自相似性,并把复杂多变的自然现象看作是无限嵌套层次的精细结构[3],使分形理论与耗散结构理论、协同论、混沌理论、渗透理论等这些与非线形复杂现象有关的理论成为新的思想和理论模型。 1 分形与分维 分维(fractal dimension )是分形几何学定量描 述分形集合特征和几何复杂程度的参数。经典的欧几里德几何的研究对象是极规则的几何图形,是拓扑学意义下的整数维(记为D T )。它反映的是确定一个点在空间的位置所需独立坐标的数目或独立方向的数目。在经典几何学中,一个点是 零维的,一条(光滑)曲线是一维的,一个曲面是二维的。豪斯道夫(Hausdorff )于1919年引入维数概念,以Hausdoff 度为基础,提出了维数可以是分数,即分数维。下面简要介绍4种常见的分维定义。1.1 相似性维首先以Von K och 曲线为例,通过曲线的构造过程来分析相似维数。如图1所示,起始于n =0的单位长度线段称为Von K och 曲线的零阶生成;将直线段中间的1/3用边长为1/3直线段长的等边三角形的另外两段取代,得到n =1的Von K och 曲线生成元,称为第一阶生成;把第一阶生成的4个直线段类似于第一阶生成进行变形,就得到Von K och 曲线的第二阶生成;类似地无穷变形下 去,最后得到的曲线(n →∞)就是Von K och 曲线 。 图1 V on K och 曲线的构造过程 由Von K och 曲线可以看出,每一折线与整

分形分析的几个重要原理

分形分析的几个重要原理 金融市场的分形分析方法依据分形的基本原理和市场 的分形特性,其方法最大的优点是可以准确完整地界定市场的主流趋势性质,也就是市场变化的稳定方向;并且可以较准确地界定市场的趋势边界以找到最好的进场位置,从而融入并顺应趋势交易。它的可信度以及客观全面的分析方法源自几个重要的原理。 其一是市场的极端最大化原理。这主要指的是市场的自激励、自扩张、自强化作用。这是众多的交易者可以直接从市场中经验到的作用。作为开放系统的金融交易市场,只要有机会,只要出现明确的趋势,就会吸引交易者并活跃成交。一个盈利者会带动3—5个交易者入市,而3—5个交易者同样会成倍数地吸引更多的交易者,使趋势不断被强化。最后,所有对趋势有推动作用的题材和资金全部被发掘完毕,市场走到自己的反面,也就是极端最大化的地方。在这个地方,市场对立的交易双方会进行性质截然相反的交换(交易就是交换),而迅速改变市场性质。这就是物极必反。但是相反的交换一旦开始,就会立即扭转为相反的趋势。相反的交换又会产生新的自激励作用,新的趋势又开始运行了。市场就是以这种形式寻求价值发现的。分形是有主体和层次的。在极端最大化的地方,分形的主体和层次会发生极其强烈的分

形矛盾,市场会用分形来预示市场到了极端最大化的地方。分形结构、分形边界、分形空间等都可以明确预示市场的极端。但在趋势未到极端最大化之前,任何对趋势的主观臆断都是违背市场真相的。市场是不受控制的,没有谁可以改变市场的极端最大化的作用机制。有了这样的原理机制,就可以运用分形对市场的趋势做完整的界定,找到市场的主流趋势分形,而避免发生根本的市场错误。 其二,偏差与反偏差的必然交替原理。趋势绝不是一条直线,市场更不是通常的线性事物。对于主流趋势而言,市场由偏差和反偏差组成。与趋势同方向的偏差会不断出现,也就是趋势在运行中短时间向前走得太远的偏差,或者叫正偏差。反偏差就是向趋势相反方向出现的偏差。反偏差相对于趋势而言是一种错误。市场总会诱惑许多交易者向反偏差方向交易而犯这样的错误。对于交易者而言,交易的根本目标就是市场的错误,也是其他交易者的错误。在对手交易错了的地方,自己才会有机会。而反偏差就是市场的错误。市场由一连串的反偏差所组成。反偏差总会发生的,其根源在与人性和人性所组成的市场本性。它的出现是必然的。所以一个趋势总是给交易者许多机会,并附带许多陷阱。有了这样的原理,交易者就有许多机会可以加入趋势的行列,并且有许多机会可以纠正自己的错误。所以人人有机会,时时有机会。

分形维数简介[开题报告]

毕业论文开题报告 数学与应用数学 分形维数简介 一、选题的背景与意义 由于计算技术和计算机图形学的进展,分形几何得到了速度的发展.分形这个名词Mandelbrot在20世纪70年代为了表征复杂图形和复杂过程首先将拉丁文Fractus转化后引入自然科学领域的. 在分形名词使用之前的一个世纪,一些数学家就研究过不少奇异的、不光滑的集合,如Weierstrass型函数、Cantor集、Peano曲线、Koch曲线、Sierpinski缕垫和海绵等.这些都属于规则的分形图形,它们是数学家按一定的规则构造出来的、具有严格的自相似性的分形图形,它们都属于自相似分形集. 1913年Perrin对变换无穷的布朗运动轨迹进行了深入的研究,明确指出布朗运动轨迹不具有导数.自然界的许多事物也具有不光滑性和不规则性.它们和几何学中的规则图形是不同的,这表现在对它们进行测量时,其被测值的大小一般随测量尺寸的变化而发生着变化,在一定测量范围内两者存在着幂函数关系.为了测量这些集合,1915年豪斯道夫引入了豪斯道夫维数的概念,这类统计自相似性图形和曲线的豪斯道夫维数一般都不是整数,而是一个分数值.20世纪20年代到70年代,维数理论得到了进一步的发展,引入了多种不同定义的维数使分形理论初具雏形.但这些研究大多局限于纯数学领域,基本上没有在其他学科中得到应用. Mandelbrot在1988年出版了《Fractal: Chance and Dimension》一书,1982年又出版了《The Fractal Geometry of Nature》一书.在这两本书中他将分形的理论及应用推动道一个全新的阶段.在这个阶段中分形理论本身得到迅速的发展、并得到科学界的广泛重视,同时在物理学、化学、生物学、地学、材料科学、表面科学、纳米科学乃至经济学等广泛的领域得到了应用. “世界是非线性的”,分形无处不在.分形学科的诞生,使得我们重新审视这个世界.当人们用分形的观点重新审视自然物时,发现自然界的各种各样自然形态本质上都具有分形的结构. 而分形维数是描述分形最主要的参量.它反映了复杂形体占有空间的有效性和复杂形体不规则性的量度.它不仅在理论上,而且在实际上都具有着重要的价值.

分形和分形维数及其在多孔介质研究中的应用

分形和分形维数及其在多孔介质研究中的应用 华北科技学院常浩宇 1 分形、分形几何学和分形维数 1.1 分形 分形是指自然界中的一些形体,它们具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次,也就是说适当的放大或缩小事物的几何尺寸,整个结构并不改变。 一些经典的分形如: 一、三分康托集 1883年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集,或称康托尔集。三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程 三分康托集的构造过程 构造出来的(如右图)。其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。第三步,重复删除每个小区间中间的 1/3 段。如此不断的分割下去,最后剩下的各个小区间段就构成了三分康托集。 二、Koch 曲线 1904年,瑞典数学家柯赫构造了“Koch曲线”几何图形。Koch曲线大于一维,具有无限的长度,但是又小于二维。它和三分康托集一样,是一个典型的分形。根据分形的次数不同,生成的Koch 曲线也有很多种,比如三次 Koch 曲线,四次 Koch 曲线等。下面以三次 Koch 曲线为例,介绍 Koch 曲线的构造方法,其它的可依此类推。 Koch 曲线的生成过程

三次Koch曲线的构造过程主要分为三大步骤:第一步,给定一个初始图形——一条线段;第二步,将这条线段中间的 1/3 处向外折起;第三步,按照第二步的方法不断的把各段线段中间的 1/3 处向外折起。这样无限的进行下去,最终即可构造出Koch曲线。其图例构造过程如右图所示(迭代了 5 次的图形)。 自然界中如生长得枝枝岔岔的树木,高低不平的山脉,弯弯曲曲的河流与海岸线。棉絮团状的云烟和冬天里美丽的雪花等都可以看成是分形结构。 1.2 分形几何学 研究分形的几何学称为分形几何学。 分形几何学是一门以不规则几何形态为研究对象的几何学。相对于传统几何学的研究对象为整数维数,如,零维的点、一维的线、二维的面、三维的立体乃至四维的时空。分形几何学的研究对象为分数维数,如0.63、1.58、2.72。因为它的研究对象普遍存在于自然界中,因此分形几何学又被称为“大自然的几何学”。 1.3 分形维数 fractal dimension主要描述分形最主要的参量。简称分维。通常欧几里德几何中,直线或曲线是1维的,平面或球面是2维的,具有长、宽、高的形体是3 维的;然而对于分形如海岸线、科赫曲线、射尔宾斯基海绵等的复杂性无法用维数等于 1、2、3 这样的数值来描述。科赫曲线第一次变换将1英尺的每边换成3个各长4英寸的线段,总长度变为 3×4×4/3=16 英寸;每一次变换使总长度变为乘以4/3,如此无限延续下去,曲线本身将是无限长的。这是一条连续的回线,永远不会自我相交,回线所围的面积是有限的,它小于一个外接圆的面积。因此科赫曲线以它无限长度挤在有限的面积之内,确实是占有空间的,它比1维要多,但不及2维图形,也就是说它的维数在1和2之间,维数是分数。同样,谢尔宾斯基海绵内部全是大大小小的空洞,表面积是无限大,而占有的 3 维空间是有限的,其维数在2和3之间。 维数是几何对象的一个重要特征量,它是几何对象中一个点的位置所需的独立坐标数目。在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。也可以稍加推广,认为点是零维的,还可以引入高维空间,对于更抽象或更复杂的对象,只要每个局部可以和欧氏空间对应,也容易确定维数。但通常人们习惯于整数的维数。 分形理论认为维数也可以是分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。 维数和测量有着密切的关系,下面我们举例说明一下分维的概念。 当我们画一根直线,如果我们用 0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是 0,因为直线中

各种有趣的分形

各种有趣的分形 我们看到正方形,圆,球等物体时,不仅头脑里会迅速反映出它是什么,同时,只要我们有足够的数学知识,我们头脑中也反映出它的数学概念,如正方形是每边长度相等的四边形,圆是平面上与某一点距离相等的点的集合,等等。 但是,当我们看到一个山的形状时,我们会想到什么?"这是山",没错,山是如此的不同于其他景象,以至于你如果绘画水平不高,根本画不出象山的东西。可是,山到底是什么?它既不是三角形,也不是球,我们甚至不能说明山具有怎样的几何轮廓,但为什么我们却有如此直观而又强烈的山的印象?分形的创始人是曼德布洛特思考了这个问题。让 图中的风景图片又是说明分形的另一 很好的例子。这张美丽的图片是利用分 形技术生成的。在生成自然真实的景物 中,分形具有独特的优势,因为分形可 以很好地构建自然景物的模型。 这是一棵厥类植物,仔细观察,你会发 现,它的每个枝杈都在外形上和整体相 同,仅仅在尺寸上小了一些。而枝杈的 枝杈也和整体相同,只是变得更加小 了。 Sierpinski三角形具有严格的自相似特 性

Kohn雪花具有严格的自相似特性 分维及分形的定义 分维概念的提出 对于欧几里得几何所描述的整形来说,可以由长度、面积、体积来测度。但用这种办法对分形的层层细节做出测定是不可能的。曼德尔布罗特放弃了这些测定而转向了维数概念。分形的主要几何特征是关于它的结构的不规则性和复杂性,主要特征量应该是关于它的不规则性和复杂性程度的度量,这可用“维数”来表征。维数是几何形体的一种重要性质,有其丰富的内涵。整形几何学描述的都是有整数维的对象:点是零维的,线是一维的,面是二维的,体是三维的。这种几何对象即使做拉伸、压缩、折叠、扭曲等变换,它们的维数也是不变的;这种维数称

分形理论及其发展历程.

分形理论及其发展历程 李后强汪富泉 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下。过程中,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫 (F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干 (G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 二 1960年,曼德尔布罗特在研究棉价变化的长期性态时,发现了价格在大小尺度间的对称性。同年在研究信号的传输误差时,发现误差传输与无误差传输在时间上按康托集排列。在对尼罗河水位和英国海岸线的数学分析中,发现类似规律。他总结自然界中很多现象从标度变换角度表现出的对称性。他将这类集合称作自相似集,其严格定义可由相似映射给出。他认为,欧氏测度不能刻划这类集的本质,转向维数的研究,发现维数是尺度变换下的不变量,主张用维数来刻划这类集合。1975年,曼德尔布罗特用法文出版了分形几何第一部著作《分开:形状、机遇和维数》。1977年该书再次用英文出版。它集中了1975年以前曼德尔布罗特关于分形几何的主要思想,它将分形定义为豪斯道夫维数严格大于其拓朴维数的集合,总结了根据自相似性计算实验维数的方法,由于相似维数只对严格自相似这一小类集有意义,豪斯道夫维数虽然广泛,但在很多情形下难以用计算方法求得,因此分形几何的应用受到局限。1982年,曼德尔布罗特的新著《自然界的分形几何》出版,将分形定义为局部以某种方式与整体相似的集,重新讨论盒维数,它比豪斯道夫维数容易计算,但是稠密可列集盒维数与集所在空间维数相等。为避免这一缺陷,1982年特里科特(C.Tricot)引入填充维数,1983年格拉斯伯格(P.Grassberger)和普罗克西娅(I.Procaccia)提出根据观测记录的时间数据列直接计算动力系统吸引子维数的算法。1985年,曼德尔布罗特提出并研究自然界中广泛存在的自仿射集,它包括自相似集并可通过仿射映射严格定义。1982年德金(F.M.Dekking)研究递归集,这类分形集由迭代过程和嵌入方法生成,范围更广泛,但维数研究非常困难。德金获得维数上界。1989年,钟红柳等人解决了德金猜想,确定了一大类递归集的维数。随着分形理论的发展和维数计算方法的逐步提出与改进,1982年以后,分形理论逐渐在很多领域得到应用并越来越广泛。建立简便盛行的维数计算方法,以满足应用发展的需要,还是一项艰巨的任务。

分形维数简介文献综述

毕业论文文献综述 数学与应用数学 分形维数简介 一、前言部分(说明写作的目的,介绍有关概念,综述范围,简要说明有关主题的或争论焦点) “世界是非线性的”,分形无处不在.分形学科的诞生,使得我们重新审视这个世界.当人们用分形的观点重新审视自然物时,发现自然界的各种各样自然形态本质上都具有分形的结构. Mandelbrot创造“分形”(Fractal)这个词,用来表达“破碎、碎块、不规则”的意思.他明确指出:分形是局部与整体按某种方式相似的集合. 以在形态或结构上具有分形特征的大自然为研究对象的几何学,称为分形几何.自相似性或标度不变性是分形中的核心概念.在数学史上的“病态函数”或“魔鬼曲线”等分形集是严格意义上的自相似,而自然分形则是在统计意义上的自相似.貌似无规的分形图案可以由相应的分形元为基础,用迭代方法生成[]1. 维数是几何对象的一个重要特征量.直观地说,维数是为了确定几何对象中一个点的位置所需要的独立坐标的个数或独立方向的数目.抽象地讲,它是集合层次结构的一种量值标号,是集合空间复杂程度的一种量度.我们将Koch曲线(科赫曲线Koch曲线是一个数学曲线,同时也是早期被描述的一种分形曲线[]2)想象为可以用介于1维与2维之间的非整数维尺度来测量它可能正合适.这种非整数维数统称分维.分形维数是分形几何中的核心概念[]3.由于自然界的分形是种类繁多的,对不同的对象需用不同的测量方法,因此,分维也具有多种形式的定义.本文对分形维数的多种定义及其它的应用作出初步探索和分析. 二、主题部分(阐明有关主题的历史背景,现状和发展方向,以及对这些问题的评述) 由于计算技术和计算机图形学的进展,分形几何得到了速度的发展.分形这个名词Mandelbrot在20世纪70年代为了表征复杂图形和复杂过程首先将拉丁文Fractus转化后引入自然科学领域的.

分形几何无处不在

分形几何无处不在 【摘要】本文详细阐述了“什么是分形几何”的问题。并举海岸线、地表、河流、人脑表面、植物、星球分布、收入分布、股票价格的变动分布等例说明大自然中分形无处不在。介绍了分形的非均匀性、自相似性、重尺度性三个性质,最后总结出分形具有良好的发展潜质。 【关键词】分形几何;比较;定义;自然;性质 一、什么是分形几何 曼德勃罗曾经为分形下过两个定义: (1)满足下式条件: ()dim() 的集合A,称为分形集。其中,() Dim A为集合A Dim A A 的Hausdoff维数(或分维数),dim()A为其拓扑维数。一般说来,() Dim A不是整数,而是分数。 (2)部分与整体以某种形式相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特性来加以说明。对分形的定义也可同样的处理。 (i)分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。 (ii)分形集不能用传统的几何语言来描述,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (iii)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (iv)一般,分形集的“分形维数”,严格大于它相应的拓扑维数。 (v)在大多数令人感兴趣的情形下,分形集由非常简单的方法定义,可能以变换的迭代产生。 二、分形几何的性质 分形几何形态有哪些性质呢?概括说来,通常有3个特性:1.非均匀性;2.自相似性;3.重尺度性。问题的关键是它改变了人们对物体的测度观。过去人们习惯于用欧氏测度研究图形,它研究的图形是能用圆规和规尺画的简单图形,这样的图形是光滑的牛顿以后,微积分学和几何学的结构,人们可以描述复杂的形状,但这些形状的重要特征是具有特征长度.是平滑的,可微分的。分形几何研究的是更为复杂的圆形,它没有特征长度,不平滑,不可微分。

简单分形维数的探究

简单分形及维数的研究 (河南大学,物理与电子学院,物理学,河南开封,475004)摘要:本文介绍了分形、维数的相关知识,并以简单分形做例子进行了演示,又求得了Sierpinski三角分形及埃侬映射的维数。 关键词:分形,维数,程序设计。 一、分形 分形(fractal)是指由各部分组成的形态,每个部分以某种方式与整体相似。对这一描述加以引伸,它可以包括以下含义: 分形可以是几何图形,也可以是由“功能”或“信息”架起的数理模型;分形可以同时具有形态、功能和信息三方面的自相似性,也可以只有其中某一方面的自相似性。 分形的创建历史: (1)曼德勃罗在美国《科学》杂志上发表论文《英国的海岸线有多长》震惊学术界(1967 年)。 (2)法兰西学院讲演报(1973年)。 (3)“病态”“数学怪物”命名——分形(Fractal)(1975年)。 (4)法文版《分形对象:形、机遇和维数》出版(1975年)。 (5)英文版《分形:形、机遇和维数》出版(1977年)。 (6)英文版《大自然的几何学》出版(1982年) 。 分形是由Mandelbrot在20世纪70年代为了表征复杂图形和复杂过程而引入自然领域的。原意是破碎的、不规则的物体。分形分为两类,规则分形,又称决定类的分形,它是按一定的规则构造出的具有严格自相思的分形;另一类是无规则的分形,它是在生长现象中和许多物理问题中产生的分形,其特点是不具备严格意义上的自相似,只是在统计意义上是自相似的。本文研究的是规则分形。 有以上可知,自相似性是分形最大的几何特征。下面我们就科赫曲线和Sierpinski对此进行讨论。 1、科赫曲线 科赫曲线的生成方法:把一条曲线三等分,中间的一段用夹角为60的折线替代,得到第一个生成元;把第一个生成元中的每一条直线都用生成元迭代,得到第二个生成元;经过无数次迭代,即可得到科赫曲线。 实现程序如下: s=[0,1];t=[0,0];n=8; for j=1:n

相关文档