文档库 最新最全的文档下载
当前位置:文档库 › Spatial representations activated during real-time comprehension of verbs

Spatial representations activated during real-time comprehension of verbs

Spatial representations activated during real-time comprehension of verbs
Spatial representations activated during real-time comprehension of verbs

Spatial Representations Activated During

Real-time Comprehension of Verbs

- IN PRESS, COGNTIVE SCIENCE -

Daniel C. Richardson, * Cornell University

Department of Psychology, Cornell University, 212 Uris Hall, Ithaca, NY 14850.

Email: dcr18@https://www.wendangku.net/doc/8216399077.html,. Tel: (607) 255-6398. Fax (607) 255-8433.

Michael J. Spivey, Cornell University

Department of Psychology, Cornell University, 212 Uris Hall, Ithaca, NY 14850

Email: spivey@https://www.wendangku.net/doc/8216399077.html,. Tel: (607) 255-9365. Fax (607) 255-8433.

Lawrence W. Barsalou, Emory University

Department of Psychology, Emory University, Atlanta, GA 30322

Email: barsalou@https://www.wendangku.net/doc/8216399077.html,. Tel: (404) 727-4338. Fax: (404) 727-0372

Ken McRae, The University of Western Ontario

Department of Psychology, The University of Western Ontario, London, Ontario, N6A 5C2, Canada Email: mcrae@uwo.ca . Tel: (519) 661-2111 ext. 84688. Fax: (519) 661-3961.

*Corresponding author

Keywords: Image schemas, verbs, language processing, spatial representation Running head: Spatial representations of verbs

Abstract

Previous research has shown that na?ve participants display a high level of agreement when asked to choose or draw schematic representations, or image schemas, of concrete and abstract verbs (Richardson, Spivey, Edelman & Naples, 2001). For example, participants tended to ascribe a horizontal image schema to push, and a vertical image schema to respect. This consistency in offline data is preliminary evidence that language invokes spatial forms of representation. It also provided norms that were used in the present research to investigate the activation of spatial image schemas during online language comprehension. We predicted that if comprehending a verb activates a spatial representation that is extended along a particular horizontal or vertical axis, it will affect other forms of spatial processing along that axis. Participants listened to short sentences while engaged in a visual discrimination task (Experiment 1) and a picture memory task (Experiment 2). In both cases, reaction times showed an interaction between the horizontal/vertical nature of the verb’s image schema, and the horizontal/vertical position of the visual stimuli. We argue that such spatial effects of verb comprehension provide evidence for the perceptual-motor character of linguistic representations.

1.Introduction

People say that they look up to some people, but look down on others because those we deem worthy of respect are somehow “above” us, and those we deem unworthy are somehow “beneath” us. But why does respect run along a vertical axis (or any spatial axis, for that matter)? Much of our language is rich with such spatial talk. Concrete actions such as a push or a lift clearly imply a vertical or horizontal motion, but so too can more abstract concepts. Arguments can go “back and forth”, and hopes can get “too high”. Lakoff (1987) offers further examples of spatial metaphors in languages other than English, and Boroditsky (1999, 2000) has demonstrated that speakers of different languages employ different spatial metaphors when reasoning about events in time. In concert, some linguists argue that certain aspects of linguistic meaning can only be captured by spatial ‘image schema’ representations (Langacker, 1987; Talmy 1983).

Such spatial elements could be part of the metaphoric understanding that underlies much of our language, and is rooted in embodied experiences and cultural influences (Gibbs, 1996; Lakoff, 1987). For example, respect may be associated with an upwards direction because as children we look up to our taller and wiser elders. Alternatively, perhaps these spatial elements are more like idioms, or linguistic freezes - historical associations that are buried in a word’s etymology but are not part of our core understanding of the concept (Murphy, 1996). This issue forms the central question of the current research: Are the spatial representations associated with certain verbs merely vestigial and only accessible meta-cognitively, or are they automatically activated by the process of comprehending those verbs?

We operationalized this question by presenting participants with sentences and testing for spatial effects on concurrent perceptual tasks. An interaction between linguistic and perceptual processing would support the idea that spatial representations are inherent to the conceptual representations derived from language comprehension (Barsalou, 1999). The interactions we predicted were specific to the orientation of the image schema associated with various concrete and abstract verbs. Rather than relying on observational data of phrases and idioms, we empirically categorized our verbs using the norming studies of Richardson, Spivey, Edelman and Naples (2001).

1.1.Norming studies of image schemas

Assuming a spatial element to the representation of linguistic items, it would be reasonable to expect some commonality among these representations across speakers since we experience the same world, have similar perceptual systems, and generally communicate successfully. Therefore, in the same way that psycholinguists use norming studies to support claims of preference for certain grammatical structures, Richardson, et al. (2001) surveyed a large number of participants with no linguistic training to see if there was a consensus amongst their spatial representations of words.

-------- Insert Fig. 1 about here --------

The methods and results of Richardson et al. (2001) are summarized in Fig. 1. Thirty verbs were studied in two norming tasks. A mixture of concrete action verbs such as push and lift and abstract verbs or psychological predicates such as argue and respect were used. The verbs were divided into groups according to the expected primary axes of their image schemas (vertical,

horizontal, and a group of neutral verbs, e.g., showed).

In a forced-choice task, the past tense form of each verb was placed in a simple rebus sentence, with circle and square symbols representing agents and patients respectively. One hundred and seventy-three participants were asked to select one of four simple image schemas that best reflected the meaning of each verb. The image schemas consisted of a circle, a square and an arrow linking them in an up, down, left or right orientation. The results revealed a high degree of agreement: on average, about two thirds of the participants chose the same image schema for a particular verb. This consistency held equally for the abstract and concrete verbs. To test our predictions regarding the horizontal or vertical orientation of the image schemas, an ‘aspect angle’ was calculated for each verb. The left and right image schemas were given an aspect angle of 0o, and the up and down image schemas 90o. The mean aspect angles for the horizontal (18o), neutral (42o), and vertical groups (69o) suggested that participants agreed with the experimenters’intuitions.

In their second norming task, Richardson et al. (2001) allowed participants to create their own image schemas in an open-ended task. Participants were presented with the same sentences and asked to depict their meaning using a simple computer-based drawing environment. Responses were quantified using the same aspect angle metric, which in this case represented the degree to which the drawings were extended along a horizontal or vertical axis. The aspect angles for the horizontal (21°), neutral (36°), and vertical (45°) verbs again suggested that participants agreed with each other and with the experimenters’ intuitions.

By comparing each verbs’ mean aspect angle in the forced-choice and free-form drawing tasks via a pointwise correlation analysis, Richardson et al. (2001) found considerable item-by-item

consistency (r= .71, p<.0001). This suggests that the experiments tapped into some stable commonality in the way that verbs are represented across participants and tasks. However, it is possible that the horizontal or vertical character of specific verbs is only manifested in offline tasks that require a deliberative spatial response. It has yet to be demonstrated that verbs activate such spatial representations as a consequence of normal language comprehension.

1.2. A spatial effect of verbs?

The current research tested the prediction that comprehending concrete and abstract verbs with horizontal or vertical image schemas will interact with other forms of spatial processing along those axes. Because we assumed that our hypothesized spatial representations bear some similarity to visuospatial imagery (albeit a weak or partially active form), we predicted that it would interact with perceptual and memory tasks in a similar fashion.

Evidence of visual imagery interfering with visual perception was discovered at the turn of the century (Kuelpe, 1902; Scripture, 1896), and re-discovered in the late 1960s (Segal & Gordon, 1969). In demonstrations of the ‘Perky effect’ (Perky, 1910), performance in visual detection or discrimination is impaired by engaging in visual imagery. In some cases, imagery can also facilitate perception (Farah, 1985; Finke, 1985). It is not certain what mechanisms produce these differing effects (for a review, see Craver-Lemley & Reeves 1992). For our purposes, it suffices to note that facilitation only occurs when there is a relatively precise overlap in identity, shape or location between the imaginary and the real entity (Farah, 1985). In the more general case of generating a visual image and detecting or discriminating various stimuli, imagery impairs performance (Craver & Arterberry, 2001). Experiment 1 tested the hypothesis that non-specific imagery activated by verb comprehension will interfere with performance on a visual task.

Experiment 2 investigated how verb comprehension interacts with a memory task. It has been robustly shown that imagery improves memory (Paivio, 1969). Also, visual stimuli are remembered better when they are presented in the same spatial locations at presentation and test (Santa, 1977). We hypothesized that spatial structure associated with a verb would influence the encoding of visual stimuli. In Experiment 2, participants heard a sentence and saw two pictures of the agent and patient of the sentence. We predicted that the picture pairs would later be recognised faster if they were presented in the same orientation as the associated verb’s image schema.

2.Experiment 1

In this dual-task experiment, participants heard and remembered short sentences, and identified briefly flashed visual stimuli as a circle or square. The critical sentences contained the verbs for which Richardson et al. (2001) had collected image schema norms. The data from these two norming tasks were combined and the result used to categorize the verbs empirically as either horizontal or vertical, reflecting the primary axis of the image schema that had been ascribed by participants. We predicted an interaction between the linguistic and visual tasks: after comprehending a sentence with a vertical verb, participants’ discrimination would be inhibited when the visual stimulus appeared in the top or bottom locations of the screen, or in the left and right positions after a horizontal verb had been presented.

2.1.Method

2.1.1.Participants

Eighty-three Cornell University undergraduates participated for course credit.

2.1.2.Stimuli

The aspect angles produced by Richardson et al.’s (2001) norming experiments were combined by z-scoring the values for each task, then averaging the two values for each verb. The 15 verbs with the highest values were designated as the vertical verbs; the lowest 15 were the horizontal verbs. All verbs were placed in a present-tense sentence with typical agents and patients, and were a mixture of concrete and abstract verbs (see Appendix). Six filler sentences and a comprehension question relating to each were written. All 36 sentences were recorded by an experimenter speaking in a flat intonation and saved as mono mp3 sound files.

The visual stimuli consisted of a fixation cross subtending approximately 2o of visual angle, and a black circle and square, each subtending approximately 3.5o of visual angle. The fixation cross always appeared in the center of the screen, and the circle and square appeared in one of four positions, 9o above, below, to the left, or to the right of the center of the screen. Participants viewed the stimuli from a distance of approximately 20”.

2.1.

3.Procedure

Each trial began with a central fixation cross presented for 1000ms. A sentence was presented binaurally through headphones. There was then a pause of 50, 100, 150 or 200ms. This randomized ‘jitter’ was introduced so that participants could not anticipate the onset of the target visual stimulus. The target, a black circle or square, then appeared in either the top, bottom, left

or right position, and remained on screen for 200ms. Participants were instructed to identify the stimulus as quickly as possible, pressing one key to indicate a circle and another to indicate a square. Reaction times and accuracy rates were recorded. To ensure that participants attended to the sentences, randomly placed within every block of six trials, a short comprehension question followed identification of the visual stimuli, always in conjunction with a filler (rather than a target) sentence. The questions were interrogative forms of the filler sentences with an object substitution in half of the cases (e.g. “Did the dog fetch the ball/stick?”). Participants responded "yes" or "no" by pressing designated keys. The order of the sentences, the location and the shape of the visual stimuli were all fully randomized.

2.2.Results and Discussion

Mean accuracy for the comprehension questions was 97%, demonstrating that the participants attended to the auditory stimuli. In the analysis of responses to the visual stimuli, trials were excluded if the target was incorrectly identified (3% of trials) or if the reaction time exceeded two standard deviations from the mean (3% of remaining data).

-------- Insert Fig. 2 about here --------

The results are depicted in Fig. 2. The four stimuli positions were collapsed into vertical and horizontal categories, since our norming data only distinguish verbs by their primary axes. The data were analyzed using a 2 (position: horizontal/vertical) x 2 (verb category:

horizontal/vertical) repeated-measures ANOVA. As predicted, verb category interacted with stimulus position, F(1,82)=6.13, p<.02. Although the same interaction between stimulus position and verb category was numerically present in an analysis by items, this effect did not reach

significance (F(1,28)=2.42; p>.1). Simple main effects analyses showed that the visual stimuli were identified faster in the vertical positions when preceded by a horizontal verb (M=519ms, SE=15ms) than a vertical verb (M=534ms, SE=15ms), F(1,82)=4.06, p<.05. Conversely, when the stimulus was in a horizontal position, it was identified faster when preceded by a vertical (M=516ms, SE=13ms) rather than a horizontal (M=523ms, SE=13ms) verb, although this difference was not significant F(1,82)=1.22, p>.25. There was no significant main effect of stimulus position (vertical: M= 527ms, SE=10ms; horizontal: M=520ms, SE=9ms; F(1,82)=1.92, p>.1) or of verb category (vertical: M=525ms, SE=10ms; horizontal: M=521ms, SE=10ms; F<1). We carried out further analyses using concreteness as a factor, but there was not a significant main effect (F(1,74)=2.86, p>.09), no interaction with either stimulus position (F<1) or verb category (F<1), and there was no three way interaction (F(1,74)=1.81, p>.18). We conclude that our results were not affected by the abstract or concrete nature of the verbs 1.

The results provide a first indication that comprehending a verb, whether concrete or abstract, can activate a spatial representation that (in its orientation of the primary axis, at least) resembles the image schema associated with the meaning of that verb. Moreover, because the verbs modulated perceptual performance in a spatially-specific manner predicted by norming data, this suggests that Richardson et al.'s (2001) results were not an artefact of tasks requiring deliberate spatial judgments.

3.Experiment 2

When explicit spatial information is conveyed in a narrative, participants are able to incorporate it into a mental model (Bower & Morrow, 1990), or use it to construct a mental image (Denis & Cocude 1992). We now have evidence that spatial representations are ascribed consistently to, and activated by, verbs. We then tested whether implicit spatial information also influences the way stimuli are encoded and recognized by having participants remember pairs of pictures that depict spoken sentences. During study trials, participants heard a sentence while pictures were presented sequentially in the center of the screen. During test, the pictures were presented simultaneously in either a horizontal or vertical alignment. We predicted that the pictures would be recognized more easily when orientated along the axis of the associated verb.

3.1.Method

3.1.1.Participants

Eighty-two Cornell University undergraduates participated for course credit, none of whom participated in Experiment 1.

3.1.2.Stimuli

The auditory stimuli consisted of the same verbs and sentences used in Experiment 1. An artist drew a cartoon sketch of each of the agents and patients used in Experiment 2. These were designed such that, as much as possible, they had no clear vertical versus horizontal orientation. For example, cars and people were drawn ‘head on’ (and looking straight ahead) rather than facing to the left or right. The artist was not told which pictures were going to be presented

together, and did not know what verbs were being used. Thus any image schema that the artist might possess for that verb did not influence his drawing of the pictures. The pictures appeared on screen in black frames that subtended approximately 11o of visual angle, and were viewed from a distance of approximately 20”.

-------- Insert Fig. 3 about here --------

3.1.3.Procedure

Fig. 3 shows a schematic of Experiment 2. In the study trials, the participant heard the first few words of the sentence corresponding to the agent (e.g., ‘The athlete …’) and saw a centrally-presented picture of the agent. The picture was displayed for the duration of the subject noun phrase. Then the screen went blank, and the participant heard the middle segment of the sentence containing the verb (e.g., “…succeeds…”). Ten of 30 target sentences included a participle with the verb. No visual stimulus was presented. The last segment was then heard, and the participant saw a centrally-presented picture of the object noun phrase (e.g., “…at the tournament”). The segments were played smoothly back to back, such that they sounded like a natural sentence. There were six trials in each study block.

Each study block was followed by a test block of 12 trials. In each test trial, two pictures were presented in either a horizontal or vertical alignment. They appeared 9o from the center in either the top, bottom, left or right positions. All pictures had been seen in the previous study block. In half of the test trials, the two pictures were taken from different sentences; in the other half, the critical trials, the pictures were from the same study sentence. Participants pressed one key to indicate the two pictures had been paired in the same study sentence, and another to indicate they

had not been. Participants were shown five cycles of a study block followed by a test block. There was a 1000ms pause between each trial, and a rest period between each study-test cycle. The order of trials and the orientation of pictures were fully randomized.

3.2.Results and Discussion

Only critical trials in which the two pictures had been paired in a study sentence were analyzed. When pictures were presented in a horizontal orientation, participants’ accuracy was 95% for horizontal verbs and 93% for vertical verbs; when the pictures were presented vertically, accuracy was 92% and 91% respectively. These small differences were not significant. There was no main effect of orientation (F(1,81)=3.49; p>.05), nor of verb category (F(1,81)=2.10; p>.15), and no significant interaction (F(1,81)=0.30; p>.5). For the remaining reaction time analyses, trials were excluded if the incorrect answer (‘no’) was given, or if the RT exceeded two standard deviations from the mean (2% of remaining data).

-------- Insert Fig. 4 about here --------

The data were analysed using a 2 (orientation of visual stimuli: vertical/horizontal) x 2 (verb category: vertical/horizontal) repeated-measures ANOVA (see Fig. 4). Verb category interacted with the orientation of the visual stimuli, both by participants F(1,81)=5.49, p<.03, and items

F(1,28)=5.18; p<.05. Simple main effects analyses showed that pictures in a vertical orientation were responded to faster if they were associated with a vertical (M=1299ms, SE=28ms) rather than a horizontal (M=1396ms, SE=33ms) verb, F(1,81)=8.54, p<.005, and pictures in a horizontal orientation were responded to faster if associated with a horizontal (M=1273ms,

SE=30ms) rather than a vertical (M=1289ms, SE=30ms) verb, although this difference was not

significant F<1. The main effect of verb category was not significant (vertical: M=1292ms,

SE=20ms; horizontal: M=1325, SE=23ms; F(1,81)=2.91, p>.09). Pictures were correctly identified faster in a horizontal (M=1281ms, SE=21ms) than in a vertical (M=1337ms, SE=22ms) orientation, F(1,81)=8.78, p<.005.

Further analyses using verb concreteness as a factor revealed a significant main effect

(F(1,49)=22.60, p<.001) such that concrete verbs (M=1251ms, SE=19ms) were identified faster than abstract verbs (M=1374ms, SE=25ms). Concreteness did not interact with verb category (F(1,49)=3.91, p>.05) or orientation (F<1), and there was no three way interaction (F<1) 2. We concluded that concreteness does not impact our main hypothesis, and that its overall effect on reaction times is a result of the advantage that concrete words have across many types of memory and lexical decision tasks (Paivo, Yuille, & Smythe, 1966).

Verb comprehension influenced how visual stimuli were encoded in that recognition times were faster when the stimuli were tested in an orientation congruent with the verb’s image schema. In contrast to the interference effect found in visual discrimination (Experiment 1), image schemas facilitated performance in this memory task. One interpretation is that during study, verb comprehension activated an image schema. The spatial element of this image schema was imparted to the pictures, as if the verb image schema was acting as a scaffold for the visual memory. The pictures were then encoded in that orientation, and hence identified faster when presented at test in a congruent layout (Santa, 1977).

4.General Discussion

We have presented evidence that verb comprehension interacts with perceptual-spatial processes, at least with verbs that imply literal or metaphorical spatial relationships. The verbs were categorized empirically as having either horizontal or vertical image schemas (Richardson et al., 2001). The spatial orientation of the verbs' image schemas exerted influences on spatial perception and memory, interfering with performance on a visual discrimination task, and facilitating performance in the encoding of a visual memory. There are two implications of these results. First, they provide behavioral evidence that converges with linguistic theory (Lakoff 1987; Langacker, 1987; Talmy, 1983) and norming data (Gibbs, Strom & Spivey-Knowlton, 1997; Richardson et al., 2001) in support of the ‘cognitive psychological reality of image schemas’ (Gibbs & Colston, 1995). Second, they suggest that linguistic representations are intimately linked with perceptual mechanisms in that they influence on-line performance and delayed memory tasks.

There is an alternative, though closely related, explanation for our results. It could be the case that the effects we observed were not primarily driven by spatial representations activated by verbs, but by representations of the whole sentence. Although our offline norming studies (Richardson et al, 2001) presented verbs in rebus sentences with meaningless shapes (e.g., CIRCLE hopes for SQUARE), the current online experiments presented the verbs with typical agents and patients (e.g. “the girl hopes for a pony”). Therefore it is, in principle, possible that our effects were generated by mental models of the sentences. It is the goal of future research to tease apart these two accounts, Nonetheless, whichever characterization turns out to provide a better account of these findings, it is clear that the overarching framework in which language

recruits spatial representations during real-time comprehension (not merely during metalinguistic judgments) is supported compellingly by these results.

Why should it be surprising that language comprehension exerts spatial effects on perception? Most traditional accounts view language as an encapsulated system of amodal symbol manipulation, functioning independently from what is typically viewed as perceptual processing and the computation of knowledge regarding how entities and objects interact in the world (Chomsky, 1965; Fodor, 1983; Markman & Deitritch, 2000). This modular view certainly would not predict such interactions between language and perception. In contrast, accounts such as Barsalou’s (1999) Perceptual Symbol Systems theory hold that cognitive representations are governed by the same systems that control perception and action. We suggest that an aggregate of many perceptual and motor experiences may become associated with a verb, and the spatial commonalities among these experiences is reflected in the verb’s representation. This spatial component would then be activated during comprehension, possibly as part of a perceptual-motor simulation of the sentence (Barsalou, 1999).

Several recent findings further suggest that language comprehension involves perceptual or motor activation (Fincher-Keifer, 2001; Pecher, Zeelenberg, & Barsalou, in press; Richardson & Spivey, 2002; Solomon, & Barsalou, 2001; Spivey, Tyler, Richardson & Young, 2000). Stanfield and Zwaan (2001) demonstrated that reading a sentence can prime responses to orientation-specific depictions of items described in the sentence, even though orientation was only implied in the text. For example, after reading ‘John hammered the nail into the wall/floor’, participants saw a picture of a nail and were faster to verify that the object was featured in the sentence if it was depicted in its congruent orientation. Interactions between language and motor processes

were shown by Glenberg and Kaschak (2002). Judgements of the sensibility of an action were faster when the response was a physical action (towards / away from the body) that was in the same direction as the described action (e.g., ‘Close / open the drawer’). Interestingly, this effect held for the transfer of abstract entities, (e.g., ‘Liz told you the story’ / ‘You told Liz the story’), a result that mirrors our findings with abstract verbs. These behavioural results are supported by evidence from the neuropsychological literature that language processing produces activation in perceptual-motor areas (Büchel, Price & Friston, 1998; Cree & McRae, 2002; Pulvermüller, 1999; Tanel, Damasio & Damasio, 1997) and some results linking spatial processing specifically with language (Chatterjee, 2001; Coslett, 1999).

The consistent spatial effects of (both concrete and abstract) verbs have been seen in two offline norming tasks (Richardson et al. 2001) and in the present research, two studies of on-line language comprehension. This evidence can be used in support of the assertion, often made by cognitive linguistics, that certain aspects of lexical meaning, both literal and metaphoric, are captured by spatial representations. Our results endorse perceptual-motor theories of cognitive representation (Barsalou, 1999) because these spatial representations are activated during language comprehension, and interact with concurrent cognitive and perceptual processes.

Acknowledgments

The authors wish to thank Kola Ijaowla and Ji Sook Moon for assistance in data collection; Pete Ippel for drawing the stimuli for Experiment 2; and Natasha Z. Kirkham for insightful discussions. This research was supported NIH grant MH63961 to Michael Spivey, National Science Foundation Grants SBR-9905024 and BCS-0212134 to Lawrence W. Barsalou and Natural Sciences and Engineering Research Council grant OGP0155704 to Ken McRae. Portions of this research were presented in partial fulfilment of Daniel Richardson’s PhD dissertation.

Footnotes

1.Strictly speaking, the absence of a significant interaction between concreteness and

other variables makes further analysis inappropriate. With that caveat, separate

analyses can be carried out on the concrete and abstract verbs, although 5 and 3

subjects respectively had to be removed from the analyses for not contributing to all cells in the design. Simple effects ANOVAs showed that the interaction between verb category and stimulus position was non-significant for concrete verbs alone

(F(1,77)=0.59; p>.4), but significant for abstract verbs alone (F(1,79)=6.92; p<.01).

2.Once more, the lack of a significant interaction between concreteness and the other

experimental variables dictates that analysing concrete and abstract verbs separately is technically unwarranted. When these analyses were carried out, however, they showed that the concrete verbs alone had a significant interaction between verb

category and stimuli orientation (F(1,64)=7.53; p<.01, with 17 participants removed for not contributing to all cells of the design); but the abstract verbs did not

(F(1,59)=1.53; p>.2, with 22 participants removed).

References

Boroditsky, L. (1999). First-language thinking for second language understanding: Mandarin and English speakers’ conception of time. Proceedings of the

Twenty-first Annual Meeting of the Cognitive Science Society, Erlbaum:

Mawhah, NJ.

Boroditsky, L. (2000). Metaphoric structuring: understanding time through spatial metaphors. Cognition, 7, 1-28.

Bower, G.H., & Morrow, D.G. (1990). Mental models in narrative comprehension.

Science, 247, 44-48.

Büchel, C., Price C., & Friston, K. (1998). A multimodal language region in the ventral visual pathway. Nature, 392, 274-277.

Chatterjee, A. (2001). Language and space: some interactions. Trends in Cognitive Sciences, 5, 55-61.

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, MA: MIT Press. Coslett, H.B. (1999). Spatial influences on motor and language function Neurophyschologia, 37, 695-706.

Craver-Lemley C.,& Reeves, A. (1992). How visual imagery interferes with vision.

Psychological Review, 89, 633-649.

Craver-Lemley, C., & Arterberry, M.E. (2001). Imagery-induced interference on a visual detection task. Spatial vision, 14, 101-119.

Cree, G. S., & McRae, K. (2002). Analyzing the Factors Underlying the Structure and Computation of the Meaning of Chipmunk, Cherry, Chisel, Cheese, and Cello

dcp7055兄弟打印机加粉

兄弟硒鼓加粉详图及清零方法: 兄弟TN2115/2125粉盒适合于以下兄弟商务激光打印机/传真机/一体机:Brother HL-2140/2170/2175 Brother DCP-7030/7040/7045 Brother MFC-7320/7340/7450/7840 这些机器广泛运用于各种办公场所,其粉盒TN2115/2125,加粉容易,但最后要对其进行清零(清零方法这里不作介召,下一篇技术文章详细描述),首先我们来认识粉盒的成品图和装配图。 兄弟HL-2140/2170;DCP-7030/7040/7045;MFC-7320/7340/7450/7820硒鼓装配图

兄弟TN2115/2125粉盒成品图 加粉详细步骤: 1、用螺丝刀拆下右支架上1个螺丝,并安图方法取下右支架(注意右支架上有 2个塑料卡位,如图);并取下加粉圆盖; 哦,齿轮位置如图所示;

3、用一字螺丝刀取下显影辊上卡簧,并取下显影辊驱动齿轮; 4、按如图方向转动显影辊白色支架,然后小心取下显影辊,小心不要碰到显影辊表面哦。

5、有软湿布清洁出粉刀碳粉,如果有碳粉结块在上面,一定要小心清除掉;清洁密封刮片上碳粉,密封刮片要求不能打拆,破裂,起皱,否则会造成打印漏粉; 6、清洁粉仓中废粉(粉仓中为废粉,不是余粉,为什么呢?大家想想哦),一定要清理干净; 7、然后将后配件按装配图小心装好; 8、从加粉口加入新的碳粉即可。 兄弟2140/7030/7420/7820/2820/7340硒鼓加粉仍提示缺粉终极解法(附图) 兄弟Brothet HL-2140/HL-2150/DCP-7030/DCP-7040//2170/MFC-7320/MFC-7340/MFC-7450硒鼓加粉后,仍提示打印机缺粉,碳粉不足或请更换粉盒,这时需要对加粉后的粉盒进行清零。

物理量是什么

理是什么?物理量是什么? 物理是一门关于物质、运动和能量的科学,涉及到很多对象或类,基本分为力、热、电、光和声学,又细分为原子物理、核物理、固体物理、化学物理等。为了了解、认识、区别和衡量这些学科中的对象,定量和定性描述成为必然,物理量就起到了这个作用。描述一个对象或系统需要多个物理量,在工程设计和选择中,了解这些物理量非常重要。 物理量的定义为物体可测量的量,或其属性可量化;或物体的属性通过测量可量化。一个物理量包括它的定义、单位和符号表示。物理量又分为基本物理量和导出物理量。物理量由‘数量’和‘单位’构成。国际上定义了7个基本物理量包括长度、质量、时间、电流、温度、物质的量、和光流明强度,称为“LMTIQNJ”(length L, mass M, time T, electriccurrent I, thermodynamic temperature Q, amount of substance N and luminousintensity J)。物理量又分为矢量和标量等。 值得注意的是,这七个基本量中只有电流是矢量,其余都是标量!时间又是个不可逆的量。最有趣的是‘物质的量’这个物理量,居然是个‘数目’,是一摩尔物质中所含的原子数。 导出物理量是从基本物理量中引出的,比如力、速度、密度等。物理量的定义及其描述和研究成为人们对物理世界研究和认识的基础和出发点。物理世界的大厦也就是建立在这些物理量的基础之上。 物理量用符号来表示和记忆,言简意赅,直指物性。 物理量不仅是个符号,更有其内涵和实际意义。通过定义,使得被研究对象的特征属性更加清晰明了,不仅有各自的属性,如:磁、电、手性、自旋、频率等,还有大小轻重快慢的反映。有了物理量,不同对象之间还可以进行比较,还能够进行运算和推导等。物理量的定义就起到了这些作用。因此,物理量是一种属性,是一种标志,是一种和其它量的差别或区别。 物理量是否一定要能够“直接”测量吗?导出物理量就属于间接测量出来的。比如,速度(米/秒),就需要分别测量位移和时间。 物理的实在性或可操作性是源于它的可测量性和可观察性,即物理的实在性,因此,描述物理现象和过程的物理量都是实实在在的物理量,都有其具体含义。物理量的测量就包含了间接的测量。事实上,物理中绝大部分的物理量都不是直接测量得到的。 物理常数是物理量吗?以前似乎从来没有人讨论过这个问题。比如,普朗克常数k,波尔兹曼常数h。它们无疑都是物理量,它们不仅有数量,还有单位,比如,k=6.62X10-34焦耳秒,而且其精度在不断被提高和认知。

联想-兄弟打印机,硒鼓,粉仓的清零方法

各种联想,兄弟,松下激光机打印机清零方法 郑州万方公司提供 联想,兄弟打印机出现英文词句意思 1,Back Cover Open (后盖打开)Change Drum Soon(立即更换硒鼓) 2,Comm.Error(通信错误)Connection Fail(连接失败) 3,Cooling Down(正在冷却)Wait for a while(请稍等) 4,Cover is Open(扫描仪盖打开)Data Remaining (数据残余) 5,Disconnected(已断开)Document Jam(原稿卡住) 6,Dust on Drum(硒鼓上有灰尘)Fail to Warm up(预热失败) 7,Unit is too Hot(单元过热)Machine too Hot(设备过热) 8,No Cartridge(无墨盒)No Paper Fed(无进纸) 9,Not Registered(未注册) 10,No Response/Busy(未响应/繁忙)Out of Memory(内存不足) 11,Paper jam Inside(内部卡纸)Paper Jam Rear(后部卡纸) 12,Paper Jam Tray(纸盒卡纸)Toner Life End(墨粉用尽) 13,Toner Low(墨粉不足)Unable to Init (无法初始化) 14,Unable to Print(无法打印)Unable to Scan(无法扫描) 15,Wrong Paper Size(错误的纸张大小) 第一部份 1.联想7020 和3120机子清零方法 M7020/M7030更换硒鼓后如何将硒鼓置数器清零M7020/M7030如更换硒鼓后屏幕仍提示更换硒鼓可做如下操作: 1 开机通电状态下打开前盖 2 按选项键,屏幕提示change drum? ▲YES ??NO3 按机器面板的向上箭头▲按键,屏幕提示ACCEPTED即可M7030M7020打印用户配置页方法,维护模式打印自检页 1 按功能键和上或下箭头键选择

兄弟打印机清零设置

兄弟打印机清零设置 兄弟1518加粉清零 按功能键,再按加减键找到4.设备信息--OK--加减找到6.重置硒鼓--按OK键不动--等到面板提示重置/退出--按启动--马上按加键--按到显示11--点OK 1818加粉清零 菜单/功能,设备信息-OK-重置硒鼓-按OK键不动-等到面板提示重置/退出-按*11. 7060D加粉清零 打开前盖-按清除键-启动-加键(▲)选到11-OK-开关机 7360加粉清零 打开前盖-按清除键-按*号键-按00-接受后关闭前盖 兄弟5445/2240 2240D 关机-打开前盖-按GO键开机-灯全亮放开GO键-按2次GO键灯全亮-按GO键6次-灯全亮1秒后关闭前盖 兄弟3040/9120/3150CDN 打开前盖-同时按secure print和canced键4秒-上下键选你所换碳粉选择清除-按2次OK-关闭前盖 兄弟9020 9140 打开盖子-面板显示盖子打开和关闭顶盖-按*键不动-直到面板显示K.TNR-STD等

兄弟7080 7080D 7180D 打开前盖,按OK键5秒,启动-加键(▲)选到11-OK-开关机兄弟1118 1208 通电如果此时打印机电源打开请按电源按钮数秒将打印机关闭。按住开机键不要松手面板二个指示灯同时亮时打开顶盖打开顶盖后错误指示灯应当熄灭,准备就绪指示灯常亮才有用。取出硒鼓单元,二个指示灯同时亮,然后松开开机键。2、安装硒鼓单元并合上顶盖。3、按开机键两次。确保错误指示灯常亮。继续执行4操作4、执行以下操作重置计数器;对于初始墨粉盒,(体验粉盒)连续按开机键五次。过几秒自动自检然后绿灯亮恢复正常可以打印了。对于标准墨粉盒,(换过的粉盒)连续按开机键六次。过几秒自动自检然后绿灯亮恢复正常可以打印了 兄弟7380 7480 7880 打开前盖,按OK键5秒,按*号键-按00-接受后关闭前盖 兄弟2260 2260D 关闭电源,打开前盖,按GO键同时打开电源,检查粉盒,硒鼓和纸张指示灯同时亮,放开GO键,检查指示灯熄灭,按GO键9次,检查粉盒,硒鼓和纸张指示灯亮起,按GO 键3次。2560DN 关闭电源,打开前盖,按GO键开机,检查屏幕上显示9块黑块,松开GO键,检查屏幕上显示User Mode。再次按GO键9次,

物理量的定义

物理量的定义、定义式和决定式 物理量指的是量度物质的属性和描述其运动状态时所用的各种量值,分为基本物理量和导出物理量。很多物理量又是基本物理概念,是建立物理规律的基础,所以理解好物理量的定义,掌握其定义式和决定式,对学好物理知识是非常重要的。 一、基本物理量的定义 基本物理量由人们根据需要选定的,在不同时期选定的基本物理量有所不同,从1971年选定的基本物理量已有七个,它们分别是长度、质量、时间、电流、热力学温度和发光强度。 基本物理量(包括单位)是依据选定的一个标准(国际公认)来定义的,不是用其它物理量定义的,所以基本物理量没有定义式和决定式。 二、导出物理量的定义和定义式 现在基本物理量只有七个,其余的物理量都是导出物理量,导出物理量是借助其它两个或两个以上物理量来定义的,它需要用一定的公式来表达。导出物理量一般包含两层意义,其一是要阐明其物理属性;其二是其量度方法,要说明量度方法,就要给出定义式。 导出物理量的定义式,可分为两类: 1.用其它物理量的比值来定义 例如功率是导出物理量,其定义为:做功的快慢可用功率来表示(物理属性),功W跟完成这些功所用时间t的比值叫功率(量度方法),其定义式为p=w/t。 用比值来定义的导出物理量很多,如密度、速度、加速度、电场强度、电容、磁感应强度等,根据其定义给出的定义式分别为ρ=m/v、v=s/t、a=(v t-v0)/t、E=F/q、C=Q/U、B=F/IL(B⊥I) 2.用其它物理量的乘积来定义 例如动能是导出物理量,其定义为:物体由于运动而具有的能量叫动能,是一种量度机械运动的物理量(物理属性),物体的动能等于物体质量m与速度v的二次方的乘积的一半(量度方法),其定义式为E k=mv2/2。 用乘积来定义的导出物理量还有功、重力势能、动量等,其定义式分别为W=Fscosα、E p=mgh、p=mv等。 三、导出物理量的决定式 决定式是表征某一导出物理量受其它物理量的制约或决定的公式,当决定式中的其它物理量一定时,该导出物理量也一定;当决定式中的其它物理量变化时,该导出物理量也随之变化,总而言之,导出物理量由决定式中的其它物理量来决定。 1.用比值来定义的导出物理量,其定义式说明的只是量度方法,并不是决

兄弟7055打印机清零方法

兄弟7055打印机清零方法: 按功能键开机,出现英文MAINTENANCE,通过上下键,来选择01,按确认键,再选择74。按确认键,把2020改为1020,按停止键,再选择84,按确认键,选择英文PROCESS.CHECK.再按确认键,然后关机,再开机,出现PROCESS.CHECK.,通过选择TONER CART RESET,再按确认键两次,然后关机。再按功能开机,选择74。按确认键,把1020改为2020确认键,按停止键退出,再先择84,按确认键,再选择到CHECKER MODF OFF,按确认键,关机,开机,按确认键,关机,开机,搞定! 联想LJ2600D打印机清零方法: 关机,打开前盖,一手按住机器上的按键,另一只手打开开关。(就是按住启动键开机,按住不放)---然后全部灯亮,就绪灯灭。松手后再连续按“2次”(记住是2次,不能多按),又全灯亮,松手后再连续按“5次”,关门。结束 兄弟7060打印机清零方法: 按功能键开机,出现英文MAINTENANCE,通过上下键,来选择01,按确认键,再选择74。按确认键,把2020改为1020,按停止键,再选择84,按确认键,选择英文PROCESS.CHECK.再按确认键,然后关机,再开机,出现PROCESS.CHECK.,通过选择TONER CART RESET,再按确认键两次,然后关机。再按功能开机,选择74。按确认键,把1020改为2020确认键,按停止键退出,再先择84,按确认键,再选择到CHECKER MODF OFF,按确认键,关机,开机,按确认键,关机,开机,就可以 联想M7400打印机清零方法: 关掉机器→开机的同时按住功能按扭不松手开机→进入维修模式→翻到84功能项→按OK→用下翻键找到PROCESS CHECK→按OK 按扭→关机→正常开机屏幕上显示PROCES CHECK→用下键找到TONER CART RESET →按确定后关机→重新按住功能按扭开机进入维修模式→找到84→按确定→找到CHECKER MODE OFF →按确定→关机→一切OK →重新开机 联想M7450打印机清零方法:

兄弟DCP-7055灌粉清零方法图解

7055机器灌粉后怎么清零,是必须的换粉仓么,换粉仓是不是也的每次都清零呢 提问者:MyPrice网友| 提问时间:2011-11-09 08:23:52 | 回复() 回复内容最新报价|用户评价|详细参数 (1) MyPrice网友 回复时间: 2011-12-30 发言次数:0标题:7055怎么清零- 兄弟DCP-7055 按功能键开机,出现英文MAINTENANCE,通过上下键,来选择01,按确认键,再选择74。按确认键,把2020改为1020,按停止键,再选择84,按确认键,选择英文PROCESS.CHECK.再按确认键,然后关机,再开机,出现PROCESS.CHECK.,通过选择TONER CART RESET,再按确认键两次,然后关机。再按功能开机,选择74。按确认键,把1020改为2020确认键,按停止键退出,再先择84,按确认键,再选择到CHECKER MODF OFF,按确认键,关机,开机,按确认键,关机,开机,搞定!

[硒鼓加粉图解]兄弟DCP-7055一体机硒鼓TN2015加粉图解以及清 零方法 一体机, 硒鼓, 初学者 兄弟HL2130/2132/DCP7055 系列多功能一体机硒鼓TN2015的加粉图解和清零方法,希望对初学者有所帮助!上图 兄弟2015加粉01.jpg (39.49 KB) 兄弟2015加粉02.jpg (51.11 KB)

兄弟2015加粉03.jpg (44.47 KB) 兄弟2015加粉04.jpg (54.5 KB) 兄弟2015加粉05.jpg (33.39 KB)

兄弟2015加粉06.jpg (49.38 KB) 兄弟2015加粉07.jpg (59.12 KB)

兄弟打印机全部清零操作方法

兄弟打印机全部清零操作方法 弟打印机清零大全 一、兄弟4040CN、4050彩打硒鼓清零方法 兄弟4040CN彩色激光打印机更换硒鼓后清零方法如下: 当打印机出现“Drum End Soon”等字母提示时,就提醒您要更换硒鼓了。 当您更换新的硒鼓单元时,您需要通过以下步骤重置硒鼓计数器: 1、打开打印机电源开关。 2、按下“+”或“-”键,选择Machine Info. ( 机器信息)。 3、按下“OK”执行下一级菜单,然后按下“+”或“-”键,选择“Reset Parts Life”( 重置零件寿命)。 4、按下“OK”,然后按下“+”键,选择“Drum Unit”( 硒鼓单元)。 5、按两次“OK”。 二、兄弟3040cn清零方法 1、同时按下secure print和cancel 四秒钟 2、根据提示自动更换粉,然后按下两次OK,就大功造成了,是不是很简单呀。

三、兄弟7420,2820加粉后清零 打开前盖,按选项,再按星号键,然后是零零 四、ALL系列(HL2040、HL2070N),AL系列(HL5240、HL5250DN)清零方法 1、确保已将打印机电源打开并且硒鼓指示灯闪烁,打开打印机前盖。 2、按住GO按钮约四秒钟,直到所有的指示灯亮起。四个指示灯都亮起后,松开GO按钮。 五、ALL-FB/ALL-SF(MFC7420/7220/DCP7010/7025/FAX2820) 清零方法 1、请确保前盖打开,然后按控制面板上的Option(选项)键 2、A,对于DCP系列机器 当屏幕上出现Replace Drum?(更换硒鼓)信息时,请按▲键.当屏幕上出现Accepted(已接受)信息时,请合上前盖. B, 对于MFC系列的机器 1、当屏幕上出现Replace Drum?(更换硒鼓)信息时,请按数字 2、当屏幕上出现Accepted(已接受)信息时,请合上前盖. 六、FAX8370清零方法 1、装入新硒鼓单元,并保持前盖打开。 2、按“清除”键,当显示“ACCEPTED",按1,然后合上前盖。

Removed_气象要素和物理量定义

气象要素和物理量定义(搬自师姐处) lats4d -i your_input_file.nc -ftype sdf -o your_outpu_file -format grads_grib 1. 海平面气压P sea单位:百帕(hPa) 2. 等压面高度H 单位:位势米 3. 温度T 单位:摄氏度(?C);绝对温度(?K) 4. 东西风U单位:米/秒(m/s), 通常正值为西风,负值为东风。 5. 南北风V单位:米/秒(m/s),通常正值为南风,负值为北风。 6.垂直速度ω 单位:百帕/秒(hPa·s-1),天气尺度的量级一般为10-3。 ●物理意义ω=dP/dT为P坐标里的垂直速度,负值表示上升运动,正 值表示下沉运动 ●应用 一定强度的上升运动是形成降水的条件之一,通常是诊断预报大 雪、暴雨、强对流等天气的物理量之一。 7.散度D 常用的是水平风散度,D=?u/?x+?v/?y,单位:/秒(s-1)。 ●物理意义由于水平风的不均匀造成空气在单位时间单位面积上的相对膨胀率。 ●应用 在诊断降水预报中有很重要的作用,低空辐合高空辐散是构成 上升运动的充分和必要条件,此外水汽的汇合主要也是靠低空流场的辐 合。 8.涡度ζ常用的是p坐标中的水平风的涡度,也就是涡度的垂直分量 ζ=?v/?x-?u/?y。 ●物理意义单位面积内空气旋转速率的平均情况。ζ>0表示气旋式旋 转,ζ<0表示反气旋式旋转。单位:/秒(s-1),天气尺度的量级为

10-5。 ●应用 通常用来表征天气系统涡旋度之强度。 9.比湿q ●定义单位质量湿空气实际含有的水汽质量。单位:g/kg(克/千克)。 10.相对湿度RH ●定义实际空气的湿度与在同一温度下达到饱和状况时的湿度之比值。单位:% 11.水汽通量用来表示水汽水平输送的强度。 ●物理意义每秒钟对于垂直于风向的、一厘米宽、一百帕高的截面所 流过的水汽克数,它是一个向量,方向与风速相同。单位:克/厘米·百 帕·秒(g/cm·hPa·s)。 ●应用 通常用来判断水汽来源,水气的输送方向和强度以及与环流系 统的关系等。 12.水汽通量散度? ●定义单位时间、单位体积内辐合或辐散的水气量。单位:克/厘米 2·百帕·秒(g/cm2·hPa·s)。天气尺度量级为10-7-10-6。 ●应用 通常用来定量地判断水汽在某些地区的汇聚与辐合,是诊断降 水的条件之一。 13.假相当位温θse ●定义 空气微团绝热上升,将所含的水汽全部凝结放出,再干绝热下 降到1000百帕时的温度。单位:绝对温度(°K)。 ●应用 θse随高度的分布能反映气层对流性稳定的情况。当?θse /?z>0 时,气层上干下湿,呈对流性不稳定;当?θse /?z<0时,气层为上湿下干,呈对流性稳定。 14.涡度平流即涡度的水平输送, =-(uζ?/?x+vζ?/?y)。 ●物理意义表示相对涡度在水平方向上不均匀时,由于空气的水平运 动所引起的涡度局地变化。涡度平流的符号决定于涡度与风的水平分 布,其强度与涡度梯度和垂直于等涡度线的风速成正比。

兄弟2240D打印机清零方法

兄弟2240D打印机清零方法:1.在电源开着的情况下,打开打印机前盖,让它开着。2.关掉电源3.按住“GO”键的同时打开打印机开关。这是所有的灯应该都是亮着的。4.松开“GO”键5.按两次“GO"键6.稍停顿7.按”Go“键五次8.这时toner键应该是不亮的9合上前盖,”只有ready“键应该是亮着的10.然后就可以用啦. 兄弟7055打印机清零方法:按功能键开机,出现英文MAINTENANCE,通过上下键,来选择01,按确认键,再选择74。按确认键,把2020改为1020,按停止键,再选择84,按确认键,选择英文PROCESS.CHECK.再按确认键,然后关机,再开机,出现PROCESS.CHECK.,通过选择TONER CART RESET,再按确认键两次,然后关机。再按功能开机,选择74。按确认键,把1020改为2020确认键,按停止键退出,再先择84,按确认键,再选择到CHECKER MODF OFF,按确认键,关机,开机,按确认键,关机,开机,搞定. 兄弟7060打印机清零方法: 按功能键开机,出现英文MAINTENANCE,通过上下键,来选择01,按确认键,再选择74。按确认键,把2020改为1020,按停止键,再选择84,按确认键,选择英文PROCESS.CHECK.再按确认键,然后关机,再开机,出现PROCESS.CHECK.,通过选择TONER CART RESET,再按确认键两次,然后关机。再按功能开机,选择74。按确认键,把1020改为2020确认键,按停止键退出,再先择84,按确认键,再选择到CHECKER MODF OFF,按确认键,关机,开机,按确认键,关机,开机,就可以 兄弟MFC8220/MFC8440硒鼓清零技巧1.打开前盖2.按“清除/返回”键3.依次按*、0、0 4.关闭前盖注意:更换新墨粉盒时(请勿断电),请务必在缺粉指示灯亮时打开前盖。若客户更换了新墨粉盒但机器未检测到仍旧报错,或更换了旧粉盒打印偏淡,可以对显影偏压和显影辊计数强制初始化,也就是按照以上步骤操作。 硒鼓单元的强制初始化步骤【兄弟2080、兄弟2880、兄弟FAX-2820、联想LJ6012、联想M7020、联想M7200、兄弟7025、兄弟DPC7010】清零首先-在开机状态下——打开前盖,然后-按住选项(或CLEAR键)——出现是否更换鼓提示松手——按1键(上键)最后合上前盖——OK 兄弟MFC7340打印机清零方法:1.打开前盖2.按清除/返回键(CLERA/BACK),请按数字13.当屏幕显示Accepted(已接受),合上前盖 兄弟DCP7030打印机清零: 在开机通电状态下,打开装硒鼓的前盖,按“选项”键,然后根据提示按上下箭头选择“更换新硒鼓”或者是英文的“NEW DRUM’,按OK键,关闭前盖,等待机器重新启动后就可以了(打开前盖,按下清除/返回键,再按上键即可。7030用这个就行了) 兄弟DCP-8060_7030_7360_7450_7840_8860DN清零方法: 1.确保设备电源已打开。 2.打开前盖3.按设备操作面板上的清除或清除/返回键。 4.若您的Brother设备有数字键:按1重置硒鼓计数器。5若您的Brother设备没有数字键:按上箭头键选择重置硒鼓计数器。当液晶显示屏上显示接受,合上前盖

八大浪费定义

八大浪费是定义工厂在JIT生产方式中的,其浪费的含义与社会上通常所说的浪费有所区别。对于JIT 来讲,凡是超出增加产品价值所必需的绝对最少的物料、设备、人力、场地和时间的部分都是浪费。因此,JIT生产方式所讲的工厂的浪费归纳为八大种,分别是:不良、修理的浪费,过分加工的浪费,动作的浪费,搬运的浪费,库存的浪费,制造过多过早的浪费,等待的浪费和管理的浪费,简称为八大浪费。 2具体表现 1.不良、修理的浪费 所谓不良、修理的浪费,指的是由于工厂内出现不良品,需要进行处置的时间、人力、物力上的浪费,以及由此造成的相关损失。这类浪费具体包括:材料的损失、不良品变成废品;设备、人员和工时的损失; 额外的修复、鉴别、追加检查的损失;有时需要降价处理产品,或者由于耽误出货而导致工厂信誉的下降。 2.加工的浪费 加工的浪费也叫过分加工的浪费,主要包含两层含义:第一是多余的加工和过分精确的加工,例如实际加工精度过高造成资源浪费;第二是需要多余的作业时间和辅助设备,还要增加生产用电、气压、油等能源的浪费,另外还增加了管理的工时。 3.动作的浪费 动作的浪费现象在很多企业的生产线中都存在,常见的动作浪费主要有以下12种:两手空闲、单手空闲、作业动作突然停止、作业动作过大、左右手交换、步行过多、转身的角度太大,移动中变换“状态”、不明技巧、伸背动作、弯腰动作以及重复动作和不必要的动作等,这些动作的浪费造成了时间和体力上的不必要消耗。 4.搬运的浪费 从JIT的角度来看,搬运是一种不产生附加价值的动作,而不产生价值的工作都属于浪费。搬运的浪费具体表现为放置、堆积、移动、整列等动作浪费,由此而带来物品移动所需空间的浪费、时间的浪费和人力工具的占用等不良后果。 国内目前有不少企业管理者认为搬运是必要的,不是浪费。因此,很多人对搬运浪费视而不见,更谈不上去消灭它。也有一些企业利用传送带或机器搬运的方式来减少人工搬运,这种做法是花大钱来减少工人体力的消耗,实际上并没有排除搬运本身的浪费。 5.库存的浪费 按照过去的管理理念,人们认为库存虽然是不好的东西,但却是必要的。JIT的观点认为,库存是没有必要的,甚至认为库存是万恶之源。如图1-1,由于库存很多,将故障、不良品、缺勤、点点停、计划有误、调整时间过长、品质不一致、能力不平衡等问题全部掩盖住了。 例如,有些企业生产线出现故障,造成停机、停线,但由于有库存而不至于断货,这样就将故障造成停机、停线的问题掩盖住了,耽误了故障的排除。如果降低库存,就能将上述问题彻底暴露于水平面,进而能够逐步地解决这些库存浪费.。 6.制造过多过早的浪费 制造过多或过早,提前用掉了生产费用,不但没有好处,还隐藏了由于等待所带来的浪费,失去了持续改善的机会。有些企业由于生产能力比较强大,为了不浪费生产能力而不中断生产,增加了在制品,使得制品周期变短、空间变大,还增加了搬运、堆积的浪费。此外,制造过多或过早,会带来庞大的库存量,利息负担增加,不可避免地增加了贬值的风险。 7.等待的浪费 由于生产原料供应中断、作业不平衡和生产计划安排不当等原因造成的无事可做的等待,被称为等待的浪费。生产线上不同品种之间的切换,如果准备工作不够充分,势必造成等待的浪费;每天的工作量变动幅度过大,有时很忙,有时造成人员、设备闲置不用;上游的工序出现问题,导致下游工序无事可做。此外,生产线劳逸不均等现象的存在,也是造成等待浪费重要原因。

兄弟打印机硒鼓清零

一、ALL系列(HL2040、HL2070N),AL系列(HL5240、HL5250DN) 1.确保已将打印机电源打开并且硒鼓指示灯闪烁,打开打印机前盖。 2.按住GO按钮约四秒钟,直到所有的指示灯亮起。四个指示灯都亮起后,松开GO按钮。 二、ALL-FB/ALL-SF(MFC7420/7220/DCP7010/7025/FAX2820) 1.请确保前盖打开,然后按控制面板上的Option(选项)键 2.对于DCP系列机器:当屏幕上出现Replace Drum?(更换硒鼓)信息时,请按▲键.当屏出现Accepted(已接受)信息时,请合上前盖. 对于MFC系列的机器:当屏幕上出现Replace Drum?(更换硒鼓)信息时,请按数字1. 幕出现Accepted(已接受)信息时,请合上前盖. 三、FAX8370 1.装入新硒鼓单元,并保持前盖打开。 2.按“清除”键,当显示“ACCEPTED",按1,然后合上前盖。 四、HL1850/1870N/6050D/6050DN 打开前盖,按住“运行(GO)”按钮直到“>>>>DRUM CLEAR”信息出现在液晶屏上。 五、FAX2880 新硒鼓中带有塑料薄片,请不要取出,装入机器后硒鼓转动会自动吐出。吐出的塑料薄片会触发出纸传感器并重置硒鼓计数器。若先将塑料薄片取出将不能重置硒鼓计器, 这时LCD显示“CHANGE DRJUM SOON”。解决方法如下: 故障现象: FAX2880的LCD总是显示“CHANGE DRJUM SOON”,尽管刚换了硒鼓或主板。 解决方法:调整固件开关值。WSW31的第8个选择器是用来示“CHANGE DRJUM SOON”,请选择1。操作步骤:1.进入维修模式。 2.按数字键1、0,LCD显示WSW00 3.输入3、1,LCD显示WSW31=******* 4.用右箭头移动光标到第8位(最右边的一位) 5.输入1,然后按“设定”键。 六、MFC8860DN,MFC8460N,DCP8060(新产品) 操作步骤:1.打开前盖。 2.按“清除/返回”键,显示屏上出现“Replace Drum/▲1.YES▼2.NO”的字样 3.按“1”键

国际单位制中七个基本物理量的定义是什么

国际单位制中七个基本物理量的定义是什么 长度:米(m) 1. 1790年5月由法国科学家组成的特别委员会,建议以通过巴黎的地球子午线全长的四千万分之一作为长度单位——米 2. 1960年第十一届国际计量大会:“米的长度等于氪-86原子的2P10和5d1能级之间跃迁的辐射在真空中波长的1650763.73倍”。 3. 1983年10月在巴黎召开的第十七届国际计量大会:“米是1/299792458秒的时间间隔内光在真空中行程的长度” 质量:千克(kg) 1000立方厘米的纯水在4℃时的质量, 时间:秒(s) 1967年的第13届国际度量衡会议上通过了一项决议,采纳以下定义代替秒的天文定义:一秒为铯-133原子基态两个超精细能级间跃迁辐射9,192,631,770周所持续的时间。 国际原子时是根据以上秒的定义的一种国际参照时标,属国际单位制(SI)。 电流:安培(A) 安培是一恒定电流,若保持在处于真空中相距1米的两无限长,而圆截面可忽略的平行直导线内,则两导线之间产生的力在每米长度上等于2×10-7牛顿。该定义在1948年第九届国际计量大会上得到批准,1960年第十一届国际计量大会上,安培被正式采用为国际单位制的基本单位之一。安培是为纪念法国物理学家A.-M.安培而命名的。 热力学温度:开尔文(K) 开尔文英文是Kelvin 简称开,国际代号K,热力学温度的单位。开尔文是国际单位制(SI)中7个基本单位之一,以绝对零度(0K)为最低温度,规定水的三相点的温度为273.16K,1K等于水三相点温度的1/273.16。热力学温度T与人们惯用的摄氏温度t的关系是T=t+273.15,因为水的冰点温度近似等于273.15K,并规定热力学温度的单位开(K)与摄氏温度的单位摄氏度(℃)完全相同。开尔文是为了纪念英国物理学家Lord Kelvin而命名的。 发光强度:坎德拉(cd)

定义物理量的原则与方法新课标人教版

定义物理量的原则与方法 —兼谈磁感应强度为何用 B = F/IL定义 (401326)重庆市铝城中学牟长元 定义是揭示概念内涵的逻辑方法。是从内涵角度明确概念的基本方法。概念从逻辑顺序上可区 分为基本概念和导出概念。二者定义的方法有原则的不同。导出概念可由形式逻辑定义,但基本概 念由于它是最前提的概念,故无法从形式逻辑去定义,而是基于实践提出的人为规定。 定义应遵循的重要原则 一、辩证逻辑学在定义内容上要求的普遍原则(对基本概念、导出概念均适用) 1、定义不能与客观事实、客观规律相矛盾 2、定义要反映事物的本质 3、定义不能人为的主观杜撰。基本概念是基于实践的人为规定;导出概念所依据的形式逻辑法 则与来源于实践。定义某一物理概念是实践的需要,而不是纯粹头脑中的产生物。 4、定义要全面(即完备性) 物理量定义的完备性,其定义必备下述两个方面才是完成整的:必须从两个方面定义概念 ⑴定性定义:要能反映出该物理量的本质特点 ⑵定量定义:要给出与其它已知物理量间的定量关系,即数学形式的定义式。 二、形式逻辑对导出概念定义要求的原则 总的来说,只能用确切已知的概念去正确定义未知的概念。 1、定义者的外延与被定义者的外延必须相等,即定义不能太宽或太窄。 2、定义不能是否定判断。因为否定判断一般不能使人把握其本质。 3、定义不能是一个比喻 4、定义不能循环或同义反复(一种自身的循环)。在形式逻辑中即为“定义项中不能直接或间 接包含被定义项”。即导出概念必须用已知概念去定义未在概念。例如,这样同时对能量和功下定 义就有这种弊病。“能量是物体做功的本领。功是能量转化的量度”;“物理学是研究物理的科学”等。 因此,严格的科学定义要注意概念定义的顺序。 三、物理量定义的方法 物理量是定量化的物理概念,因此它的定义有其独具的特点,即“完备性”,由定性定义和定 量定义构成。 1、基本概念物理量的“定义”方法。 基本物理量的定义是基于实验的人为规定,可以不遵守形式逻辑法则。从“完备性”考虑,基 本物理量的定义应有: 定性定义:是人为规定物质及其运动的某一基本的本质属性。 定量定义:操作性定义的要求是:人为规定单位标准;有时还须人为给定数值的定量计算式。 1

兄弟打印机清零方法

各种联想、兄弟、松下激光机打印机清 零方法 联想、兄弟打印机出现英文词句意思 1、Back Cover Open (后盖打开)Change Drum Soon (立即更换硒鼓) 2、Comm.Error(通信错误)Connection Fail(连接失败) 3、Cooling Down(正在冷却)Wait for a while(请稍等) 4、Cover is Open(扫描仪盖打开)Data Remaining (数据残余) 5、Disconnected(已断开)Document Jam(原稿卡住) 6、Dust on Drum(硒鼓上有灰尘)Fail to Warm up(预热失败) 7、Unit is too Hot(单元过热)Machine too Hot(设备过热) 8、No Cartridge(无墨盒)No Paper Fed(无进纸) 9、Not Registered(未注册) 10、No Response/Busy(未响应/繁忙)Out of Memory(内存不足)

11、Paper jam Inside(内部卡纸)Paper Jam Rear(后部卡纸) 12、Paper Jam Tray(纸盒卡纸)Toner Life End(墨粉用尽) 13、Toner Low(墨粉不足)Unable to Init (无法初始化) 14、Unable to Print(无法打印)Unable to Scan(无法扫描) 15、Wrong Paper Size(错误的纸张大小) 第一部份 1、联想7020 和3120机子清零方法 M7020/M7030更换硒鼓后如何将硒鼓置数器清 零M7020/M7030如更换硒鼓后屏幕仍提示更换硒鼓可做如下操作: 1 开机通电状态下打开前盖 2 按选项键,屏幕提示change drum? ▲YES ??NO 3 按机器面板的向上箭头▲按键,屏幕提示ACCEPTED 即可M7030M7020打印用户配置页方法,维护模式打印自检页 1 按功能键和上或下箭头键选择1、General Setup(设备信息)按设定键。2按上或下箭头键选择https://www.wendangku.net/doc/8216399077.html,er settings 3 按”设定”键4按启动键。机器会打印一张用户配置页 2、other mfc-7420打印机无法打印,显示toner life end ,装粉后还是显示toner life end,请问这是怎么回事

生产制造的八大浪费与消除

生产制造的八大浪费与消除 八大浪费是定义工厂在JIT生产方式中的,其浪费的含义与社会上通常所说的浪费有所区别。对于JIT来讲,凡是超出增加产品价值所必需的绝对最少的物料、设备、人力、场地和时间的部分都是浪费。因此,JIT生产方式所讲的工厂的浪费归纳为八大种,分别是:不良、修理的浪费,过分加工的浪费,动作的浪费,搬运的浪费,库存的浪费,制造过多过早的浪费,等待的浪费和管理的浪费,简称为八大浪费。 1.不良、修理的浪费 所谓不良、修理的浪费,指的是由于工厂内出现不良品,需要进行处置的时间、人力、物力上的浪费,以及由此造成的相关损失。这类浪费具体包括:材料的损失、不良品变成废品; 设备、人员和工时的损失;额外的修复、鉴别、追加检查的损失;有时需要降价处理产品,或者由于耽误出货而导致工厂信誉的下降。 2.加工的浪费 加工的浪费也叫过分加工的浪费,主要包含两层含义:第一是多余的加工和过分精确的加工,例如实际加工精度过高造成资源浪费;第二是需要多余的作业时间和辅助设备,还要增加生产用电、气压、油等能源的浪费,另外还增加了管理的工时。 3.动作的浪费 动作的浪费现象在很多企业的生产线中都存在,常见的动作浪费主要有以下12种:两手空闲、单手空闲、作业动作突然停止、作业动作过大、左右手交换、步行过多、转身的角度太大,移动中变换“状态”、不明技巧、伸背动作、弯腰动作以及重复动作和不必要的动作等,这些动作的浪费造成了时间和体力上的不必要消耗。 4.搬运的浪费 从JIT的角度来看,搬运是一种不产生附加价值的动作,而不产生价值的工作都属于浪费。搬运的浪费具体表现为放置、堆积、移动、整列等动作浪费,由此而带来物品移动所需空间的浪费、时间的浪费和人力工具的占用等不良后果。 国内目前有不少企业管理者认为搬运是必要的,不是浪费。因此,很多人对搬运浪费视而不见,更谈不上去消灭它。也有一些企业利用传送带或机器搬运的方式来减少人工搬运,这种做法

打印机加粉之兄弟7030加粉清零全解

打印机加粉之兄弟7030加粉清零全解 一、清零 1、全图 2、结构图

3、如图:打开机器前盖,将粉盒拉出 注 意 这 里 看到左边的绿色手柄,按下将粉盒拿下来

4、找到三颗螺钉的那一边(左边),将螺钉拧下来,然后就可以把小盖子拿下,仔细看下 ,是不是有个半月形的。。翻过来看下,有个白色的齿轮,转动下使那个黑色卡槽复位(注:图中所示为复位过的位置—右边) Ok ,清零搞定了!就这么简单 兄弟7030清零方法: 打开前盖,1点按选项键,2按功能键,3按清除返回键就会出现是否更换硒鼓,按▲后再按ok 键就可以了,最后关上前盖。1.2.3键要按得快1秒内。试试吧! 这个对称透光孔最好放一张胶纸给封住,这样,一直会直到没有碳粉才会提示加粉 这个对称透光孔最好放一张胶纸给封住,这样,一直会直到没有碳粉才会提示加粉

二、加粉详细步骤: 1、用螺丝刀拆下右支架上1个螺丝,并安图方法取下右支架(注意右支架上有2个塑料卡位,如图);并取下加粉圆盖; 2、用螺丝刀取下左边黑色挡板上3个螺丝(如图),取下黑色挡板,小心齿轮哦,齿轮位置如图所示; 3、用一字螺丝刀取下显影辊上卡簧,并取下显影辊驱动齿轮; 4、按如图方向转动显影辊白色支架,然后小心取下显影辊,小心不要碰到显影辊表面哦。

5、有软湿布清洁出粉刀碳粉,如果有碳粉结块在上面,一定要小心清除掉;清洁密封刮片上碳粉,密封刮片要求不能打拆,破裂,起皱,否则会造成打印漏粉; 6、清洁粉仓中废粉(粉仓中为废粉,不是余粉,),一定要清理干净;最好是吸尘器洗干净,或者用刷子刷干净 7、然后将后配件按装配图小心装好; 8、从加粉口加入新的碳粉即可。

兄弟彩打硒鼓清零方法

兄弟彩打硒鼓清零方法 宝2011-01-11 12:19:31 阅读195 评论0 字号:大中小订阅 一、兄弟彩打硒鼓清零方法4040/4050 兄弟4040CN彩色激光打印机更换硒鼓后清零方法如下: 当打印机出现“Drum End Soon”等字母提示时,就提醒您要更换硒鼓了。 当您更换新的硒鼓单元时,您需要通过以下步骤重置硒鼓计数器: 1、打开打印机电源开关。 2、按下“+” 或“-” 键,选择Machine Info. ( 机器信息)。 3、按下“OK” 执行下一级菜单,然后按下“+” 或“-” 键,选择“Reset Parts Life” ( 重置零件寿命)。 4、按下“OK”,然后按下“+” 键,选择“Drum Unit” ( 硒鼓单元)。 5、按两次“OK”。 二、兄弟3040cn清零方法 1、同时按下secure print和cancel 四秒钟 2、根据提示自动更换粉,然后按下两次OK,就大功造成了,是不是很简单呀。 三、兄弟7420,2820加粉后清零 打开前盖,按选项,再按星号键,然后是零零 四、ALL系列(HL2040、HL2070N),AL系列(HL5240、HL5250DN)清零方法 1、确保已将打印机电源打开并且硒鼓指示灯闪烁,打开打印机前盖。 2、按住GO按钮约四秒钟,直到所有的指示灯亮起。四个指示灯都亮起后,松开GO按钮。 五、ALL-FB/ALL-SF(MFC7420/7220/DCP7010/7025/FAX2820) 清零方法 1、请确保前盖打开,然后按控制面板上的Option(选项)键 2、A,对于DCP系列机器 当屏幕上出现Replace Drum?(更换硒鼓)信息时,请按▲键.当屏幕上出现Accepted(已接受)信息时,请合上前盖. B, 对于MFC系列的机器 1、当屏幕上出现Replace Drum?(更换硒鼓)信息时,请按数字 2、当屏幕上出现Accepted(已接受)信息时,请合上前盖. 六、FAX8370清零方法 1、装入新硒鼓单元,并保持前盖打开。

兄弟打印机清零

兄弟1518加粉清零 按功能键,再按加减键找到4.设备信息--OK--加减找到6.重置硒鼓--按OK键不动--等到面板提示重置/退出--按启动--马上按加键--按到显示11--点OK 1818加粉清零 菜单/功能,设备信息-OK-重置硒鼓-按OK键不动-等到面板提示重置/退出-按*11. 7060D加粉清零 打开前盖-按清除键-启动-加键(▲)选到11-OK-开关机 7360加粉清零 打开前盖-按清除键-按*号键-按00-接受后关闭前盖 兄弟5445/2240 2240D 关机-打开前盖-按GO键开机-灯全亮放开GO键-按2次GO键灯全亮-按GO键6次-灯全亮1秒后关闭前盖 兄弟3040/9120/3150CDN 打开前盖-同时按secure print和canced键4秒-上下键选你所换碳粉选择清除-按2次OK-关闭前盖 兄弟9020 9140 打开盖子-面板显示盖子打开和关闭顶盖-按*键不动-直到面板显示K.TNR-STD等 兄弟7080 7080D 7180D 打开前盖,按OK键5秒,启动-加键(▲)选到11-OK-开关机

兄弟1118 1208 通电如果此时打印机电源打开请按电源按钮数秒将打印机关闭。按住开机键不要松手面板二个指示灯同时亮时打开顶盖打开顶盖后错误指示灯应当熄灭,准备就绪指示灯常亮才有用。取出硒鼓单元,二个指示灯同时亮,然后松开开机键。 2、安装硒鼓单元并合上顶盖。 3、按开机键两次。确保错误指示灯常亮。继续执行4操作 4、执行以下操作重置计数器;对于初始墨粉盒,(体验粉盒)连续按开机键五次。过几秒自动自检然后绿灯亮恢复正常可以打印了。对于标准墨粉盒,(换过的粉盒)连续按开机键六次。过几秒自动自检然后绿灯亮恢复正常可以打印了 兄弟7380 7480 7880 打开前盖,按OK键5秒,按*号键-按00-接受后关闭前盖 兄弟2260 2260D 关闭电源,打开前盖,按GO键同时打开电源,检查粉盒,硒鼓和纸张指示灯同时亮,放开GO键,检查指示灯熄灭,按GO键9次,检查粉盒,硒鼓和纸张指示灯亮起,按GO 键3次。2560DN 关闭电源,打开前盖,按GO键开机,检查屏幕上显示9块黑块,松开GO键,检查屏幕上显示User Mode。再次按GO键9次,等待NETWORK灯亮,按GO键3次。

相关文档
相关文档 最新文档