文档库 最新最全的文档下载
当前位置:文档库 › 九年级数学 动点型问题

九年级数学 动点型问题

九年级数学 动点型问题
九年级数学 动点型问题

1.所谓“动点型问题”是指:

2.一般方法是:

第一、抓住变化中的___________,以不变应万变,首先根据题意理清题目中两个变量X、Y的变化情况并找出相关常量,

第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把__________________________表达出来,然后再根据题目的要求,依据几何、代数知识解出。

第三,确定________________,画出相应的图象。

3.数学思想:__________________________________________________.

巩固练习:

1.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.

(1)当t为何值时,四边形PQCD为平行四边形?

(2)当t为何值时,四边形PQCD为等腰梯形?

(3)当t为何值时,四边形PQCD为直角梯形?

2.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA

的外角平分线CF于点F,交∠ACB内角平分线CE于E.

(1)试说明EO=FO;

(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;

(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论。

附答案:

内容再现答案

1.题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.

2.“不变量”;相关的量用一个自变量的表达式;自变量的取值范围。

3. 分类思想函数思想方程思想数形结合思想转化思想

巩固练习答案:

解析:

(1)四边形PQCD为平行四边形时PD=CQ.

(2)四边形PQCD为等腰梯形时QC-PD=2CE.

(3)四边形PQCD为直角梯形时QC-PD=EC.

所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.

解:(1)∵四边形PQCD平行为四边形

∴PD=CQ

∴24-t=3t

解得:t=6

即当t=6时,四边形PQCD平行为四边形.

(2)过D作DE⊥BC于E

则四边形ABED为矩形

∴BE=AD=24cm

∴EC=BC-BE=2cm

∵四边形PQCD为等腰梯形

∴QC-PD=2CE

即3t-(24-t)=4

解得:t=7(s)

即当t=7(s)时,四边形PQCD为等腰梯形.

(3)由题意知:QC-PD=EC时,

四边形PQCD为直角梯形即3t-(24-t)=2

解得:t=6.5(s)

即当t=6.5(s)时,四边形PQCD为直角梯形.

2.解析:

(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.

(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.

(3)利用已知条件及正方形的性质解答.

解:(1)∵CE平分∠ACB,

∴∠ACE=∠BCE,

∵MN∥BC,

∴∠OEC=∠ECB,

∴∠OEC=∠OCE,

∴OE=OC,

同理,OC=OF,

∴OE=OF.

(2)当点O 运动到AC 中点处时,四边形AECF 是矩形.

如图AO=CO ,EO=FO ,

∴四边形AECF 为平行四边形, ∵CE 平分∠ACB,

∴∠ACE=

1

2

∠A CB , 同理,∠ACF=

1

2

∠ACG, ∴∠ECF=∠ACE+∠ACF=

12(∠ACB+∠ACG)=1

2

×180°=90°, ∴四边形AECF 是矩形.

(3)△ABC 是直角三角形

∵四边形AECF 是正方形, ∴AC⊥EN,故∠AOM=90°, ∵MN∥BC,

∴∠BCA=∠AOM, ∴∠BCA=90°,

∴△ABC 是直角三角形.

三、知识点梳理

注重对几何图形运动变化能力的考查

从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 四、讲练结合

1.建立动点问题的函数解析式

函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析。

(1)运用勾股定理建立函数解析式

【例1】如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH⊥OA,垂足为H,△OPH 的重心为G.

(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度;

(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的

取值范围);

(3)如果△PGH 是等腰三角形,试求出线段PH 的长。

【同步练习】1. 如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;

(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)

中y 与x 之间的函数解析式还成立?试说明理由。

(2)运用求图形面积的方法建立函数解析式

【例2】如图3,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运

动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y . (1)求y 关于x 的函数解析式,并写出函数的定义域; (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积。

H M N

G

P O A

B

图1 x

y A

E

D

C

B 图2

A

B

C

O 图3

H

F A

B

C

E D

【同步练习】2. 如图4所示,直线3

64

y x =-

+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒

1个单位长度,点P 沿路线O →B →A 运动.

(1)直接写出A B 、两点的坐标;

(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48

5

S =

时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标。

图 4

2.动态几何题目

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。 以动态几何为主线的题目

【例3】如图5,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,

以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切

时,求BE 的长;

(3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长。

图 5

x

A O

Q

P B

y

A B

C D E O

l

A ′ 【同步练习】3.如图6所示,在矩形ABCD 中,A

B =3,点O 在对角线A

C 上,直线l 过点O ,

且与AC 垂直交AD 于点E.

(1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长;

(2)若直线l 与AB 相交于点F ,且AO =

4

1

AC ,设AD 的长为x ,五边形BCDEF 的面积为S.

①求S 关于x 的函数关系式,并指出x 的取值范围; ②探索:是否存在这样的x ,以A 为圆心,以

x 4

3

长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由。

图 6

【例4】如图7所示,有一块半圆形的木板,现要把它截成三角形板块.三角形的两个顶点分

别为A 、B ,另一个顶点C 在半圆上,问怎样截取才能使截出的三角形的面积最大?要求说明理由。

图 7

O C B A

【同步练习】4. 如图8所示,半经为1的半圆O 上有两个动点A 、B ,若AB=1,

判断∠AOB 的大小是否会随点A 、B 的变化而变化,若变化,求出变化范围,若不变化,求出它的值。

四边形ABCD 的面积的最大值。

图 8

【例5】如图9,在等腰直角三角形ABC 中,斜边BC=4,OA ⊥BC 于O,点E 和点F 分别在边

AB 、AC 上滑动并保持AE=CF,但点F 不与A 、C 重合,点E 不与B 、A 重合。 (1)判断?OEF 的形状,并加以证明。

(2)判断四边形AEOF 的面积是否随点E 、F 的变化而变化,若变化,求其变化范围,

若不变化,求它的值.

△AEF 的面积是否随着点E 、F 的变化而变化,若变化,求其变化范围,若不变化,求它的值。

A B

C D O

y x

E

Q

P

C

B O

A

【同步练习】5. 已知△ABC 为直角三角形,AC=5,BC=12,∠ACB 为直角,P 是AB 边上的动

点(与点A 、B 不重合),Q 是BC 边上动点(与点B 、C 不重合) (1)如图10,当PQ∥AC,且Q 为BC 的中点,求线段CP 的长。

(2)当PQ 与AC 不平行时,△ CPQ 可能为直角三角形吗?若有可能,求出线段CQ

的长的取值范围;若不可能,请说明理由。

【例6】如图11所示已知抛物线2

y ax bx c =++经过53(33)02P E ??

? ???

,,

,及

原点(00)O ,

. (1)求抛物线的解析

式. 图 11

(2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物

线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过

点Q 作直

线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由。

(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角

形OPC PQB OQP OQA ,

,,△△△△之间存在怎样的关系?为什么?

【同步练习】6.如图12所示,在平面直角坐标系xOy 中,已知二次函数

2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点在点B 的左边)

,与y 轴交于点C ,其顶点的横坐标为1,且过点(23),

和(312)--,. (1)求此二次函数的表达式;

(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存

在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,

求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;

(10)(30)(03),,,,,-A B C ;

(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点, 试比较锐角PCO ∠与ACO ∠的大小(不必证明), 并写出此时点P 的横坐标p x 的取值范围。

y

C

l

x

B A

1x =

图12

五、家庭作业

1. 如图13,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,CE=y 。 (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;

(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时(1)中y 与

x 之间的函数解析式还成立?试说明理由。

2. 如图14,在平面直角坐标系中,四边形OABC 为菱形,点C 的坐标为(4,0),∠AOC=60°,

垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直

线l 与菱形OABC 的两边分别交于点M 、N(点M 在点N 的上方). (1)求A 、B 两点的坐标;

(2)设△OMN 的面积为S ,直线l 运动时间为t 秒(0≤t≤6),试求S 与t 的函数表达式; (3)在题(2)的条件下,t 为何值时,S 的面积最大?最大面积是多少?

图 14

附答案 例题答案:

1. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变

的线段,这条线段是GH=32NH=2

1

32?OP=2. (2)

Rt △POH

,

2

2236x PH OP OH -=-=,

A

E

D

C B

图13

∴2362

121x OH MH -==

. 在Rt △MPH 中,

.

∴y =GP=

32MP=

23363

1

x + (0

x x =+23363

1

,解得6=x . 经检验, 6=x 是原方程的根,且符合题意.

②GP=GH 时,

23363

1

2=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.

③PH=GH 时,2=x .

综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.

2. 解:(1)过点A 作AH ⊥BC,垂足为H.

∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=2

1

BC=2. ∴OC=4-x . ∵AH OC S AOC ?=

?2

1

, ∴4+-=x y (40<

在Rt △AOH 中,OA=1+x ,OH=x -2, ∴2

22)2(2)1(x x -+=+. 解得6

7=

x . 此时,△AOC 的面积y =6

17

674=-. ②当⊙O 与⊙A 内切时,

在Rt △AOH 中,OA=1-x ,OH=2-x , ∴2

22)2(2)1(-+=-x x . 解得2

7=

x . 此时,△AOC 的面积y =2

1274=-

. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为

6

17或21. 3. 解:(1) 证明CDF ?∽EBD ?∴

BE

CD

BD CF = ,代入数据得8=CF ,∴AF=2 (2) 设BE=x ,则,10==AC d ,10x AE -=利用(1)的方法x CF 32

=,

相切时分外切和内切两种情况考虑: 外切,x

x 32

1010+-=,24=x ;

内切,x

x 32

1010-

-=,17210±=x .100<

1

419x x x MH PH MP +=-

+=+=

∴当⊙C 和⊙A 相切时,BE 的长为24或17210-. (3)当以边AC 为直径的⊙O 与线段DE 相切时,3

20

=

BE . 4. 解析:要使三角形ABC 的面积最大,而三角形ABC 的底边AB 为圆的直径为常量,只需AB 边上的高最大即可。过点C 作CD ⊥AB 于点D ,连结CO ,

由于CD≤CO ,当O 与D 重合,CD=CO ,因此,当CO 与AB 垂直时,即C 为半圆弧 的中点时,其三角形ABC 的面积最大。

本题也可以先猜想,点C 为半圆弧的中点时,三角形ABC 的面积最大,故只需另选一个位置C1(不与C 重合),,证明三角形ABC 的面积大于三角形ABC1的面积即可。如图 显然三角形 ABC1的面积=

1

2

AB×C1D ,而C1D< C1O=CO,则三角形 ABC1的面积=

12AB×C1D<12

AB×C1O=三角形 ABC 的面积,因此,对于除点C 外的任意点C1,都有三角形 ABC1的面积小于三角形三角形 ABC 的面积,故点C 为半圆中点时,三角形ABC 面积最大.

本题还可研究三角形ABC 的周长何时最大的问题。

5. 分析:本题结论很难发现,先从特殊情况入手。最特殊情况为E 、F 分别为AB 、AC 中

点,显然有ΔEOF 为等腰直角三角形。还可发现当点E 与A 无限接近时,点F 与点C 无限接近,此时ΔEOF 无限接近ΔAOC ,而ΔAOC 为等腰直角三角形,几种特殊情况都可以得出ΔEOF 为等腰直角三角形。一般情况下成立吗?OE 与OF 相等吗?∠EOF 为直角吗?能否证明。如果它们成立,便可以推出三角形OFC 与三角形OEA 全等,一般情况下这两个三角形全等吗? (1):OA=OC ,∠OCF=∠OAE ,而AE=CF ,则ΔOEA ≌ΔOFC ,则OE=OF ,且

∠FOC=∠EOA ,所以∠EOF=∠EOA+∠AOF=∠FOC+∠FOA=900,则∠EOF 为直角,故ΔEOF 为等腰直角三角形。

(2)可以建立四边形AEOF 与AE 长的函数关系式,如设AE=x ,则AF=x -22,

而三角形AOB 的面积与三角形AOE 的面积之比=22

x

,而三角形AOB 的面

积=

122OB OA ??=,则三角形AOE 的面积=2

x

,同理三角形AOF 的面C

D A B

C 1O

积=

222

x

-,因此四边形AEOF 的面积=

(22)

22

x x +-=;即AEOF

的面积不会随点E 、F 的变化而变化,是一个定值,且为2.

(3)解法一:可以通过建立函数关系求得, ?AEF 的面积

=

211

(22)(2)122

x x x -=--+,又x 的变化范围为

022x <<,由二次函数知识得?AEF 的面积的范围为:0<△AEF 的

面积≤1

解法二:根据三角形AEF 与三角形OEF 的面积关系确定?AEF 的面积范围:

不难证明?AEF 的面积≤△OEF 的面积,它们公用边EF ,取EF 的中点H ,显然由于△OEF 为等腰直角三角形,则OH ⊥EF ,作AG ⊥EF ,显然AG≤AH=AG (=

1

2

EF ), 所以△AEF 的面积≤△OEF 的面积,而它们的和为2,因此0<△AEF 的面

积≤1。

6. 解:(1)由已知可得:

33375

530420a b a b c ?+=?

?+

=??

=??

解之得,253033a b c =-==,,. 因而得,抛物线的解析式为:225333

y x x =-

+. (2)存在.

设Q 点的坐标为()m n ,,则225333

n m m =-

+, 要使,B Q P B O C P P B Q C P O C =△∽△

,则有33

33

n m --=,即2253

333333

m m

m +--= 解之得,12232m m ==,.

当123m =时,2n =,即为Q 点,所以得(232)Q ,

要使,B Q P B O C P Q B P O C C P =△∽△

,则有33

33

n m --=,即

2253333333

m m

m +--=

解之得,12333m m ==,,当3m =时,即为P 点, 当133m =时,3n =-,所以得(333)Q -,. 故存在两个Q 点使得OCP △与PBQ △相似.

Q 点的坐标为(232)(333)-,,,.

(3)在Rt OCP △中,因为3tan 3

CP COP OC ∠=

=

.所以30COP ∠=

. 当Q 点的坐标为(232),时,30BPQ COP ∠=∠= . 所以90OPQ OCP B QAO ∠=∠=∠=∠= .

因此,OPC PQB OPQ OAQ ,

,,△△△△都是直角三角形. 又在Rt OAQ △中,因为3

tan 3

QA QOA AO ∠=

=

.所以30QOA ∠= . 即有30POQ QOA QPB COP ∠=∠=∠=∠=

. 所以OPC PQB OQP OQA △∽△∽△∽△, 又因为QP OP QA OA ,⊥⊥30POQ AOQ ∠=∠=

, 所以OQA OQP △≌△.

同步练习答案

1. 解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,

∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,

∴△ADB ∽△EAC, ∴AC BD CE AB =,

1

1x

y =, ∴x y 1=.

(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=2

90α

-?,且函数关系式成立,

∴2

90α

-?=αβ-, 整理得=-

2

α

β?90. 当=-

2

α

β?90时,函数解析式x

y 1

=

成立. 2. 解(1)A (8,0)B (0,6)

(2)86OA OB == ,

10AB ∴=

点Q 由O 到A 的时间是8

81

=(秒)

∴点P 的速度是610

28

+=(单位/秒) 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,

2S t =

当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由

PD AP BO AB =,得4865

t

PD -=, 21324

255

S OQ PD t t ∴=?=-+

(自变量取值范围写对给1分,否则不给分.) (3)82455P ?? ???

1238241224122455555

5I M M 2??????-- ? ? ???????,,,,,

3. (1)∵A’是矩形ABCD 的对称中心∴A’B =AA’=

2

1

AC ∵AB =A’B ,AB =3∴AC =6 33=BC

(2)①92

+=x AC ,9412+=x AO ,)9(1212+=x AF ,x

x AE 49

2+= ∴AF 21?=?AE S AEF

x x 96)9(22+=,x

x x S 96)9(32

2+-= x

x x S 9681

27024-+-= (333<

②若圆A 与直线l 相切,则94

1432+=-

x x ,01=x (舍去),582=

x ∵35

8

2<=x ∴不存在这样的x ,使圆A 与直线l 相切. 4. 解:(1)由于AB=OA=OB ,所以三角形AOB 为等边三角形,则∠AOB=600,即∠AOB

的大小不会随点A 、B 的变化而变化。

(2)四边形ABCD 的面积由三个三角形组成,其中三角形AOB 的面积为

3

4

,而三角

AOD

BOC

111

()222

OD AF OC BG AF BG ?+?=+,又由梯形的中位线定理得三角形AOD 与三角形BOC 的面积之和1

()2

AF BG EH +=,要四边形ABCD 的面积最大,只需EH 最大, 显然EH≤OE=

3

2

,当AB ∥CD 时,EH=OE ,因此四边形ABCD 的面积最大值为

3333

424

+=

5. 解析:(1)很易得出P 为AB 中点,则CP=

113

22

AB = (2)如果?CPQ 为直角三角形,由于PQ 与AC 不平行,则∠Q 不可能为直角

又点P 不与A 重合,则∠PCQ 也不可能为直角,只能是∠CPQ 为直角,即以CQ 为直径的圆与AB 有交点,设CQ=2x ,CQ 的中点D 到AB 的距离DM 不大于CD ,

DM DB AC AB =,即12513DM x -=,所以5(12)

13

x DM -=,由5(12)13x DM CD x -=

≤=,即103x ≥,而6

10

63

x ≤<,亦即

20

123

CQ ≤<时,△ CPQ 可能为直角三角形。 6.解析:(1) 二次函数图象顶点的横坐标为1,且过点(23),

和(312)--,,

∴由1242393212.

b

a a

b

c a b ?-=??++=??-+=-?

?

,, 解得123.a b c =-??

=??=?,,

∴此二次函数的表达式为 223y x x =-++.

(2)假设存在直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),

使得以B O D ,,为顶点的三角形与BAC △相似.

在223y x x =-++中,令0y =,则由2

23

0x x -++=,解得1213x x =-=,

(10)(30)A B ∴-,,,.

令0x =,得3y =.(03)C ∴,

. 设过点O 的直线l 交BC 于点D ,过点D 作DE x ⊥轴于点E .

点B 的坐标为(30),

,点C 的坐标为(03),,点A 的坐标为(10)-,. 4345.

AB OB OC OBC ∴===∠=

,, 223332BC ∴=+=.

要使BOD BAC △∽△或BDO BAC △∽△, 已有B B ∠=∠,则只需

BD BO BC

BA

=

, ①

.BO BD BC

BA

=

成立.

若是①,则有33292

44

BO BC BD BA

?=

=

=

. 而45OBC BE DE ∠=∴=

,.

Rt BDE

△中

,由勾股定理,得

2

2222

9224BE DE BE BD ??+=== ? ???

y

x B

E

A O C D 1x =

l

解得

9

4

BE DE ==

(负值舍去). 93

344

OE OB BE ∴=-=-=.

∴点D 的坐标为3944??

???

,.

将点D 的坐标代入(0)y kx k =≠中,求得3k =.

∴满足条件的直线l 的函数表达式为3y x =.

[或求出直线AC 的函数表达式为33y x =+,则与直线AC 平行的直线l 的函数表达式为3y x =.此时易知BOD BAC △∽△,再求出直线BC 的函数表达式为3y x =-+.联立33y x y x ==-+,求得点D 的坐标为

3944??

???

,.

] 若是②,则有34

2232

BO BA BD BC

?=

=

= . 而45OBC BE DE ∠=∴=

,.

Rt BDE

△中,由勾股定理,得

2

2

2

2

22(22)BE DE BE BD +===.

解得

2BE DE ==(负值舍去)

. 321OE OB BE ∴=-=-=.

∴点D 的坐标为(12),

. 将点D 的坐标代入(0)y kx k =≠中,求得2k =.

∴满足条件的直线l 的函数表达式为2y x =.

∴存在直线:3l y x =或2y x =与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似,且点D 的坐标分别为3944??

?

??

,或(1

2),.

(3)设过点(03)(10)C E ,,,的直线3(0)y kx k =+≠与该二次函数的图象交于点P .

将点(1

0)E ,的坐标代入3y kx =+中,求得3k =-. ∴此直线的函数表达式为33y x =-+.

设点P 的坐标为(33)x x -+,,并代入223y x x =-++,得2

50x x -=. 解得1250x x ==,(不合题意,舍去).

512x y ∴==-,. ∴点P 的坐标为(512)-,

. 此时,锐角PCO ACO ∠=∠.

又 二次函数的对称轴为1x =,

∴点C 关于对称轴对称的点C '的坐标为(23),

. ∴当5p x >时,锐角PCO ACO ∠<∠;

当5p x =时,锐角PCO ACO ∠=∠; 当25p x <<时,锐角PCO ACO ∠>∠.

家庭作业答案:

1. 解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,

∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,

∴△ADB ∽△EAC, ∴AC BD CE AB =,

1

1x

y =, ∴x y 1=.

(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=2

90α

-?,且函数关系式成立,

∴2

90α

-?=αβ-, 整理得=-

2

α

β?90. 当=-

2

α

β?90时,函数解析式x

y 1

=

成立. 2. (1)分析:由菱形的性质、三角函数易求A 、B 两点的坐标.

x

B

E

A O C

1x =

P

C '

·

解:∵四边形OABC为菱形,点C的坐标为(4,0),∴OA=AB=BC=CO=4.如图

①,过点A作AD⊥OC于D.∵∠AOC=60°,∴OD=2,AD=23.∴A(2,23),

B(6,23).

(2)分析:直线l在运动过程中,随时间t的变化,△MON的形状也不断变化,因此,首先要把所有情况画出相应的图形,每一种图形都要相应写出自变量的取值范围。

这是解决动点题关键之一.

直线l从y轴出发,沿x轴正方向运动与菱形OABC的两边相交有三种情况:

①0≤t≤2时,直线l与OA、OC两边相交(如图①).

②2<t≤4时,直线l与AB、OC两边相交(如图②).

③4<t≤6时,直线l与AB、BC两边相交(如图③).

解:①∵MN⊥OC,∴ON=t. ∴MN=ONtan60°=3t.∴S=1

2

ON·MN=

3

2

t2.

②S=1

2

ON·MN=

1

2

t·23=3t.

③方法一:设直线l与x轴交于点H.∵MN=23-3(t-4)=63-3t,

∴S=1

2

MN·OH=

1

2

(63-3t)t=-

3

2

t2+33t.

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

八年级数学全等三角形中的动点问题专项练习题

全等三角形中的动点问题 教学重点难点利用熟悉的知识点解决陌生的问题 思路:1.利用图形想到三角形全等 2.分析题目,了解有几个动点,动点的路程,速度 3.结合图形和题目,得出已知或能间接求出的数据 4.分情况讨论,把每种可能情况列出来,不要漏 5.动点一般都是压轴题,步骤不重要,重要的是思路 6.动点类问题一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题 难了,可以反过去看看前面问题的结论. 【典型例题】 例1. 如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD 的右侧作正方形ADEF. 解答下列问题: (1)如果AB=AC,∠BAC=90°,点D在射线BC上运动时(与点B不重合),如图,线段CF,BD之间的位置关系为_____________,数量关系为______________.请利用图2或图3予以证明(选择一个即可).

例2. 如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,连接DE、DF、EF. (1)求证:△ADF≌△CEF.(2)试证明△DFE是等腰直角三角形.(3)在此运动变化的过程中,四边形CDFE的面积是否保持不变?试说明理由.(4)求△CDE面积的最大值. 变式如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点, 点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在 此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的 最小值为4;③四边形CDFE的面积保持不变;④△CDE面积的最大值为8.其 中正确的结论是() A.①②③B.①③C.①③④D.②③④ 例3. 正方形ABCD和正方形AEFG有一公共点A,点G.E分别在线段AD、AB上(如图(1)所示),连接DF、BF. (1)求证:DF=BF(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG、BE(如图(2)所示),在旋转过程中,请猜想线段DG、BE始终有什么数量关系和位置关系并证明你的猜想.

(word完整版)北师大版九年级数学动点问题题型方法归纳,推荐文档

图(3) B 图(1) B 图(2) 动点问题题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48 5 S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市) 如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

北师大八年级数学上册动点问题专练

北师大版八年级数学上册动点问题专练 1、已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形, (1)求证:四边形ADCE是平行四边形; (2)当△ABC满足什么条件时,平行四边形ADCE是矩形? 2、如图,已知E是平行四边形ABCD的边AB上的点,连接DE. (1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE; (要求:用尺规作图,保留作图痕迹,不写作法和证明) (2)在(1)的条件下,求证:△ADE≌△CBF. 3、如图,已知E是?ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE. (2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形. 4、如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC, 分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD 1⊥l于点D 1 , 过点E作EE 1⊥l于点E 1 . (1)如图②,当点E恰好在直线l上时(此时E 1与E重合),试说明DD 1 =AB; (2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD 1、EE 1 、AB之 间的数量关系,并说明理由; (3)如图③,当点E在直线l的下方时,请直接写出三条线段DD 1、EE 1 、AB之间的数 量关系.(不需要证明) 5、如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD 为矩形,且AB=4,BC=8. 理解与作图: (1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH. 计算与猜想: (2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值? 启发与证明: (3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.

初二数学动点问题练习(含答案)

动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想 1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始 沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P, Q分别从A,C同时出发,设移动时间为t秒。 当 t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 8 2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点, 则DN+MN的最小值为 5 3、如图,在Rt ABC △中,9060 ACB B ∠=∠= °,°,2 BC=.点O是AC的中点,过 点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB ∥交直线l于点E,设直线l的旋转角为α. (1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为; ②当α=度时,四边形EDBC是直角梯形,此时AD的长为; (2)当90 α=°时,判断四边形EDBC是否为菱形,并说明理由. 解:(1)①30,1;②60,; (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC∵CE∴AB=4,AC=23. ∴AO= 1 2 AC = 3 .在Rt△AOD 中,∠A=300,∴AD=2. O E C D A α l O C A (备用图)

∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形, ∴四边形EDBC 是菱形 4、在△ABC 中,∠ACB =90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E. (1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ; (3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB ② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE (3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD. 5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=o ,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF . 经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证 AME ECF △≌△,所以AE EF =. 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗如果正确,写出证明过 C B A E D 图1 N M A B C D E M N 图2 A C B E D N M 图3

初三数学动点问题

数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的面积问题是动态几何中的基本类型,包括单动点形成的面积问题,双(多)动点形成的面积问题,线动形成的面积问题,面动形成的面积问题。本专题原创编写单动点形成的面积问题模拟题。 在中考压轴题中,单动点形成的面积问题的重点和难点在于应用数形结合的思想准确地进行分类。 原创模拟预测题1.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE. (1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值. (2)分别连接AD、DF、AF, AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中, PQ 的中点O所经过的路径的长。

初中数学动点问题归纳

图(3) A B 图(1) A B 图(2) 动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与 t 之间 的函数关系式; (3)当48 5 S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个 顶点M 的坐标. 解:1、A (8,0) B (0,6) 2、当0<t <3时,S=t 2 当3<t <8时,S=3/8(8-t)t 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市) 如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o . (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

初二数学动点问题练习(含答案)

动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点 ,它们在线段、射线或弧线上运动的一类 6 c N t4 o o AD 的长为 度时 AD 的长为 ②当 .度时 o C B C B A (备用图) E N E A B B B A A E 时 时 M C ” 图1 l E EDBC 是否为菱形,并说明理由 C ,且 (1)① 当 四边形EDBC 是直角梯形,此时 开放性题目 关键: 数学思想 1、如图1 C 开始沿向点 秒 当 当 CE // AB 交直线I 于点E ,设直线I 的旋转角为 2、如图2,正方形的边长为 4,点M 为 5 90 ° ,直线经过点 3、如图,在只也ABC 中,ACB 四边形是平行四边形; 四边形是等腰梯形?8 90° B 60°, BC 2 .点O 是AC 的中点,过 四边形EDBC 是等腰梯形,此时 (2 )当 90「时,判断四边形 解:(1 [① 30, 1 :② 60, 1.5 ; (2)当/% =900时,四边形是菱形? ???/a =Z 90°,.?..???,???四边形是平行四边形 在△中,/ 900,/ 6002, ???/ 30°. 在边上,且1 , N 为对角线上任意一点,则的最小值 .解决这类问题的关键是动中求静 ,灵活运用有关数学知识解决问题 . 动中求静? 分类思想 数形结合思想转化思想 梯形中,// ,/ 90°, 141821,点P 从A 开始沿边以1秒的速度移动,点 Q 从 B 以2秒的速度移动,如果 P , Q 分别从A , C 同时出发,设移动时间为 t D ,丄于 E M C 点o 的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D ?过点C 作 ? 2. ???. 又??四边形是平行四边形 ?四边形是菱形 4、在△中 M D C A D 1 42 . 3. ? 2AC 3 .在△中,/ 3。0, (2) 图2 N

初中二年级数学动点问题完整版

初中二年级数学动点问 题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

A F D P E B Q C F D B C D' A 1. 梯形ABCD 中,AD∥BC,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从点A 开始,沿AD 边,以1厘米/秒的速度向点D 运动;动点Q 从点C 开始,沿C B 边,以3厘米/秒的速度向B 点运动。 已知P 、Q 两点分别从A 、 C 同时出发,,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t 秒,问: (1)t 为何值时,四边形PQCD 是平行四边形? (2)在某个时刻,四边形PQCD 可能是菱形吗为什么 (3)t 为何值时,四边形PQCD 是直角梯形? (4)t 为何值时,四边形PQCD 是等腰梯形 2. 如右图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点 P 从A 开始沿折线A —B —C —D 以4cm/s 的速度运动,点Q 从C 开始沿CD 边1cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时 出发,当其中一点到达点D 时,另一点也随之停止运动,设运动 时间为t(s),t 为何值时,四边形APQD 也为矩形? 3. 如图,在等腰梯形ABCD 中,AB ∥DC ,cm BC AD 5==,AB =12 cm,CD =6cm , 点 P 从A 开始沿AB 边向B 以每秒3cm 的速度移动,点Q 从C 开始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。设运动时间为t 秒。 (1)求证:当t =2 3时,四边形APQD 是平行四边形; (2)PQ 是否可能平分对角线BD 若能,求出当t 为何值时PQ 平分BD ;若不能,请说明理由; (3)若△DPQ 是以PQ 为腰的等腰三角形,求t 的值。 4. 如图所示,△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∠BCA ∠BCA EO FO =∠B 如图,矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D ’处,求重叠部分⊿AFC 的面积. 6. 如图所示,有四个动点P 、Q 、E 、F ABCD 的四个顶点出发,沿着AB 、BC 、CD 、DA B 、C 、D 、A 各点移动。 (1)试判断四边形PQEF 是正方形并证明。 (2)PE 是否总过某一定点,并说明理由。 (3)四边形PQEF 的顶点位于何处时, A B C D P Q A B C D P

初中的数学动点问题归纳

动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 解:1、A (8,0) B (0,6) 2、当0<t <3时,S=t 2 当3<t <8时,S=3/8(8-t)t 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市) 如图,AB 是⊙O 的直径,弦BC=2cm ,

人教版八年级数学上册:三角形全等之动点问题(习题及答案)

三角形全等之动点问题(习题) 例题示范 例1:已知:如图,正方形ABCD 的边长为4,动点P 从点A 出发以每秒2个单位的速度沿AB -BC -CD 方向运动,到达点D 时停止运动.连接AP ,DP .设点P 运动的时间为t 秒,求当t 为何值时,△ADP 的面积为6. 【思路分析】 1.研究背景图形,标注 四边形ABCD 是边长为4的正方形,四条边都相等,四个角均为90°. 2.分析运动过程,分段 ①分析运动过程:动点P 的起点、终点、状态转折点,以及对应的时间范围. 0≤t ≤6 D C (2/s) P : ②根据状态转折点分为三段:02t ≤≤,24t <≤,46t <≤,需要对每一段分别进行分析. 3.表达线段长,建等式 ①当02t ≤≤时,即点P 在线段AB 上, P D C B A 此时AP =2t ,AD =4, 1 2ADP S AD AP =??△, 即1 6422t =??, 3 2t =,符合题意. ②当24t <≤时,即点P 在线段BC 上, P D C B A A B C D A B C D

P D C B A 此时11 44822 ADP S AD AB =??=??=△, 不符合题意,舍去. ③当46t <≤时,即点P 在线段CD 上, P A B C D 此时DP =12-2t ,AD =4, 1 2ADP S AD DP =??△, 即1 64(122)2t =??-, 9 2 t =,符合题意. 综上,当t 的值为32或9 2 时,△ADP 的面积为6. 巩固练习 1. 已知:如图,在等边三角形ABC 中,AB =6,D 为BC 边上一点, A P D

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

中考数学--动点问题题型方法归纳

图 B 图 B 图动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1(2009年齐齐哈尔市)直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的 平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

北师大版八年级上数学动点问题

初二动点问题 1.如图,等腰梯形ABCD中,AD∥BC,AB=CD,AD=10cm,BC=30cm,动点P从点A 开始沿AD边向点D以每秒1cm的速度运动,同时动点Q从C开始沿CB边向点B以每秒3cm的速度运动,当其中一点到达端点时,另一点也随之停止运动。设运动时间为t秒。 (1)t为何值时,四边形ABQP是平行四边形? (2)四边形ABQP能成为等腰梯形吗?如果能,求出t的值;如果不能,请说明理由。 2.如图,已知直线 1 l:2 + - =x y与直线 2 l:8 2+ =x y相交于点F, 1 l、 2 l分别交x轴于点E、G,矩形ABCD 顶点C、D分别在直线 1 l、 2 l,顶点A、B都在x轴上,且点B与点G重合。 (1)、求点F的坐标和∠GEF的度数; (2)、求矩形ABCD的边DC与BC的长; (3)、若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t()6 0≤ ≤t 秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围。 A B C D E F G O x y 1 l 2 l

x y O x = A B C P H M 3.四边形OABC 是等腰梯形,OA ∥BC ,在建立如图的平面直角坐标系中, A (10,0), B (8,6),直线x =4与直线A C 交于P 点,与x 轴交于H 点; (1)直接写出C 点的坐标,并求出直线AC 的解析式; (2)求出线段PH 的长度,并在直线AC 上找到Q 点,使得△PHQ 的面积为△AOC 面积的5 1,求出Q 点坐标; (3)M 点是直线AC 上除P 点以外的一个动点,问:在x 轴上是否存在N 点,使得△MHN 为等腰直角三角形?若有,请求出M 点及对应的N 点的坐标,若没有, 请说明理由. 4.如图,正方形CGEF 的对角线CE 在正方形ABCD 的边BC 的延长线上 (CG >BC ),M 是线段AE 的中点,DM 的延长线交CE 于N . (1)线段AD 与NE 相等吗?请说明理由; (2)探究:线段MD 、MF 的关系,并加以证明.

北师大版九年级数学动点问题题型方法归纳

x A O Q P B y 图(3) A B C O E F A B C O D 图(1) A B O E F C 图(2) 动点问题题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48 5 S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市) 如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

人教版八年级上册数学动点问题(精编版)

三角形与动点问题 1、如图,在等腰△ACB中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC, 垂足分别为E,F,则DE+DF = . 2、在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值). 3、如图,将边长为1的等边△OAP按图示方式,沿x轴正方向连续翻转2011次,点P依次落在点P1,P2,P3,P4,…,P2007的位置.试写出P1,P3,P50,P2011的坐标. 4、如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB 边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF. (1)求证:△ADF≌△CEF (2)试证明△DFE是等腰直角三角形

5、如图,在等边ABC ?的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D,E 处,请问 (1)在爬行过程中,CD 和BE 始终相等吗? (2)若蜗牛沿着AB 和CA 的延长线爬行,EB 与CD 交于点Q ,其他条件不变,如图(2)所示,,求证:?=∠60CQE (3)如果将原题中“由C 向A 爬行”改为“沿着BC 的延长线爬行,连接DE 交AC 于F ”,其他条件不变,则爬行过程中,DF 始终等于EF 是否正确 6、如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形. (1)当把△ADE 绕A 点旋转到图2的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由; (2)当△ADE 绕A 点旋转到图3的位置时,△AMN 是否还是等边三角形?若是,请给出证明,并求出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由. 7、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; 图1 图 2

浙教版-初中数学-关于动点问题的总结

浙教版 初中数学 关于动点问题的总结 “动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 函数揭示了运动变化过程中量与量之间的变化规律,和动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系, 一、应用勾股定理建立函数解析式 例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2 1 32?OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴ 2362 1 21x OH MH -== . 在Rt △MPH 中, . ∴y =GP= 32MP=23363 1x + (0

人教版人教版八年级数学动点问题的分析

动点问题专项练习 1、如图,在直角坐标系中,O是原点,A,B,C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P,Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC,CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动. (1)求直线OC的解析式. (2)设从出发起,运动了t秒.如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.(3)设从出发起,运动了t秒.当P,Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分?如有可能,请求出t的值;如不可能,请说明理由. 2、如图1所示,在△ABC中,点O在AC边上运动,过O作直线MN∥BC交∠BCA内角平分线于E点,外角平分线于F点.试探究:当点O运动到何处时,四边形AECF是矩形? 3、如图2所示,在直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14cm,A点坐标为(16,0),C 点坐标为(0,2).点P、Q分别从C、A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q停止运动时,点P也停止运动,设运动时间为ts(0≤t≤4).

(1)求当t为多少时,四边形PQAB为平行四边形. (2)求当t为多少时,PQ所在直线将梯形OABC分成左右两部分的面积比为1:2,求出此时直线PQ的函数关系式. 巩固提高: 1. 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向 D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. 2. (1)当t为何值时,四边形PQCD为平行四边形?

初中数学动点问题归纳

x A O Q P B y 动点问题 题型方法归纳 动态几何特点问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点 Q 沿线段OA 运 动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 解:1、A (8,0) B (0,6) 2、当0<t <3时, 2 当3<t <8时,3/8(8)t

图 A B C O E F A B C O D 图 A B O E F C 图提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类①为边、为边,②为边、为对角线,③为对角线、为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市) 如图,是⊙O 的直径,弦2, ∠60o. (1)求⊙O 的直径; (2)若D 是延长线上一点,连结,当长为多少时,与⊙O 相切; (3)若动点E 以2的速度从A 点出发沿着方向运动,同时动点F 以1的速度从B 点出发沿方向 运 动,设运动时间为)20)((<

(完整)八年级数学动点问题专题

八年级数学动点问题专题 班级 姓名 1.如图:已知正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上的一动点,求DN+MN 的最小值是 。 2.等边三角形ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是AC 上一点,若AE=2,则EM+CM 最小值为 。 第1题 第2题 第3题 A B C M N D

3.如图,锐角三角形ABC 中,∠C=45°,N 为BC 上一点,NC=5,BN=2,M 为边AC 上的一个动点,则BM+MN 的最小值是 。 4.如图,在直角梯形ABCD 中,∠ABC=90°,DC//AB ,BC=3,DC=4,AD= 5.动点P 从B 点出发,由B→C→D→A 沿边运动,则△ABP 的最大面积为( ) A.10 B.12 C.14 D.16 5.如图,在锐角△ABC 中,AB=6,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 ( ) A .62 B . 6 C . 32 D . 3 第4题 第5题 6如图,已知点P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON=30°, (1)当∠A= 时,△AOP 为直角三角形; (2)当∠A 满足 时,△AOP 为钝角三角形. 7.如图,在Rt△ABC 中,∠C=90 °,AC=4cm ,BC=6cm ,动点P 从点C 沿CA 以1cm/s 的速度向A 运动,同时动点Q 从点C 沿CB , 以2cm/s 的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动。则运动过程中所构成的△CPQ 的面积y 与运动时间x 之间的关系是 。 第6题 第7题 8.如图,在梯形ABCD 中,364360AD BC AD DC AB === =?∥,,,,∠C .动点 A B D C P C A B Q P

相关文档
相关文档 最新文档