文档库 最新最全的文档下载
当前位置:文档库 › 第四章 液压执行元件 [兼容模式]

第四章 液压执行元件 [兼容模式]

第四章液压执行元件

第三章液压执行元件 第一节液压马达 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速小转矩液压马达。 高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用内曲线式等。此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式。低速液压马达的主要特点是排量大、体积大、转速低(有时可达每分种几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千牛顿·米到几万牛顿·米),所以又称为低速大转矩液压马达。 液压马达也可按其结构类型来分,可以分为齿轮式、叶片式、柱塞式和其他型式。 二、液压马达的性能参数 液压马达的性能参数很多。下面是液压马达的主要性能参数: 1.排量、流量和容积效率习惯上将马达的轴每转一周,按几何尺寸计算所进入的液体容积,称为马达的排量V,有时称之为几何排量、理论排量,即不考虑泄漏损失时的排量。

液压控制系统(王春行编)课后题答案

第二章 思考题 1、为什么把液压控制阀称为液压放大元件? 答:因为液压控制阀将输入的机械信号(位移)转换为液压信号(压力、流量)输出,并进行功率放大,移动阀芯所需要的信号功率很小,而系统的输出功率却可以很大。 2、什么是理想滑阀?什么是实际滑阀? 答: 理想滑阀是指径向间隙为零,工作边锐利的滑阀。 实际滑阀是指有径向间隙,同时阀口工作边也不可避免地存在小圆角的滑阀。 4、什么叫阀的工作点?零位工作点的条件是什么? 答:阀的工作点是指压力-流量曲线上的点,即稳态情况下,负载压力为p L ,阀位移x V 时,阀的负载流量为q L 的位置。 零位工作点的条件是 q =p =x =0L L V 。 5、在计算系统稳定性、响应特性和稳态误差时,应如何选定阀的系数?为什么? 答:流量增益q q = x L V K ??,为放大倍数,直接影响系统的开环增益。 流量-压力系数c q =- p L L K ??,直接影响阀控执行元件的阻尼比和速度刚度。 压力增益p p = x L V K ??,表示阀控执行元件组合启动大惯量或大摩擦力负载的能力 当各系数增大时对系统的影响如下表所示。 7、径向间隙对零开口滑阀的静态特性有什么影响?为什么要研究实际零开口滑阀的泄漏特性? 答:理想零开口滑阀c0=0K ,p0=K ∞,而实际零开口滑阀由于径向间隙的影响,存在泄漏 流量2c c0r = 32W K πμ ,p0c K ,两者相差很大。

理想零开口滑阀实际零开口滑阀因有径向间隙和工作边的小圆角,存在泄漏,泄漏特性决定了阀的性能,用泄漏流量曲线可以度量阀芯在中位时的液压功率损失大小,用中位泄漏流量曲线来判断阀的加工配合质量。 8、理想零开口阀具有线性流量增益,性能比较好,应用最广泛,但加工困难;因为实际阀总存在径向间隙和工作边圆角的影响。 9、什么是稳态液动力?什么是瞬态液动力? 答:稳态液动力是指,在阀口开度一定的稳定流动情况下,液流对阀芯的反作用力。 瞬态液动力是指,在阀芯运动过程中,阀开口量变化使通过阀口的流量发生变化,引起阀腔内液流速度随时间变化,其动量变化对阀芯产生的反作用力。 习题 1、有一零开口全周通油的四边滑阀,其直径-3 d=810m ?,径向间隙-6c r =510m ?,供油压力5s p =7010a P ?,采用10号航空液压油在40C 。 工作,流量系数d C =0.62,求阀的零位 系数。 解:零开口四边滑阀的零位系数为: 零位流量增益 q0d K C =零位流量-压力系数 2c c0r 32W K πμ = 零位压力增益 p0c K = 将数据代入得 2q0 1.4m s K = 123c0 4.410m s a K P -=?? 11p0 3.1710a m K P =? 2、已知一正开口量-3 =0.0510m U ?的四边滑阀,在供油压力5s p =7010a P ?下测得零位泄 露流量c q =5min L ,求阀的三个零位系数。 解:正开口四边滑阀的零位系数为: 零位流量增益 c q0q K U = 零位流量-压力系数 c c0s q 2p K =

液压执行元件.

第三章液压执行元件 一、填空题 1.液压缸按结构特点不同,可分为、和三大类。 2.双杆活塞缸常用于的场合。 3.缸固定式双杆液压缸一般用于,活塞杆固定式双杆液压缸常用于。 4.单杆活塞缸常用于一个方向,另一个方向设备的液压系统。例如,各种机床、、、的液压系统。 5.单杆活塞缸差动连接时比其非差动连接同向运动获得的、。因此,在机床的液压系统中常用其实现运动部件的空行程快进。 6.柱塞式液压缸只能实现单向运动,其反向行程需借或完成。在龙门刨床、导轨磨床、大型压力机等行程长的设备中为了得到双向运动,可采用。 7.摆动液压缸常用于、、、及工程机械回转机构的液压系统。 8.增压缸能将转变为供液压系统中某一支油路使用。 9.伸缩式液压缸其活塞伸出的顺序是,伸出的速度是;活塞缩回的顺序一般是,缩回的速度是。这种液压缸适用于。10.齿条活塞缸常用于的驱动;多位液压缸多用于位置精度要求不很高的、 的送料装置;数字液压缸多用于工业机器人等具有的设备中。 11.动力较小设备的液压缸尺寸,多按确定。一般是先按选定活塞杆直径d,再按计算液压缸的内径D。 12.动力大的设备,其液压缸尺寸的确定,通常是先按和确定工作压力p,再根据选定的比值λ和按公式计算出缸内径D,最后计算出活塞杆直径d。 13.铸铁、铸钢和锻钢制造的缸体与端盖多采用连接;无缝钢管制作的缸筒端部常采用连接或;较短的液压缸常采用连接。 14.液压缸中常用的缓冲装置有、和。 15.液压系统中混入空气后会使其工作不稳定,产生、及等现象,因此,液压系统中必须设置排气装置。常用的排气装置有和。 二、选择题 1.双活塞杆液压缸,当活塞杆固定,缸与运动部件连接时,运动件的运动范围略大于液压缸有效行程的倍。 A.1倍B.2倍C.3倍 2.单活塞杆液压缸作为差动液压缸使用时,若使其往复运动速度相等,其活塞面积应为活

液压控制系统(王春行版)课后题答案

` 第二章 思考题 1、为什么把液压控制阀称为液压放大元件 答:因为液压控制阀将输入的机械信号(位移)转换为液压信号(压力、流量)输出,并进行功率放大,移动阀芯所需要的信号功率很小,而系统的输出功率却可以很大。 2、什么是理想滑阀什么是实际滑阀 答:理想滑阀是指径向间隙为零,工作边锐利的滑阀。 实际滑阀是指有径向间隙,同时阀口工作边也不可避免地存在小圆角的滑阀。 4、什么叫阀的工作点零位工作点的条件是什么 | 答:阀的工作点是指压力-流量曲线上的点,即稳态情况下,负载压力为p L ,阀位移x V 时, 阀的负载流量为q L 的位置。 零位工作点的条件是q=p=x=0 L L V 。 5、在计算系统稳定性、响应特性和稳态误差时,应如何选定阀的系数为什么 答:流量增益 q q = x L V K ? ? ,为放大倍数,直接影响系统的开环增益。 流量-压力系数 c q =- p L L K ? ? ,直接影响阀控执行元件的阻尼比和速度刚度。 压力增益 p p = x L V K ? ? ,表示阀控执行元件组合启动大惯量或大摩擦力负载的能力 当各系数增大时对系统的影响如下表所示。 , 7、径向间隙对零开口滑阀的静态特性有什么影响为什么要研究实际零开口滑阀的泄漏特性 答:理想零开口滑阀 c0=0 K, p0= K∞,而实际零开口滑阀由于径向间隙的影响,存在泄漏

流量2c c0r = 32W K πμ ,p0c K ,两者相差很大。 理想零开口滑阀实际零开口滑阀因有径向间隙和工作边的小圆角,存在泄漏,泄漏特性决定了阀的性能,用泄漏流量曲线可以度量阀芯在中位时的液压功率损失大小,用中位泄漏流量曲线来判断阀的加工配合质量。 9、什么是稳态液动力什么是瞬态液动力 答:稳态液动力是指,在阀口开度一定的稳定流动情况下,液流对阀芯的反作用力。 瞬态液动力是指,在阀芯运动过程中,阀开口量变化使通过阀口的流量发生变化,引起阀腔内液流速度随时间变化,其动量变化对阀芯产生的反作用力。 > 习题 1、有一零开口全周通油的四边滑阀,其直径-3 d=810m ?,径向间隙-6c r =510m ?,供油压力5s p =7010a P ?,采用10号航空液压油在40C 。 工作,流量系数d C =0.62,求阀的零位 系数。 解:零开口四边滑阀的零位系数为: 零位流量增益 q0d K C =零位流量-压力系数 2c c0r 32W K πμ = 零位压力增益 p0c K = 将数据代入得 2q0 1.4m s K = ! 123c0 4.410m s a K P -=?? 11p0 3.1710a m K P =? 2、已知一正开口量-3 =0.0510m U ?的四边滑阀,在供油压力5s p =7010a P ?下测得零位泄 露流量c q =5min L ,求阀的三个零位系数。 解:正开口四边滑阀的零位系数为:

液压系统的执行元件

第四章、液压执行元件 第一节液压马达 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差 异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一 般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸 大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达 扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液 压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速 小转矩液压马达。 高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用内曲线式等。此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式。低速液压马达的主要特点是排量大、体积大、转速低(有时可达每分种几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千牛顿·米到几万牛顿·米), 所以又称为低速大转矩液压马达。

液压执行元件

第三章液压执行元件 液压执行元件是将液压泵提供的液压能转变为机械能的能量转换装置,它包括液压缸和液压马达。液压马达习惯上是指输出旋转运动的液压执行元件,而把输出直线运动(其中包括输出摆动运动)的液压执行元件称为液压缸。 第一节液压马达 一、液压马达的特点及分类 从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。 但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。 液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。按液压马达的额定转速分为高速和低速两大类。额定转速高于500r/min的属

于高速液压马达,额定转速低于500r/min的属于低速液压马达。高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。通常高速液压马达输出转矩不大(仅几十N·m到几百N·m)所以又称为高速小转矩液压马达。低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千N·m到几万N·m),所以又称为低速大转矩液压马达。 二、液压马达的工作原理 1.叶片式液压马达 由于压力油作用,受力不平衡使转子产生转矩。叶片式液压马达的输出转矩与液压马达的排量和液压马达进出油口之间的压力差有关,其转速由输入液压马达的流量大小来决定。 由于液压马达一般都要求能正反转,所以叶片式液压马达的叶片要径向放置。为了使叶片根部始终通有压力油,在回、压油腔通人叶片根部的通路上应设置单向阀,为了确保叶片式液压马达在压力油通人后能正常启动,必须使叶片顶部和定子内表面紧密接触,以保证良好的密封,因此在叶片根部应设置预紧弹簧。

第四章 液压执行元件

第三章液压执行元件? 第一节液压马达 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速小转矩液压马达。 高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用内曲线式等。此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式。低速液压马达的主要特点是排量大、体积大、转速低(有时可达每分种几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千牛顿·米到几万牛顿·米),所以又称为低速大转矩液压马达。 液压马达也可按其结构类型来分,可以分为齿轮式、叶片式、柱塞式和其他型式。 二、液压马达的性能参数 液压马达的性能参数很多。下面是液压马达的主要性能参数: 1.排量、流量和容积效率习惯上将马达的轴每转一周,按几何尺寸计算所进入的液体容积,称为马达的排量V,有时称之为几何排量、理论排量,即不考虑泄漏损失时的排量。 液压马达的排量表示出其工作容腔的大小,它是一个重要的参数。因为液压马达在工作中输出的转矩大小是由负载转矩决定的。但是,推动同样大小的负载,工作容腔大的马达的压力要低于工作容腔小的马达的压力,所以说工作容腔的大小是液压马达工作能力的主要标志,也就是说,排量的大小是液压马达工作能力的重要标志。 根据液压动力元件的工作原理可知,马达转速n、理论流量qi与排量V之间具有下列关系qi=nV (4-1) 式中:q i为理论流量(m3/s);n为转速(r/min);V为排量(m3/s)。 为了满足转速要求,马达实际输入流量q大于理论输入流量,则有: q= qi+Δq (4-2) 式中:Δq为泄漏流量。 ηv=q i/q=1/(1+Δq/qi) (4-3) 所以得实际流量

液压控制系统王春行版课后题答案

第 二章 思考题 1、为什么把液压控制阀称为液压放大元件? 答:因为液压控制阀将输入的机械信号(位移)转换为液压信号(压力、流量)输出,并进行功率放大,移动阀芯所需要的信号功率很小,而系统的输出功率却可以很大。 2、什么是理想滑阀?什么是实际滑阀? 答: 理想滑阀是指径向间隙为零,工作边锐利的滑阀。 实际滑阀是指有径向间隙,同时阀口工作边也不可避免地存在小圆角的滑阀。 4、什么叫阀的工作点?零位工作点的条件是什么? 答:阀的工作点是指压力-流量曲线上的点,即稳态情况下,负载压力为p L ,阀位移x V 时,阀的负载流量为q L 的位置。 零位工作点的条件是 q =p =x =0L L V 。 5、在计算系统稳定性、响应特性和稳态误差时,应如何选定阀的系数?为什么? 答:流量增益q q = x L V K ??,为放大倍数,直接影响系统的开环增益。 流量-压力系数c q =- p L L K ??,直接影响阀控执行元件的阻尼比和速度刚度。 压力增益p p = x L V K ??,表示阀控执行元件组合启动大惯量或大摩擦力负载的能力 当各系数增大时对系统的影响如下表所示。 7、径向间隙对零开口滑阀的静态特性有什么影响?为什么要研究实际零开口滑阀的泄漏特性? 答:理想零开口滑阀c0=0K ,p0=K ∞,而实际零开口滑阀由于径向间隙的影响,存在泄漏流量 2c c0r = 32W K πμ ,p0c = K ,两者相差很大。 理想零开口滑阀实际零开口滑阀因有径向间隙和工作边的小圆角,存在泄漏,泄漏特性决定了阀的性能,用泄漏流量曲线可以度量阀芯在中位时的液压功率损失大小,用中位泄漏流量曲线来判断阀的加工配合质量。 9、什么是稳态液动力?什么是瞬态液动力? 答:稳态液动力是指,在阀口开度一定的稳定流动情况下,液流对阀芯的反作用力。 瞬态液动力是指,在阀芯运动过程中,阀开口量变化使通过阀口的流量发生变化,引起阀腔内液流速度随时间变化,其动量变化对阀芯产生的反作用力。

第四章液压控制元件

第四章液压控制元件 授课班级:083012103/4 授课日期:13 教学课题:方向控制阀 教学目的及要求: 掌握单向阀、换向阀的结构、工作原理,了解液压控制阀的分类、性能参 数与型号等 教学重点:换向阀的职能阀号 换向阀的工作原理及应用 教学难点:换向阀 教学方法:实物演示教学法、启发教学法、案例教学法。 教具:黑板、投影仪 教学过程及内容: 复习: 液压辅助元件的作用、安装等,如蓄能器、滤油器、油箱等的作用及安装位置。 课程导入: 一台机器设备要想正常工作,它的启动、停止、快慢速运动、换向等应能够控制自如,为此就必须使用控制元件——液压控制阀,本次课主要学习它的类型、结构、原理及应用。 课程内容: 简述:液压控制阀是液压传动系统中的控制调节元件,它控制或调节油液流动的方向、压力或流量,以满足执行元件所需要的运动方向、力(或力矩)和速度的要求,使整个液压系统能按要求协调地进行工作。由于调节的工作介质是液体,所以统称为阀。液压阀性能的优劣,工作是否可靠,对整个液压系统能否正常工作将产生直接影响。 液压阀的分类 1.根据结构形式 控制元件可分为滑阀式、锥阀式、球阀式、膜片式、喷嘴挡板式等。 2.根据用途 3.根据安装连接方式 4.据控制方式 二、性能要求 方向控制阀 控制原理:通过阀芯和阀体间相对位置的改变,来实现油路连通状态的改变,从而控制油液流动方向。 种类:按用途可分为单向阀和换向阀。 1.单向阀 (1)普通单向阀 工作原理:利用液压力与弹簧力对阀芯作用力方向的不同来控制阀芯的开闭。 功能:允许油液单方向流通,反向则不同。 结构组成:阀芯、阀体和弹簧。 种类:根据阀芯形状有锥阀式和钢球式; 根据安装连接方式有管式和板式。 特点:密封性较好(特别是锥阀),应用广泛。 2)液控单向阀 工作原理:利用液控活塞控制阀芯的初始位置,再利用液压力与弹簧力对阀芯作用力方向的不同控制阀芯的开闭。 功能:既具有普通单向阀的功能,又能够在控制油口通压力油的情况下,反向使油液流通。

液压传动执行元件-教案

液压与气压传动__课程教案

【教案正文】

教学流程 教学内容 复习提问及导入 液压动力滑台2实现的进给运动的工作 循环为:快进-工进-停留-快退-原位停止(多(媒体课件动画演示) 看一看,想一想: 由于该组合机床液压动力滑台的运动是在与之相连接的液压缸驱动下完成的,因此液压缸的往复动作必须满足滑台工作循环的要求。 液压缸如何工作才能够实现上述工作循环呢? 新课教学一、液压缸的分类和结构特点 1.液压缸的分类 2.液压缸的结构特点 单出杆式液压缸和双出杆式液压缸主要由活塞杆、活塞和缸体三部分组成,缸体内部有两个腔,不带活塞杆的称为无杆腔,带活塞杆的称为有杆腔。 二、单出杆式、双出杆式的双作用液压缸的连接形式、工作特点及应用 三、液压马达及其应用 1.液压马达的工作原理 双作用叶片式液压马达通过压力油作用于面积不同的叶片上,使之产生转矩,使转子旋转。 2.与液压泵的区别 (1)液压泵的进油口比出油口大,液压马达的进、出油口相同。 (2)结构上,液压泵要有自吸能力。 (3)液压马达要进行正、反转,结构具有对称性;液压泵只进行单反向转,不要求结构对称。 (4)液压马达的结构及润滑要能保证在宽速度范围内正常工作。 (5)液压马达工作时要求有较大的起动扭矩和较小的脉动。

新课教学3.液压马达的应用 压力油经由液压泵输入,经过调速阀调速后进入液压发送机,液压发送机输出转矩,液压油经换向阀回油箱。 四、动力滑台液压回路及执行元件的分析 1.与动力滑台相连的液压系统工作原理 当快进时,油液通过阀3进入液压缸4,形成差动连接,活塞杆向右运动;压下阀5,切断差动连接,形成液压缸的常规连接,油液通过阀3的左位,液压缸无杆腔进油,活塞杆慢速向右运动;当阀3换到右位时,液压缸的有杆腔进油,活塞杆快速向左退回。 液压动力滑台(液压缸)的进给运动回路 2.分析液压缸及其连接方式 (1)种类

液压控制系统复习资料(王春行版)(DOC)

液压控制系统(电液控制系统)复习资料及试卷 一、简略设计应用电液比例阀控制的速度控制回路。画出原理图并加以说明。 该液压控制系统由控制计算机、比例放大器、电液比例方向阀、液压泵、液压缸、基座、负载、位移传感器和,数据采集卡组成,如图1所示。 图1 电液比例阀控制的速度控制回路 液压系统采用定量泵和溢流阀组成的定压供油单元,用电液比例方向阀在液压缸的进油回路上组成进油节流调速回路,控制活赛的运行速度。位移传感器检测出液压缸活塞杆当前的位移值,经A/D 转换器转换为电压信号,将该电压信号与给定的预期位移电压信号比较得出偏差量,计算机控制系统根据偏差量计算得出控制电压值,再通过比例放大器转换成相应的电流信号,由其控制电液比例方向阀阀芯的运动,调节回路流量,从而通过离散的精确位移实现对负载速度的精确调节。 二、说明使用电液闭环控制系统的主要原因。 液压伺服系统体积小、重量轻,控制精度高、响应速度快,输出功率大,信号灵活处理,易于实现各种参量的反馈。另外,伺服系统液压元件的润滑性好、寿命长;调速范围宽、低速稳定性好。闭环误差信号控制则定位更加准确,精度更高。 三、在什么情况下电液伺服阀可以看成震荡环节、惯性环节、比例环节? 在大多数的电液私服系统中,伺服阀的动态响应往往高于动力元件的动态响应。为了简化系统的动态特性分析与设计,

伺服阀的传递函数可以进一步简化,一般可以用二阶震荡环节表示。如果伺服阀二阶震荡环节的固有频率高于动力元件的固有频率,伺服阀传递函数还可以用一阶惯性环节表示,当伺服阀的固有频率远远大于动力元件的固有频率,伺服阀可以看成比例环节。 四、在电液私服系统中为什么要增大电气部分的增益,减少液压部分的增益? 在电液伺服控制系统中,开环增益选得越大,则调整误差越小,系统抗干扰能力就越强。但系统增益超过临街回路增益,系统就会失稳。在保持系统稳定性的条件下,得到最大增益。从提高伺服系统位置精度和抗干扰刚度考虑,要求有较高的电气增益K P,因此,液压增益不必太高,只要达到所需要的数值就够了。同时,电气系统增益较液压增益也易于调节,同时成本低。 五、结合实际应用设计应用电液私服控制的位置控制系统。画原理图并加以说明。 设计送料机械手移送机构液压伺服系统工作原理图如图2所示。 图2 送料机械手移送机构液压伺服系统工作原理图 1—液压缸;2、3—液控单向阀;4、13、18—电磁换向阀;5—电液伺服阀; 6、15—压力继电器; 该回路设计具有以下几个特点: (1)伺服泵站由交流电机、轴向柱塞泵、溢流阀、单向阀、过滤器、蓄能器,压力继电器、压力表、加热器以及冷却回路等组成。泵站同时具备温度、液位等信号的监测、报警功能,自动化程度较高。液压系统的启动、停止、溢流阀的动

液压辅助元件选择题

第五节液压辅助元件 1010 下列滤油器中一次性使用的是。 A.金属纤维型 B.金属网式 C.纸质 D.缝隙式 1011 下列滤油器中属于纵深型的是。 A.金属网式 B.金属线隙式 C.缝隙式 D.纤维型 1014 当滤器的绝对过滤精度为100μm时,表明该滤器后。 A.不含100μm以上污染颗粒 B.100μm以上污染颗粒浓度不到滤器前的 l/20 C.100μm以上污染颗粒浓度不到滤器前的 1/75 D.100μm以上污染颗粒浓度不到滤器前的 1/100 1015 滤油器的压降随使用时间增加的速度与有关。 A.过滤精度 B.有效过滤面积 C.油液品质 D.A与B与C 1016 滤油器在达到其规定限值之前可以不必清洗或更换滤芯。 A.压力降 B.过滤精度 C.过滤效率 D.进口压力 1017 滤油器位于压力管路L时的安全措施中通常不包括。 A.设污染指示器 B.设压力继电器 C.设并联单向阀 D.滤器置于溢流阀下方 1020 过滤比βx的数值达到_时,x值(μm)即被认为是滤油器的绝对过滤精度。 A.50 B.75 C.99.9 D.100 1021 下列滤器中属表面型的是滤油器。 A.纤维型 B.纸质 C.线隙式 D.金属粉末烧结型 1023 下列滤油器中滤油精度要求较高的是。 A.金属网式 B.金属线隙式 C.金属纤维式 D.金属缝隙式 1024 滤油器的过滤比(βx值)的定义是。 A.滤油器上游油液单位容积中大于某尺寸x的颗粒数 B.滤油器下游油液单位容积中大于某尺寸x的颗粒数 C.A/B D.B/A 1025 滤油器的过滤精度常用作为尺寸单位。 A.μm B.mm C.nm D.mm2 1026 国际标准化组织以来评定滤油器过滤精度。 A.绝对过滤尺度 B.过滤效率 C.过滤比 D.滤芯孔隙直径 1027 滤油嚣的性能参数不包括。 A.过滤精度 B.额定压差 C.额定流量 D.使用寿命 1032 下列滤油器中属不可清洗型的有。 A.网式 B.纸质 C.线隙式 D.磁性 1034 下列滤油器中作为精滤器使用的有。

【精品】液压传动讲义第4章 液压辅助元件

4液压辅助元件 本章提要:液压辅助元件有滤油器、蓄能器、管件、密封件、油箱和热交换器等,除油箱通常需要自行设计外,其余皆为标准件。液压辅助元件和液压元件一样,都是液压系统中不可缺少的组成部分。它们对系统的性能、效率、温升、噪声和寿命的影响不亚于液压元件本身。通过学习,要求掌握液压辅件的结构原理,熟

知其使用方法及适用场合。 教学内容: 本章介绍了液压传动系统中的辅助元件—-滤油器、蓄能器、管件、密封件、油箱和热交换器等工作原理及结构。 教学重点: 1.油液的污染的防治; 2.密封件密封原理; 3.油箱形式及油箱上的辅件。 教学难点: 1.理解油液的污染; 2.动密封和静密封。 教学方法: 课堂教学为主,充分利用网络课程中的多媒体素材来表示抽象概念,利用实验,了解辅件的结构及工作原理。 教学要求: 掌握油液的污染的防治和过滤器的原理;了解密封件密封原理;了解管件、

管接头、蓄能器、油箱的功用及基本结构;掌握蓄能器的容积计算。

4.1 滤油器 4.1.1对过滤器的要求 液压油中往往含有颗粒状杂质,会造成液压元件相对运动表面的磨损、滑阀卡滞、节流孔口堵塞,使系统工作可靠性大为降低。在系统中安装一定精度的滤油器,是保证液压系统正常工作的必要手段。过滤器的过滤精度是指滤芯能够滤除的最小杂质颗粒的大小,以直径d 作为公称尺寸表示,按精度可分为粗过滤器(d <100m μ)普通过滤器(d <10m μ),精过滤器(d <5m μ),特精过滤器(d < 1m μ)。一般对过滤器的基本要求是: (1)能满足液压系统对过滤精度要求,即能阻挡一定尺寸的杂质进入系统。 (2)滤芯应有足够强度,不会因压力而损坏。 (3)通流能力大,压力损失小. (4)易于清洗或更换滤芯。 表4.1 各种液压系统的过滤精度要求 4.1.2按滤芯的材料和结构形式,滤油器可分为网式、线隙式,纸质滤芯式、烧结式滤油器及磁性滤油器等。按滤油器安放的位置不同,还可以分为吸滤器,压滤器和回油过滤器,考虑到泵的自吸性能,吸油滤油器多为粗滤器. (1)网式滤油器 图4。1所示为网式滤油器,其滤芯以铜网为过滤材料,在周围开有很多孔的塑料或金属筒形骨架上,包着一层或两层铜丝网,其过滤精度取决于铜网层数和网孔的大小。这种滤油器结构简单,通流能力大,清洗方便,但过滤精度低,一般用于液压泵的吸油口.

第四章 液压执行元件(液压马达)

《液压传动》练习题 第四章液压执行元件(液压马达) 一、填空题:(每空0.5分,共16分) 1、液压马达是一种将输入液体的压力能转换为旋转运动机械能的能量转换装置。 2、按形成液压马达密封工作容积的结构不同,液压马达可分为柱塞马达、叶片马达和齿轮马达。 3、按液压马达输出流量情况不同,液压马达可分为定量马达和变量马达。 4、按液压马达吸排油口可转换情况不同,液压马达可分为单向马达和双向马达。 5、按液压马达主轴每转工作容积大小变化次数不同,液压马达可分为单作用马达、双作用和多作用马达 6、按液压马达输出参数的不同,液压马达可分为高速小扭矩马达和低速大扭矩马达。 7、理论上说,液压泵和液压马达具有可逆性,实际中,只有轴向柱塞泵(马达)具有可逆性。 8、液压马达工作时,为了保证马达运转的平稳性,应使马达的排油口处具有一定的回油背压。 9、由于泄漏的影响,为了保证液压马达工作时的正常转速,应使输入马达的实际流量大于理论流量,以补偿液压马达的泄漏量。 10、在液压传达系统中,调整液动机运转速度(调速)的基本方法是调节输入液动机得流量大小。 11、液压马达的扭矩正比于转排量,转速反比于转排量,所以,低速大扭矩液压马达是因为马达的转排量大,高速小扭矩液压马达是因为马达的转排量小。 12、对于同一个液压系统,若液压泵的输出功率保持不便,则采用高速小扭矩液压马达或低速大扭矩液压马达时,其输出功率相等。 13、叶片式液压马达的叶片应径向安装,以保证马达正反转时性能不变。 14、叶片式液压马达适用于。 15、为了保证马达正反转时性能不变,应使齿轮马达的进出油口对称。 16、齿轮式液压马达适用于。 17、轴向柱塞式液压马达适用于。 18、低速大扭矩液压马达适用于。 19、低速大扭矩液压马达主要结构类型为径向柱塞马达。 二、选择题:(每题1分,共10分) 1、实际中,只有具有可逆性。 A、轴向柱塞泵 B、径向柱塞泵 C、叶片泵 D、齿轮泵 2、高速小扭矩液压马达是因为。 A、马达的工作压力较小。 B、马达的输入流量较小。 C、马达的转排量较小。 D、马达的输入功率较小。 3、低速大扭矩液压马达是因。 A、马达的工作压力较大。 B、马达的输入流量较大。 C、马达的转排量较大。 D、马达的输入功率较大。 4、同一液压系统采用不同的液压马达(忽略损失)时,其输出功率。 A、相同。 B、不相同,低速大扭矩液压马达输出功率较大。 C不相同,高速小扭矩液压马达输出功率较大。D、不相同,但无法确定大小。

液压控制元件含答案

一.填空题: 1.流量控制阀是通过改变来改变(节流口通流面积或通流通道的长短)局部阻力的大小,从而实现对流 量的控制。 2.通过流量控制阀节流口的流量大小与(流量系数K)、(节流口通流面积A)、(节流口前后压力差 Δp)和(由节流口形状决定的节流阀指数m)有关。 3.调速阀是由(定差减压阀)和节流阀(串联)而成,旁通型调速阀是由(差压式溢流阀)和节流阀(并 联)而成。 4.调速阀比节流阀的调速性能好,这是因为无论调速阀出口(负载)如何变化,节流口前后的(压力差) 基本稳定,从而使(输出流量)基本保持恒定。 5.温度补偿调速阀的原理,是采用一个温度补偿杆。当系统温度升高时,温度补偿杆自动(伸长),节 流口的面积自动(减小);通过节流口的流量(得到补偿)。 6.液压控制阀按连接方式可分为(螺纹连接阀)、(法兰连接阀)、(板式连接阀)、(叠加式连接阀)、 (插装式连接阀)五类。 7.插装阀由(控制盖板)、(阀体)、(阀套)和(弹簧)组成。 8.液压伺服控制和电液比例控制技术其控制(精度)和响应的(快速性)远远高于普通的液压传动系统。 9.液压伺服阀是一种通过改变输入信号,(连续)、(成比例)的控制(流量)和(压力)进行液压控 制的控制方式。 10.电液伺服阀通常由(电气-机械转换装置)、(液压放大器)和(反馈(平衡))机构三部分组成。 11.比例阀可以通过改变输入电信号的方法对压力、流量进行(连续)控制。比例 判断题: 1.流量控制阀有节流阀、调速阀、溢流阀等。(×) 2.节流阀和调速阀分别用于节流和调速,属于不同类型的阀。(×) 3.通过节流阀的流量与节流阀的通流截面积成正比,与阀两端的压力差大小无关。(×) 4.当插装阀的远控口通油箱时,两个工作油口不相通。(×) 5.插装阀可实现大流量通过。(√) 选择题: 1.节流阀是控制油液的() A、流量 B、方向 C、压力(a) 2.节流阀的节流口应尽量做成()式。 A、薄壁孔 B、短孔 C、细长孔(A) 3.与节流阀相比较,调速阀的显着特点是()。 A.流量稳定性好B.结构简单,成本低C.调节范围大D.最小压差的限制较小(a) 4.当调速阀两端压差大于1MPa时,随着两端压差增大,通过调速阀流量。( ) A.增大 B.减小 C.不变 D.不能确定(c) 5.压力继电器是()控制阀。 A、流量 B、压力 C、方向(b) 6.对液压系统控制精度和响应速度来说,下面哪个说法是正确的。() A. 开关控制>电液比例控制>液压伺服控制; B. 电液比例控制>液压伺服控制>开关控制; C. 开关控制>液压伺服控制>电液比例控制; D.液压伺服控制>电液比例控制>开关控制。(d) 液压回路题

液压传动执行元件-教案

液压与气压传动—课程教案

【教案正文]

教学内容 液压动力滑台2实现的进给运动的工作 循环为:快进-工进-停留-快退-原位停止 (媒体课件动画演示) 看一看,想一想: 由于该组合机床液压动力滑台的运动是在与之相连接的液压缸驱动下完成的, 此液压缸的往复动作必须满足滑台工作循环的要求。 液压缸如何工作才能够实现上述工作循环呢? 一、液压缸的分类和结构特点 1.液压缸的分类 2. 液压缸的结构特点 单出杆式液压缸和双出杆式液压缸主要由活塞杆、 活塞和缸体三部分组成, 缸体内部 有两个腔,不带活塞杆的称为无杆腔,带活塞杆的称为有杆腔。 二、 单出杆式、双出杆式的双作用液压缸的连接形式、工作特点及应用 三、 液压马达及其应用 1. 液压马达的工作原理 双作用叶片式液压马达通过压力油作用于面积不同的叶片上, 使之产生转矩,使转子 旋转。 2. 与液压泵的区别 (1) 液压泵的进油口比出油口大,液压马达的进、出油口相同。 (2) 结构上,液压泵要有自吸能力。 (3) 液压马达要进行正、反转,结构具有对称性;液压泵只进 行单反向转,不要 求 结构对称。 (4) 液压马达的结构及润滑要能保证在宽速度范围内正常工作。 (5) 液压马达工作时要求有较大的起动扭矩和较小的脉动。 教学流程 新 课 教 学 复习提问 及导入 ESC 弄助林用下只苗宙方向运初両翊績傭画 豐里 1期.力■询畔刖穷尿玉5:祥为邮作円1.. 尺尹再个帧 用诟和郦曲丘=左卩弓壬罠眄田知胃 为 汉世甲肛. n Am 开 il 杆 H |ft 缺 L 谭 if 稈号 1山 LU r j 4: 卜 j T *1 3* F 号 J 简比袴号 rTT :H r 1 rn rn r 1 「

液压辅助元件

第六章液压辅助元件 在液压系统中,蓄能器、滤油器、油箱、热交换器、管件等元件属于辅助元件,这些元件结构比较简单,功能也较单一,但对于液压系统的工作性能、噪声、温升、可靠性等,都有直接的影响。因此应当对液压辅助元件,引起足够的重视。在液压辅助元件中,大部分元件都已标准化,并有专业厂家生产,设计时选用即可。只有油箱等少量非标准件,品种较少要求也有较大的差异,有时需要根据液压设备的要求自行设计。 第一节滤油器 一、滤油器的作用及性能 1.滤油器的作用 在液压系统中,由于系统内的形成或系统外的侵入,液压油中难免会存在这样或那样的污染物,这些污染物的颗粒不仅会加速液压元件的磨损,而且会堵塞阀件的小孔,卡住阀芯,划伤密封件,使液压阀失灵,系统产生故障。因此,必须对液压油中的杂质和污染物的颗粒进行清理,目前,控制液压油洁净程度的最有效方法就是采用滤油器。滤油器的主要功用就是对液压油进行过滤,控制油的洁净程度 2.滤油器的性能指标 滤油器的主要性能指标主要有过滤精度、通流能力、压力损失等,其中过滤精度为主要指标。 (1)过滤精度滤油器的工作原理是用具有一定尺寸过滤孔的滤芯对污物进行过滤。过滤精度就是指,滤油器从液压油中所过滤掉的杂质颗粒的最大尺寸(以污物颗粒平均直径d表示)。 目前所使用的滤油器,按过滤精度可分为四级:粗滤油器(d≥0.1mm)、普通滤油器(d≥0.01mm)、精滤油器(d≥0.001mm)和特精滤油器(d≥0.0001mm)。 过滤精度选用的原则是:使所过滤污物颗粒的尺寸要小于液压元件密封间隙尺寸的一半。系统压力越高,液压件内相对运动零件的配合间隙越小,因此,需要的滤油器的过滤精度也就越高。液压系统的过滤精度主要取决于系统的压力。

液压控制系统课后思考题绝对全(王春行版)

第二章 1、为什么把液压控制阀称为液压放大元件? 答:因为液压控制阀将输入的机械信号(位移)转换为液压信号(压力、流量)输出,并行功率放大,移动阀芯所需要的信号功率很小,而系统的输出功率却可以很大。 2、什么是理想滑阀?什么是实际滑阀? 理想滑阀:径向间隙为零,节流工作边锐利的滑阀 实际滑阀:存在径向间隙,节流工作边有圆角的滑阀 3、什么是三通阀、四通阀?什么是双边滑阀、四边滑阀?它们之间有什么关系? “二通阀”、“三通阀”、“四通阀”是指换向阀的阀体上有两个、三个、四个各不相通且可与系统中不同油管相连的油道接口,不同油道之间只能通过阀芯移位时阀口的开关来沟通。 “双边滑阀”、“四边滑阀”是指换向阀有两个、四个可控的节流口。 一般情况下,三通阀是双边滑阀,四通阀是四通阀。 4、什么叫阀的工作点?零位工作点的条件是什么? 阀的工作点是阀的压力—流量曲线上的点。零位工作点即曲线的原点,又称零位阀系数。零位 工作点的条件是0===v L L x p q 。 5、在计算系统稳定性、响应特性和稳态误差时应如何选定阀的系数?为什么? 流量增益q q =x L V K ??,为放大倍数,直接影响系统的开环增益。流量-压力系数c q =-p L L K ??,直接影响阀控执行元件的阻尼比和速度刚度。压力增益p p = x L V K ??,表示阀控执行元件组合启动大惯量或大摩擦力负载的能力 当各系数增大时对系统的影响如下表所示。 7、径向间隙对零开口滑阀的静态特性有什么影响,为什么要研究实际实际零开口滑阀的泄漏特性? 答:理想零开口滑阀c0=0K ,p0=K ∞,而实际零开口滑阀由于径向间隙的影响,存在泄漏流量2c c0r =32W K πμ,p0c =K ,两者相差很大。 理想零开口滑阀实际零开口滑阀因有径向间隙和工作边的小圆角,存在泄漏,泄漏特性决定了阀的性能,用泄漏流量曲线可以度量阀芯在中位时的液压功率损失大小,用中位泄漏流量曲线来判断阀的加工配合质量。

相关文档
相关文档 最新文档