文档库 最新最全的文档下载
当前位置:文档库 › 竞赛专题讲座-平面几何证明

竞赛专题讲座-平面几何证明

竞赛专题讲座-平面几何证明
竞赛专题讲座-平面几何证明

竞赛专题讲座-平面几何证明

重庆市育才中学瞿明强

【竞赛知识点拨】

1.线段或角相等的证明

(1)利用全等△或相似多边形;

(2)利用等腰△;

(3)利用平行四边形;

(4)利用等量代换;

(5)利用平行线的性质或利用比例关系

(6)利用圆中的等量关系等。

2.线段或角的和差倍分的证明

(1)转化为相等问题。如要证明a=b±c,可以先作出线段p=b±c,再去证明a=p,即所谓“截长补短”,角的问题仿此进行。

(2)直接用已知的定理。例如:中位线定理,Rt△斜边上的中线等于斜边的一半;△的外角等于不相邻的内角之和;圆周角等于同弧所对圆心角的一半等等。

3.两线平行与垂直的证明

(1)利用两线平行与垂直的判定定理。

(2)利用平行四边形的性质可证明平行;利用等腰△的“三线合一”可证明垂直。

(3)利用比例关系可证明平行;利用勾股定理的逆定理可证明垂直等。

【竞赛例题剖析】

【例1】从⊙O外一点P向圆引两条切线PA、PB和割线PCD。从A点作弦AE平行于CD,连结BE交CD于F。求证:BE平分CD。

【分析1】构造两个全等△。

连结ED、AC、AF。

CF=DF←△ACF≌△EDF←

←∠PAB=∠AEB=∠PFB

【分析2】利用圆中的等量关系。连结OF、OP、OB。

←∠PFB=∠POB←

注:连结OP、OA、OF,证明A、O、F、P四点共圆亦可。

【例2】△ABC内接于⊙O,P是弧 AB上的一点,过P作OA、OB的垂线,与AC、BC分别交于S、T,AB交于M、N。求证:PM=MS充要条件是PN=NT。

【分析】只需证,PM2PN=MS2NT。

(∠1=∠2,∠3=∠4)→△APM∽△PBN

→→PM2PN=AM2BN

(∠BNT=∠AMS,∠BTN=∠MAS )→△BNT ∽△SMA →

→MS 2NT =AM 2BN

【例3】已知A

为平面上两半径不等的圆O 1和O 2的一个交点,两外公切线P 1P 2、Q 1Q 2分别切两圆于P 1、P 2、Q 1、Q 2,M 1、M 2分别为P 1Q 1、P 2Q 2的中点。求证:∠O 1AO 2=∠M 1AM 2。

【分析】设B 为两圆的另一交点,连结并延长BA 交P 1P 2于C ,交O 1O 2于M ,则C 为P 1P 2的中点,且P 1M 1∥CM∥P 2M 2,故CM 为M 1M 2的中垂线。 在O 1M 上截取MO 3=MO 2,则∠M 1AO 3=∠M 2AO 2。

故只需证∠O 1AM 1=∠O 3AM 1,即证。

由△P 1O 1M 1∽P 2O 2M 2,M 1O 3=M 2O 2,O 1P 1=O 1A ,O 2P 2=O 2A 可得。

【例4】在△ABC 中,AB>AC ,∠A 的外角平分线交△ABC 的外接圆于D ,DE⊥AB 于E ,求证:

AE=。

【分析】方法1、2AE=AB-AC

← 在BE 上截取EF=AE ,只需证BF=AC ,连结DC 、DB 、DF ,从而只需证△DBF≌△DCA ← DF=DA,∠DBF=∠DCA,∠DFB=∠DAC ←∠DFA=∠DAF=∠DAG。

方法2、延长CA至G,使

AG=AE,则只需证BE=CG

← 连结DG、DC、DB,则

只需证△DBE≌△DCG

← DE=DG,∠DBE=∠DCG,

∠DEB=∠DGC=Rt∠。

【例5】∠ABC的顶点B在

⊙O外,BA、BC均与⊙O相交,

过BA与圆的交点K引∠ABC

平分线的垂线,交⊙O于P,

交BC于M。

求证:线段PM为圆心到∠ABC

平分线距离的2倍。

【分析】若角平分线过O,则P、M重合,PM=0,结论显然成立。

若角平分线不过O,则延长DO至D‘,使OD’=OD,则只需证DD‘=PM。连结D’P、DM,则只需证DMPD‘为平行四边形。

过O作m⊥PK,则D D’,K P,∴∠D‘PK=∠DKP

BL平分

∠ABC,

MK⊥BL→

BL为MK

的中垂线

→∠DKB=

∠DMK

∴∠D’P

K=∠DMK,

∴D‘P∥DM。而D’ D∥PM,

∴DMPD‘为平行四边形。

【例6】在△ABC中,AP为∠A的平分线,AM为BC边上的中线,过B作BH⊥AP于H,AM的延长线交BH于Q,求证:PQ∥AB。

【分析】方法1、结合中线和角平分线的性质,考虑用比例证明平行。

倍长中线:延长AM至M’,使AM=MA‘,连结BA’,如图6-1。

PQ∥AB←←←

∠A‘BQ=180°-(∠HBA+∠BAH+∠CAP)= 180°-90°-∠CAP=90°-∠BAP=∠ABQ

方法2、结合角平分线和BH⊥AH联想对称知识。

延长BH交AC的延长线于B’,如图6-2。则H为BB‘的中点,因为M为BC的中点,连结HM,则HM∥B/C。延长HM交AB于O,则O为AB的中点。延长MO至M’,使OM‘=OM,连结M’A、M‘B,则AM’BM是平行四边形,

∴MP∥AM‘,QM∥BM’。于是,,所以PQ∥AB。

【例7】菱形ABCD的内切圆O与各边分别切于E、F、G、H,在EF与GH上分别作⊙O 的切线交AB于M,交BC于N,交CD于P,交DA于Q。

求证:MQ∥NP。(95年全国联赛二试3)

【分析】由AB∥CD知:要证MQ∥NP,只需证∠AMQ=∠CPN,

结合∠A=∠C知,只需证△AMQ∽△CPN←,AM2CN=AQ2CP。

连结AC、BD,其交点为内切圆心O。设MN与⊙O切于K,连结OE、OM、OK、ON、OF。记∠ABO=φ,∠MOK=α,∠KON=β,则

∠EOM=α,∠FON=β,∠EOF=2α+2β=180°-2φ。

∴∠BON=90°-∠NOF-∠COF=90°-β-φ=α

∴∠CNO=∠NBO+∠NOB=φ+α=∠AOE+∠MOE=∠AOM

∠OCN=∠MAO,

∴△OCN∽△MA

O,于是

∴AM2CN=AO2

CO

同理,AQ2CP=AO2CO。

【例8】ABCD是圆内接四边形,其对角线交

于P,M、N分别是AD、BC的中点,过M、N

分别作BD、AC的垂线交于K。求证:K P⊥AB。

【分析】延长KP交AB于L,则只需证∠PAL+∠APL=90°,

即只需证∠PDC+∠KPC=90°,只需证∠PDC=∠PKF,

因为P、F、K、E四点共圆,故只需证∠PDC=∠PEF,即EF∥DC。

←←←△DME∽△CNF

【例9】以△ABC的边BC为直径作半圆,与AB、AC分别交于点D、E。过D、E作BC的垂线,垂足分别是F、G,线段DG、EF交于点M。求证:AM⊥BC。

【分析】连结BE、CD交于H,则H为垂心,故AH⊥BC。(同一法)

设AH⊥BC于O,DG、AH交于M1,EF、AH交于M2。下面证M1、M2重合。

OM1∥DF→→OM1=。

OM2∥EG→→OM2=。

只需证OG2DF=EG2OF,即←Rt△OEG∽Rt△ODF←∠DOF=∠DHB=∠EHC=∠EOG。

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

初中几何证明常用方法归纳

初中几何证明常用方法 归纳 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

几何证明常用方法归纳 一、证明线段相等的常用办法 1、同一个三角形中,利用等角对等边:先证明某两个角相等。 2、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 3、通过平移或旋转或者折叠得到的线段相等。 4、线段垂直平分线性质:线段垂直平分线的一点到线段两个端点的距离相等。 5、角平分线的性质:角平分线上的一点到角两边的距离相等。 6、线段的和差。 二、求线段的长度的常用办法 1、利用线段的和差。 2、利用等量代换:先求其他线段的长度,再证明所求线段与已求的线段相等。 3、勾股定理。 三、证明角相等的常用办法 1、同(等)角的余(补)角相等。 2、两直线平行,内错角(同位角)相等。 3、角的和差 4、同一个三角形中,利用等边对等角:先证明某两条边相等。 5、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 四、求角的度数的常用方法 1、利用角的和差。 2、利用等量代换:先求其他角的长度,再证明所求角与已求的角相等。 3、三角形内角和定理。 五、证明直角三角形的常用方法 1、证明有一个角是直角。(从角) 2、有两个角互余。(从角) 3、勾股定理逆定理。(从边) 4、30度角所对的边是另一边的一半。 5、三角形一边上的中线等于这边的一半 六、证明等腰三角形的常用方法 1、证明有两边相等。(从边) 2、证明有两角相等。(从角) 七、证明等边三角形的常用方法 1、三边相等。 2、三角相等。 3、有一角是60度的等腰三角形。 八、证明角平分线的常用方法 1、两个角相等(定义)。 2、等就在:到角两边的距离相等的点在角平行线上。 九、证明线段垂直平分线的常用方法 1、把某条线段平分,并与它垂直。

如何做几何证明题(方法情况总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

二. 证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 例3. 如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。求证:KH∥BC 例4. 已知:如图4所示,AB=AC,。 求证:FD⊥ED 三. 证明一线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) 例5. 已知:如图6所示在中,,∠BAC、∠BCA的角平分线AD、

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

数学竞赛专题讲座 十二、多面体与旋转体

十二、多面体与旋转体 知识、方法、技能 多面体与旋转体的概念和性质是解决其计算与证明的基础,因此对概念的深刻,对性质、公式和定理要熟练掌握. I .柱体 柱体包括梭往和圆柱. 1.柱体侧面积和体积 侧面积公式:S cl =(c 为直截面周长,l 为侧棱长) 体积公式: V Sh =(S 为底面积,h 为高). 2.四梭柱 四棱柱 ?????→?底面是平行四边形平行六面体????→?侧棱垂直于底面 直平行六面体 ???→ ?底面是矩形 长方体 ????→?底面是正方形正四棱柱???→?棱长都相等 正方体. (l)长方体的性质 ①长方体的四条对角线长度相等,它们交于一点且在该点互相平分. ②长方体一条对角线长的平方等于一个顶点上三条棱长的平方和. ③长方体的一条对角线与一个顶点上的三条棱所成的角分别是,,αβγ,则 1cos cos cos 2 2 2 =++γβα. ④长方体的一条对角线与过一个顶点的三个面所成的角分别是123,,θθθ,则 12 2 2 23cos cos cos 1θθθ++=. (2)正方体的性质 ①正方体的对角线和与它不相交的面对角线垂直. ②正方体过同一条对角线的三个对角面两两所成的小于90 的二面角都等于60 . II .锥体(锥体包括棱锥和圆锥) 1.锥体的侧面积和体积 正棱锥的侧面积公式:' 12 S ch =(c 是底面周长,' h 是斜高; 圆锥的侧面积公式:12S cl =(c 是底面周长,l 是母线长); 锥体的体积公式:13V Sh = (S 为底面积,h 为高). 2.四面体 四面体是立体几何中最基本的,也是最重要的几何体,它相当于平面几何中三角形所处的地位.四面体与三角形有着相类似的性质. 四面体的性质: ①连接四面体对棱中点的线段交于一点,且这点平分这些线段. ②连接四面体任一顶点与它对面重心的线段交于一点G ,且这点将所在线段分成的比为3:1,G 称为四面体重心. ③四面体的二面角的平分面粉对棱所成的比等于形成这个二面角的两个侧面的面积之比. ④每个四面体都有内切球,球心I 是四面体的各个二面角的平分面的交点,此点到各面的距离等于球半径. 设四面体四个面的面积分别为1234,,,S S S S , V 表示它的体积,r 表示内切球的半径, 1234,,,h h h h 分别表示各顶点到对面所作的高,有 1234 3V r S S S S = +++, 1 2 3 4 11111r h h h h = + + + .

如何做几何证明题(教师版)

几何证明专题讲座 ——如何做几何证明题 【知识精读】 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 【分类解析】 1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1所示,?ABC中,∠=?=== C AC BC A D DB A E CF 90,,,。 求证:DE=DF

C F B A E D 图1 分析:由?ABC 是等腰直角三角形可知,∠=∠=?A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=?D CF 45。从而不难发现??D CF D AE ? 证明:连结CD AC BC A B ACB AD D B CD BD AD D CB B A AE CF A D CB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??A D E C D F DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连结BG ,证?EFG 是等腰直角三角形。有兴趣的同学不妨一试。 例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。 求证:∠E =∠F D B C F E A 图2 证明:连结AC 在?ABC 和?CD A 中,

解析几何专题讲座

解析几何专题讲座 题型一 圆锥曲线的概念及性质 【例1】椭圆x 2 a 2+y 2 b 2=1(a >b >0)的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) A.? ? ? ?0,22 B.????0,12 C .[2-1,1) D.????12,1 又e =c a ,∴2e 2+e ≥1,∴2e 2+e -1≥0,即(2e -1)(e +1)≥0,又0b >0),|PF 1|=m ,|PF 2|=n . 在△PF 1F 2中,由余弦定理可知,4c 2=m 2+n 2-2mn cos 60°. ∵m +n =2a ,∴m 2+n 2=(m +n )2-2mn =4a 2-2mn , ∴4c 2=4a 2-3mn ,即3mn =4a 2-4c 2.又mn ≤????m +n 22=a 2(当且仅当m =n 时取等号), ∴4a 2-4c 2≤3a 2,∴c 2 a 2≥14,即e ≥12,∴e 的取值范围是????1 2,1. (2)证明:由(1)知mn =43b 2,∴S △PF 1F 2=12sin 60°=33b 2, 即△PF 1F 2的面积只与短轴长有关. 题型二 圆锥曲线的方程 【例2】设椭圆C : 222 2 1(0),l ,x y a b F F C A B a b + =>>的右焦点为过的直线与椭圆相交于两点 60,2l AF FB = 直线的倾斜角为 (1)求椭圆C 的离心率; (2)如果|AB |=15 4 ,求椭圆C 的方程. 解:设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0. (1)直线l 的方程为y =3(x -c ),其中c =a 2-b 2. 联立????? y =3(x -c ),x 2a 2+y 2b 2=1 得(3a 2+b 2)y 2+23b 2cy -3b 4 =0. 解得y 1=-3b 2(c +2a )3a 2+b 2,y 2=-3b 2(c -2a )3a 2+b 2 . 因为FA →=2FB → ,所以-y 1=2y 2. 即3b 2 (c +2a )3a 2+b 2=2·-3b 2 (c -2a )3a 2+b 2 得离心率e =c a =23. (2)因为|AB |= 1+13|y 2-y 1|,所以23 ·43ab 23a 2+b 2=15 4. 由c a =23得b =53a ,所以54a =15 4,得a =3,b = 5. 椭圆C 的方程为x 29+y 2 5 =1. 拓展提升——开阔思路 提炼方法 求圆锥曲线的方程常利用圆锥曲线的定义或待定系数法求解,但要注意焦点所在坐标轴,避免漏解. 题型三 热点交汇

(完整版)做几何证明题方法归纳

做几何证明题方法归纳 知识归纳: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1 求证:DE =DF 分析:由?ABC 连结CD ,易得CD = 证明:连结CD ΘΘΘAC BC A B ACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??ADE CDF DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连

八年级数学几何证明题技巧含答案

几何证明题的技巧 1. 几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系; 二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分 解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 ?C?90?,AC?BC,AD?DB,AE?CFABC?。求证:已知:如图例1.1所示,DE=中,DF 图 CD?A4AB?中点,可考虑连结C分析由,易,是等腰直角三角形可知 AB?DCF??DAE?45?DCF?。从而不难发现证明:连结CD AC?BC ??A??B?ACB?90?,AD?DB ?CD?BD?AD,?DCB??B??AAE?CF,?A??DCB,AD?CD ??ADE??CDF?DE?DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD,因为CD既是斜边上的中线,又是底边上的1 / 7 ?EFG是等腰直角三角形。有兴趣的同学不妨一试。DE,连结BG,证中线。本题亦可延长ED 到G,使DG=说明:利用三角形全等证明线段求角相等。常须添辅助线,制造全等三角形,这时应注意: (1)制造的全等三角形应分别包括求证边或者角; (2)添辅助线能够直接得到的两个全等三角形 2、证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角 互余,或等腰三角形“三线合一”来证。 ∠A?90?,AE?BF,BD?DC。求证:FD,⊥ED

高中数学竞赛专题讲座:三角函数与向量

高中数学竞赛专题讲座:三角函数与向量 一、三角函数部分 1.(集训试题)在△ABC 中,角A 、B 、C 的对边分别记为a 、b 、c(b ≠1),且 A C , A B sin sin 都是方程log b x=log b (4x-4)的根,则△ABC (B ) A .是等腰三角形,但不是直角三角形 B .是直角三角形,但不是等腰三角形 C .是等腰直角三角形 D .不是等腰三角形,也不是直角三角形 解:由log b x=log b (4x-4)得:x 2-4x+4=0,所以x 1=x 2=2,故C=2A ,sinB=2sinA , 因A+B+C=180°,所以3A+B=180°,因此sinB=sin3A ,∴3sinA-4sin 3A=2sinA , ∵sinA(1-4sin 2A)=0,又sinA ≠0,所以sin 2A= 41,而sinA>0,∴sinA=2 1. 因此A=30°,B=90°,C=60°。故选B 。 2.(2006吉林预赛)已知函数y=sinx+acosx 的图象关于x=5π/3对称,则函数y=asinx+cosx 的图象的一条对称轴是(C ) A .x=π/3 B .x=2π/3 C .x=11π/6 D .x=π 3.2006年南昌市)若三角形的三条高线长分别为12,15,20,则此三角形的形状为( B ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .形状不确定 4.(2006年南昌市)若sin tan a θθ=+,cos cot b θθ=+,则以下诸式中错误的是( B ) A .sin θ= 11+-b ab B .cos θ=1 1+-a ab C .tan cot θθ+=) 1)(1(21)1(2++-+++b a ab b a D .tan cot θθ-=)1)(1()2)((++++-b a b a b a 5.(2006安徽初赛)已知△ABC 为等腰直角三角形,∠C = 90°,D 、E 为AB 边上的两个点,且点D 在AE 之间, ∠DCE = 45°,则以AD 、DE 、EB 为边长构成的三角形的最大角是 ( ) A .锐角 B .钝角 C .直角 D .不能确定 6.(2006陕西赛区预赛)若3 3sin cos cos sin ,02θθθθθπ-≥-≤<,则角θ的取值范围是(C) A .[0, ]4 π B .[,]4 ππ C .5[, ]4 4ππ D .3[,)42 ππ 7.(2006年江苏)在△ABC 中,1tan 2A =,310 cos 10 B =.若△AB C 的最长边为1,则最短边的长为 ( D ) A .455 B .355 C .255 D .5 5 8.(2005年浙江)设2)(1=x f ,x x x f 2cos sin )(2+=,x x x f 2cos 2 sin )(3+=,24sin )(x x f =,上述函数中,周期函数的个数是( B ) A .1 B .2 C .3 D .4 【解】: 2)(1= x f 是以任何正实数为周期的周期函数;)(2x f 不是周期函数。 因为x sin 是以π21=T 为周期 的周期函数, x 2cos 是以222π =T 为周期的周期函数, 而1T 与2T 之比不是有理数,故)(2x f 不是周期函数。 )(3x f 不是周期函数。 因为2sin x 是以π221=T 为周期的周期函数, x 2cos 是以2 22π =T 为周期的周期函数,

平面几何四大定理

. . 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平 行线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

高中数学竞赛专题讲座(解析几何)

高中数学竞赛专题讲座(解析几何) 一、基础知识 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), 参数方程为? ? ?==θθ sin cos b y a x (θ为参数)。 若焦点在y 轴上,列标准方程为 12 2 22=+b y a y (a>b>0)。 3.椭圆中的相关概念,对于中心在原点,焦点在x 轴上的椭圆 122 22=+b y a x , a 称半长轴长,b 称半短轴长,c 称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a, 0), (0, ±b), (±c, 0);与左焦点对应的准线(即第二定义中的定直线)为 c a x 2-=,与右焦点对应的准线为c a x 2=;定义中的比e 称为离心率,且a c e =,由c 2+b 2=a 2 知0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。 若P(x, y)是椭圆上的任意一点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.几个常用结论:1)过椭圆上一点P(x 0, y 0)的切线方程为 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;

做几何证明题方法归纳

做几何证明题方法归纳

∴?∴=??A D E C D F DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连结BG ,证?EFG 是等腰直角三角形。有兴趣的同学不妨一试。 例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。 证明:连结AC 在?ABC 和?C D A 中, AB CD BC AD AC CA ABC CDA SSS B D AB CD AE CF BE DF ===∴?∴∠=∠==∴=,,,??() 在?B C E 和?D A F 中,

做几何证明题方法归纳 第 6 页 共 20 页 BE DF B D BC DA BCE DAF SAS E F =∠=∠=???? ?∴?∴∠=∠??() 说明:利用三角形全等证明线段求角相等。常须添辅助线,制造全等三角形,这时应注意: (1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。 二. 证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 例3. 如图3所示,设BP 、CQ 是?ABC 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的垂线。 求证:KH ∥BC

谈“怎样学好平面几何证明”.

谈“怎样学好平面几何证明” [ 08-12-05 08:56:00 ] 编辑:cw2112549 【内容摘要】延时评价能够给学生广阔的思维空间,有利于培养学生的数学思维能力.本文从三个角度论述了数学教师采用延时评价对学生思维发展的重要意义,指出教师在教学实践中要成功地将延时评价与及时评价结合起来. 【关键词】延时评价;及时评价;思维 1.学生有怪问时,延时评价可提供一个敢于释疑的环境 课堂教学中,当学生提出某些古怪、幼稚、甚至是荒诞的“怪论”时,常引来教师迫不及待的否定,无形中扑灭了学生创造的火花,挫伤学生的积极性.因此,教师千万不要及时评价,而应通过延时评价的方法,鼓励学生敢于思考、敢于与众不同、敢于发现和挑战,然后及时转换角色、转换角度,走进学生的内心世界来解决问题. 2 2 x y 例1.1 在学习“双曲线的几何性质”时,总有学生提出这样的问题:“当x=0时,方程- =1 2 2 a b 没有实根,为什么还要将点B1(0,-b),B2(0,b)在y轴上表示出来,并称 B1 B2 为虚轴?”等等。 这些似是而非的问题是多么富有创意!从教学实践看,怪问就是一颗创造的种子,它埋在学生的心里。这颗珍贵而娇嫩的种子,只有在教师的精心呵护和培育下才会生根发芽。 2.问题有多解时,延时评价可提供一个敢于质疑的环境 在数学学习中,我们经常会碰到可以从不同角度、不同侧面来解决的问题.解决这样的问题时,教师对课堂上学生提出的解决问题的方案要采用延时评价,不能过早地给予及时的终结性的评价,否则会扼杀其他学生创新思维的火花. 2 2 2 2 例2.1已知实数a,b,x,y 满足a +b =4,x+y =9,求ax+by的最大值. 生:令a=2cos α,b=2sin α,x=3cos β,y=3sin β,则ax+by=6(cos αcos β+ sinαsinβ)=6cos(α-β)。故当cos(α-β)=1时,ax+by 的最大值为6 教师一听,答案完全正确,情不自禁地说:“非常正确!和老师想得一模一样.其他同学呢?”哪知道 刚才举起的那些手“唰”地不见了!顿时,教师不知所措,不知道自己到底做错了什么…… 正常情况下,由于受思维定势的影响,新颖、独特的见解常常出现在思维过程的后半段,也就是我们常说的“顿悟”和“灵感”.因此,在教学中,教师不能过早地给予评价以对其他学生的思维形成定势,而应该灵活地运用延时评价,让学生在和谐的气氛中驰骋想象,使学生的个性思维得到充分发展. 3.思维受挫时,延时评价可提供一个敢于析疑的环境

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

初中几何证明很简单

几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。 一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。 二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。 三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。 四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等 2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。 五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。 以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。 对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推

平面几何证明

平面几何证明 [竞赛知识点拨] 1.线段或角相等的证明 (1)利用全等△或相似多边形; (2)利用等腰△; (3)利用平行四边形; (4)利用等量代换; (5)利用平行线的性质或利用比例关系 (6)利用圆中的等量关系等。 2.线段或角的和差倍分的证明 (1)转化为相等问题。如要证明a=b±c,可以先作出线段p=b±c,再去证明a=p,即所谓“截长补短”,角的问题仿此进行。 (2)直接用已知的定理。例如:中位线定理,Rt△斜边上的中线等于斜边的一半;△的外角等于不相邻的内角之和;圆周角等于同弧所对圆心角的一半等等。 3.两线平行与垂直的证明 (1)利用两线平行与垂直的判定定理。 (2)利用平行四边形的性质可证明平行;利用等腰△的“三线合一”可证明垂直。 (3)利用比例关系可证明平行;利用勾股定理的逆定理可证明垂直等。 【竞赛例题剖析】 【例1】从⊙O外一点P向圆引两条切线PA、PB和割线PCD。从A点作弦AE平行于CD,连结BE 交CD于F。求证:BE平分CD。 【分析1】构造两个全等△。 连结ED、AC、AF。 CF=DF←△ACF≌△EDF←

← ←∠PAB=∠AEB=∠PFB 【分析2】利用圆中的等量关系。连结OF、OP、OB。 ←∠PFB=∠POB← ← 注:连结OP、OA、OF,证明A、O、F、P四点共圆亦可。 【例2】△ABC内接于⊙O,P是弧 AB上的一点,过P作OA、OB的 垂线,与AC、BC分别交于S、T,AB交于M、N。求证:PM=MS充要条件 是PN=NT。 【分析】只需证,PM2PN=MS2NT。 (∠1=∠2,∠3=∠4)→△APM∽△PBN →→PM2PN=AM2BN (∠BNT=∠AMS,∠BTN=∠MAS)→△BNT∽△SMA →→MS2NT=AM2BN 【例3】已知A为平面上两半径不等的圆O1和O2的一个交点,两外公切线P1P2、Q1Q2分别切两圆于P1、P2、Q1、Q2,M1、M2分别为P1Q1、P2Q2的中点。求证:∠O1AO2=∠M1AM2。

高中的数学竞赛平面几何基本定理

(高中)平面几何基础知识(基本定理、基本性质) 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边 和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:2 22222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+= (其中p 为周长一半). 6. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=. 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC = BC ·DC ·BD . 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角. 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其 延长线必平分对边. 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题 成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD . 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角 形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三

相关文档
相关文档 最新文档