文档库 最新最全的文档下载
当前位置:文档库 › 我国钢筋混凝土抗震设计的基本思路和方法

我国钢筋混凝土抗震设计的基本思路和方法

我国钢筋混凝土抗震设计的基本思路和方法
我国钢筋混凝土抗震设计的基本思路和方法

我国钢筋混凝土抗震设计的基本思路和方法

成的损失严重,是各类自然灾害中最严重的灾害之一。我国根据现有的科学水平和经济条件,对建筑抗震提出了三个水准的设防目标,即通常所说的小震不坏,中震可修,大震不倒。通常所讲的小震、中震、大震分别指的是50年超越概率为63%,10%,2~3%的多遇地震、设防烈度地震、罕遇地震。

1 结构设计地震力的确定

1.1 低地震力取值的可行性

到二十世纪八十年代,各国设计规范都承认这样一个事实,就是在地震作用下,结构在真正失效前,有一个较大的塑性变形能力(结构延性),即结构在一个较小的地震下可能达到或者接近屈服状态;而在较大的地震下,结构的若干部位将陆续进入屈服后的非弹性变形状态,并且随着地震力的增大,结构中进入弹塑性变形的部位增多,先进入屈服的部位弹塑性变形也增大。结构通过这种变形耗散较多的地震传来的能量,将其转换成热能。

对于设计地震力-延性联合法则,我们可以从地震力和结构相互关系上进行理解:一方面设计地震力低的结构,通过更大的非弹性变形耗散掉更多的地震能量;另一方面结构非弹性变形越大,刚度降低越严重,阻尼增大,周期比高设计地震力的结构增长越多,结构受到的总地震力也降低也越多。这就使得我们在设计过程中,在不降低构件竖向承载力保证结构延性的前提下,可以取用一个小于设防烈度地震反应水准作为

设计中取用的地震作用。反过来讲,若采用的设计地震力越低,结构屈服部位在屈服后水平和竖向承载力不降低的前提下需要达到的非弹性变形就越大,也就需要结构有更好的延性性能。

这样,我们就需要解决如下两个问题:

A.如何在设防烈度地震作用与设计地震力取值之间建立恰当的联系;

B.如何在设计地震力与所要求的结构延性建立对应关系。

对于问题A,以N.M.Newmark为代表的众多学者认为,将设防烈度地震加速度通过地震力降低系数R(中,美等国)或结构性能系数q (欧共体,新西兰等)折减为结构设计加速度,相当于赋予结构一个较小的屈服承载力,结构在竖向承载力不降低的情况下,通过屈服后的非弹性变形来经受更大的地震,实现大震不倒的目标。因而,采用低设计地震力的关键在于保证结构及构件在大震下达到所需的延性。对于地震力降低系数R或结构性能系数q,各国设计规范存在略为不同的处理手法,不过总体而言R或q均为设防烈度地震作用与结构截面设计所用的地震作用的比值。R或q越大,则要求结构达到的延性能力越大,R 或q越小,则结构需要达到的延性能力越小。这样均能实现大震不倒。

对于问题B,国外一般有如下三种设计方案:(1)较高地震力较低延性方案;(2)中等地震力中等延性方案;(3)较低地震力较高延性方案。高地震力方案主要保证结构的承载力,低地震力方案主要保证结构的延性。实际震害表明,这三种方案,从抗震效果和经济性来看,都能达到设防目标。我国的抗震设计采用的是方案(3)即较低地震力较高

延性方案,即采用明显小于设防烈度的小震地面运动加速度来确定结构的设计地震作用,并将它与其他荷载内力进行组合,进行截面设计,通过钢筋混凝土结构在屈服后的地震反应过程中形成较为有利的耗能机构,使结构主要的耗能部位具有良好的屈服后变形能力来实现大震不倒的目标。当然,我们还要看到一点,虽然这三个方案都能保证大震不倒,但是在改善结构在中小地震下的性态方面,方案(3)仅仅提高结构的延性水平而结构的屈服水准并没有明显提高是明显不如方案(1)和(2)的。也就是说,在保证小震不坏,中震可修方面,方案(1)和(2)是优于方案(3)的。

地震动以波的形式在地下及地表传播,由于震源特点、断层机制、传播途径等因素的不确定性,具有很大随机性。要想得出地震动对于不同结构有什么不同的反应,就需要在地震动特性与结构反应架起一座桥梁。由于地震动反应谱的形状特征反应了不同类型结构动力最大反应的特点,所以各工程中一般采用地震影响系数谱曲线作为计算地震作用的依据。

我国的谱曲线综合考虑了烈度、震中距、场地类别、结构自振周期和阻尼比的影响。根据新修订的中国地震动参数区划图,给出了抗震设防烈度(中震)下的设计基本地震加速度。通过对震级、震中距、场地类别等因素对结构反应谱的影响,抗震规范把动力放大系数取为2.25。根据统计资料,多遇地震烈度比基本烈度降低约1.55度,相当于地震作用降低0.35倍,即地震力降低系数为1/0.352.8。从而得到小震时结构的设计加速度,其值与重力加速度的比值即为小震时水平地震影响系数

最大值。

与其他国家相比,我国的地震力降低系数R2.7~2.8,其取值与新西兰有限延性框架相当(R=3);介于欧洲共同体低延性DCL(R=2.5)和中延性DCM(R=3.75)之间;比美国的一般框架(R=3.5)还要略小些。单纯从R的角度来看,似乎中国规范在大震下的延性需求和其他国家相比处在中等延性结构水平。但是中国设防烈度下水平地面运动的峰值加速度系数的取值,要比其他各个国家的低(见下表)。结构动力放大系数相差不大都在2.25附近,而且我国的谱曲线平台段与其他国家相比很小,下降段较陡,造成反应谱的取值较其他国家的低,实质上中国R=2.8相当于欧共体的R=5.0左右,所以实质上,我国采用的是较低地震力较高延性方案。在大震下所需要的延性需求与其他国家相比,应该属于高延性需求。

各国规范美国UBC 1997新西兰NZS3101欧洲EC8中国GB50011-2001 加速度系数0.075~0.400.21~0.420.12~0.360.05~0.40

1.2 地震作用计算

随着反应谱理论的不断成熟,各个国家对地震力在结构上的作用,都接受了底部剪力法和振型分解反应谱法等方法。我国规范规定:底部剪力法适用于高度不超过40m,以剪切变形为主且质量刚度沿高度分布均匀的结构,以及近似单质点的结构。结构的总地震力由确定,然后再沿高度按倒三角形分布分配,并考虑了地震中可能顶部地震力增大的顶点附加集中力。

基于结构性能的抗震设计与抗震评估方法综述

第37卷 第1期2005年3月西安建筑科技大学学报(自然科学版) J1Xi’an Univ.of Arch.&Tech.(Natural Science Edition) Vol.37 No.1 Mar.2005 基于结构性能的抗震设计与抗震评估方法综述 邢 燕,牛荻涛 (西安建筑科技大学土木工程学院,陕西西安710055) 摘 要:基于性能的结构设计是21世纪抗震设计的发展趋势,而新建结构的抗震设计与在役结构的抗震评估及加固设计则是减轻地震灾害的二个重要方面.对基于性能的结构设计方法进行了评述,并对性能设计理论在结构抗震性能评估与加固设计中的应用状况进行了分析,进一步指出建立在役结构抗震性能评估及加固理论与方法需研究解决的问题. 关键词:结构性能;抗震设计;抗震评估;在役结构 中图分类号:TU311.3 文献标识码:A 文章编号:100627930(2005)0120024205 Ξ Summarization of performance-based seismic design and evaluation method XING Yan,NIU Di2tao (School of Civil Eng.,Xi’an Univ.of Arch.&Tech.,Xi’an710055,China) Abstract:Performance2based design is the development current of seismic design of the21th century.Two important aspects of alleviating earthquake disaster are seismic design of new structures and seismic evaluation as well as the retrofit design of existing structures.The methods of performance2based design are reviewed in this paper.The actuality and existent problems are analyzed and that performance2based design is applied to seismic evaluation and retrofit design. Key words:performance;seismic design;seismic evaluation;existing structure 1989年美国加洲Lorma Prieta地震(Ms7.1)和1994年美国Northridge地震(Ms6.7),伤亡数百人,而造成的经济损失高达150~200亿美元;1995年日本阪神大地震(Ms7.1)[1],死亡5500多人,造成的经济损失高达1000亿美元,震后的恢复重建工作花费两年多时间,耗资近1000亿美元.2000年我国台湾发生的7.6级地震,死亡2103人,房屋倒塌上万,对经济影响也十分巨大.上述震害说明,随着经济的发展和人口密度的增加,人们逐渐认识到过去的仅以保证人的生命安全为目标的设计理论,在抗震设计理念、适应社会需求等方面都存在一定的不足.按规范设计的建筑物可以避免倒塌而不危及人的生命,但一次地震,甚至一次中等大小的地震所造成的损失,就大大超过了社会和业主所能接受的程度.因此,现代及未来的建筑不仅要防止倒塌,还要考虑控制经济损失,保证结构使用功能的延续等问题. 近年来国际上提出了基于结构性能的抗震设计理论(Performance2based seismic design,简称PBSD),其基本思想是以结构抗震性能分析为基础,针对每一种设防水准(如50a超越概率为6312%, Ξ收稿日期:2003207208 基金项目:国家自然科学基金资助项目(50078044) 作者简介:邢 燕(19792),女,山西长治人,硕士研究生,主要从事服役结构的抗震性能评估和加固研究.

抗震结构设计考试计算题及答案三道(学习资料)

1、某两层钢筋混凝土框架,集中于楼盖和屋盖处的重力荷载代表值相等kN 120021==G G ,每层层高皆为4.0m ,各层的层间刚度相同m /kN 863021=∑=∑D D ;Ⅱ类场地,设防烈度为7度,设计基本地震加速度为0.10g ,设计分组为第二组,结构的阻尼比为05.0=ζ。 (1)求结构的自振频率和振型,并验证其主振型的正交性 (2)试用振型分解反应谱法计算框架的楼层地震剪力 解1):(1)计算刚度矩阵 m kN k k k /17260286302111=?=+= m kN k k k /863022112-=-== m kN k k /8630222== (2)求自振频率 ])(4)()[(21 211222112121122211122212 122,1k k k k m m k m k m k m k m m m --++=μω ] )8630(863017260[(1201204)172601208630120()172601208630120[(12012021 22--???-?+??+???=μ 28.188/47.27= s rad /24.51=ω s rad /72.132=ω (3)求主振型 当s rad /24.51=ω 1 618 .186301726024.5120212112 111112=--?=-=k k m X X ω 当s rad /72.132=ω 1 618.086301726072.131202 12112 212122-=--?=-=k k m X X ω

(4)验证主振型的正交性 质量矩阵的正交性 0618.0000.112000120618.1000.1}]{[}{21=??? ???-?????? ??????=T T X m X 刚度矩阵的正交性 0618.0000.186308630863017260618.1000.1}]{[}{21=??? ??? -??? ???--??????=T T X k X 解2):由表3.2查得:Ⅱ类场地,第二组,T g =0.40s 由表3.3查得:7度多遇地震08.0max =α 第一自振周期g g T T T T 5s,200.1211 1<<==ωπ 第二自振周期g g T T T T 5s,458.0212 2<<==ωπ (1)相应于第一振型自振周期1T 的地震影响系数: 030.008.0200.140.09 .0max 9.011=???? ??=???? ??=ααT T g 第一振型参与系数 724.0618.11200000.11200618 .11200000.112002221 21111=?+??+?= = ∑∑==i i i n i i i m m φφγ 于是:kN 06.261200000.1724.0030.01111111=???==G F φγα kN 17.421200618.1724.0030.02121112=???==G F φγα 第一振型的层间剪力: kN 17.421212==F V kN 23.68121111=+=F F V

《建筑结构抗震设计》期末复习题

《建筑结构抗震设计》期末考试复习题 一、名词解释 (1)地震波:地震引起的振动以波的形式从震源向各个方向传播并释放能量; (2) 地震震级:表示地震本身大小的尺度,是按一次地震本身强弱程度而定的等级; (3)地震烈度:表示地震时一定地点地面振动强弱程度的尺度; (4)震中:震源在地表的投影; (5)震中距:地面某处至震中的水平距离; (6)震源:发生地震的地方; (7)震源深度:震源至地面的垂直距离; (8)极震区:震中附近的地面振动最剧烈,也是破坏最严重的地区; (9)等震线:地面上破坏程度相同或相近的点连成的曲线; (10)建筑场地:建造建筑物的地方,大体相当于一个厂区、居民小区或自然村;(11)沙土液化:处于地下水位以下的饱和砂土和粉土在地震时有变密的趋势,使孔隙水的压力急剧上升,造成土颗粒局部或全部将处于悬浮状态,形成了犹如“液化”的现象,即称为场地土达到液化状态; (12)结构的地震反应:地震引起的结构运动; (13)结构的地震作用效应:由地震动引起的结构瞬时内力、应力应变、位移变形及运动加速度、速度等; (14)地震系数:地面运动最大加速度与重力加速度的比值; (15)动力系数:单质点体系最大绝对加速度与地面运动最大加速度的比值; (16)地震影响系数:地震系数与动力系数的乘积; (17)振型分解法:以结构的各阶振型为广义坐标分别求出对应的结构地震反应,然后将对应于各阶振型的结构反应相组合,以确定结构地震内力和变形的方法,又称振型叠加法; (18)基本烈度:在设计基准期(我国取50年)内在一般场地条件下,可能遭遇超越概率(10%)的地震烈度。 (19)设防烈度:按国家规定权限批准的作为一个地区抗震设防依据的地震烈度。(20)罕遇烈度:50年期限内相应的超越概率2%~3%,即大震烈度的地震。 (21)设防烈度 (22)多道抗震防线:一个抗震结构体系,有若干个延性较好的分体系组成,并由延性较好的结构构件连接起来协同作用; (24)鞭梢效应;

基于结构性能抗震设计理论综述

基于结构性能的抗震设计理论综述摘要:基于结构功能的设计理论是90年代国际上提出的新概念,是抗震设计理念上的一次变革。本文首先阐述了基于结构性能的设计理论产生的背景、研究内容、设计流程;然后重点介绍了目前已被世界地震工程界广泛应用的基于位移的设计方法;最后就其研究和应用前景进行了展望。 关键词:结构性能抗震设计位移位移延性系数能力需求曲线 discuss on aseismatic design based on structural performance abstract: aseismatic design based on structural performance was put forward firstly in 90’s of last century. it was a reform of design ideas . this paper introduced the background、content and process of the design theory. the method of design based on displacement which has been applied widely was emphasized. at the end of this paper, the development of the design was analysed. keywords: structural performance, aseismatic design, displacement, modulus of displacement ductibility, curve of capability demand. 前言: 传统的抗震设计方法是以保证人的生命安全为原则的设计方

抗震及设计练习题答案

1. 从结构的体系上来分,常用的高层建筑结构的抗侧力体系主要有:—框架结构,剪力墙结构,—框架-剪力墙—结构,—筒体—结构,悬挂结构和巨型框架结构。 2. 一般高层建筑的基本风压取—50—年一遇的基本风压。对于特别重要或 对风荷载比较敏感的高层建筑,采用—100—年一遇的风压值;在没有—100—年一遇的风压资料时,可近视用取—50—年一遇的基本风压乘以 1.1 的增大系数采用。 3. 震级一一地震的级别,说明某次地震本身产生的能量大小地震烈度――指某一地区地 面及建筑物受到一次地震影响的强烈程度基本烈度――指某一地区今后一定时期内,在一般场地条件下可能遭受 的最大烈度 设防烈度――一般按基本烈度采用,对重要建筑物,报批后,提高一度采用 4. 《建筑抗震设计规范》中规定,设防烈度为—6—度及—6—度以上的地区,建筑物必 须进行抗震设计。 5.详细说明三水准抗震设计目标。 小震不坏:小震作用下应维持在弹性状态,一般不损坏或不需修理仍可继续使用中震可修:中震作用下,局部进入塑性状态,可能有一定损坏,修复后可继续使用大震不倒:强震作用下,不应倒塌或发生危及生命的严重破坏 6.设防烈度相当于—B_ A 、小震 B 、中震 C 、中震 7.用《高层建筑结构》中介绍的框架结构、剪力墙结构、框架-剪力墙结构的内力和位移的近似计算方法,一般计算的是这些结构在下的内 力和位移。 A 小震中震大震

8. 在建筑结构抗震设计过程中,根据建筑物使用功能的重要性不同,采取不同的抗震 设防标准。请问建筑物分为哪几个抗震设防类别?甲:高于本地区设防烈度,属于重大建筑工程和地震时可能发生严重次生灾害的建筑 乙:按本地区设防烈度,属于地震时使用功能不能中断或需尽快恢复的建筑 丙:除甲乙丁外的一般建筑丁:属抗震次要建筑,一般仍按本地区的设防烈度 9. 下列高层建筑需要考虑竖向地震作用。(D) A 8 °抗震设计时 B 跨度较大时 C 有长悬臂构件时 D 9 °抗震设计 10. 什么样的高层建筑结构须计算双向水平地震作用下的扭转影响? 对质量和刚度不对称、不均匀的结构以及高度超过100m的高层建筑结构 11. 结构的自振周期越大,结构的刚度越—小—,结构受到的地震作用越 _小_。 12. 高层建筑设计一般要限制结构的高宽比(H/B),为什么?房屋高度H是 如何计算的? 高层建筑设计中,除了要保证结构有足够的承载力和刚度外,还要注意限制位移的大小,一般将高层建筑结构的高宽比H/B控制在6以下。详细参考P26表2.2 房屋高度指室外地面至主要屋面的高度,不包括局部突出屋面部分的高度,而房屋宽度指所考虑方向的最小投影宽度。 13. 高层建筑结构设计采用的三个基本假定是什么? 「弹性变形假定

抗震设计方法概述

本学期的“工程结构抗震分析”课程首先介绍了地震与地震震害以及结构抗震分析的必要性和其方法的发展过程,然后简单回顾了一下结构动力学基础,接下来认识了地震波与强震地面运动的特性,以及地震作用下结构的动力方程,最后重点讲述了几种抗震设计分析方法——反应谱分析法,时程分析法(弹性和弹塑性),和静力弹塑性分析法。通过一个学期的学习,本人对强震地面运动特征和抗震设计原理和方法有了一定的了解和把握。 在进行建筑、桥梁以及其它结构物的抗震设计时,一般都要遵循以下五个步骤:抗震设防标准选定、抗震概念设计、地震反应分析、抗震性能验算以及抗震构造设计,其流程如图1 所示。 本文将着眼于图1流程中的第3个步骤, 从我国现行规范中的3种最常用的结构响应分 析方法出发,简单介绍一下其各自的基本概念 和适应范围(具体原理和计算过程在此不再详 述,读者可另查阅相关课本和规范),以及现有 抗震设计规范中存在的问题,以便初学者对结 构抗震设计分析方法有个初步的认识,也作为 本人对本课程的学习总结。 一.3种最常用的结构响应分析方法 1.底部剪力法 定义:根据地震反应谱理论,以工程结构 底部的总地震剪力与等效单质点的水平地震作 用相等来确定结构总地震作用的一种计算方 法。 底部剪力法适用于基本振型主导的规则和 高宽比很小的结构,此时结构的高阶振型对于 结构剪力的影响有限,而对于倾覆弯矩则几乎 没有什么影响,因此采用简化的方式也可满足 工程设计精度的要求。 高规规定:高度不超过40m、以剪切变形 为主且质量和刚度沿高度分布比较均匀的高层 建筑结构,可采用底部剪力法。 底部剪力法尚有一个重要的意义就是我们可以用它的理念,简化的估算建筑结构的地震响应,从而至少在静力的概念上把握结构的抗震能力,它还是很有用的。 2.振型分解反应谱法 定义:振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。 反应谱的振型分解组合法常用的有两种:SRSS和CQC。虽然说反应谱法是将并非同一时刻发生的地震峰值响应做组合,仅作为一个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。一般而言,对于那些对结构反应起重要作用的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太小(工程上一般都可以满足)时,SRSS是精确的,频率稀疏表面上的反应就是结构的振型周期拉的比较开;而对于那些结构

建筑结构抗震设计课后习题答案

武汉理工大学《建筑结构抗震设计》复试 第1章绪论 1.震级和烈度有什么区别和联系? 震级是表示地震大小地一种度量,只跟地震释放能量地多少有关,而烈度则表示某一区域地地表和建筑物受一次地震影响地平均强烈地程度.烈度不仅跟震级有关,同时还跟震源深度.距离震中地远近以及地震波通过地介质条件等多种因素有关.一次地震只有一个震级,但不同地地点有不同地烈度. 2.如何考虑不同类型建筑地抗震设防? 规范将建筑物按其用途分为四类: 甲类(特殊设防类).乙类(重点设防类).丙类(标准设防类).丁类(适度设防类). 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度地预估罕遇地震影响时不致倒塌或发生危及生命安全地严重破坏地抗震设防目标. 2 )重点设防类,应按高于本地区抗震设防烈度一度地要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高地要求采取抗震措施;地基基础地抗震措施,应符合有关规定.同时,应按本地区抗震设防烈度确定其地震作用. 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度地要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高地要求采取抗震措施.同时,应按批准地地震安全性评价地结果且高于本地区抗震设防烈度地要求确定其地震作用. 4 )适度设防类,允许比本地区抗震设防烈度地要求适当降低其抗震措施,但抗震设防烈度为6度时不应降低.一般情况下,仍应按本地区抗震设防烈度确定其地震作用. 3.怎样理解小震.中震与大震? 小震就是发生机会较多地地震,50年年限,被超越概率为63.2%; 中震,10%;大震是罕遇地地震,2%. 4.概念设计.抗震计算.构造措施三者之间地关系? 建筑抗震设计包括三个层次:概念设计.抗震计算.构造措施.概念设计在总体上把握抗震设计地基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性.加强局部薄弱环节等意义上保证抗震计算结果地有效性.他们是一个不可割裂地整体. 5.试讨论结构延性与结构抗震地内在联系. 延性设计:通过适当控制结构物地刚度与强度,使结构构件在强烈地震时进入非弹性状态后仍具有较大地延性,从而可以通过塑性变形吸收更多地震输入能量,使结构物至少保证至少“坏而不倒”. 延性越好,抗震越好.在设计中,可以通过构造措施和耗能手段来增强结构与构件地延性,提高抗震性能. 第2章场地与地基 1.场地土地固有周期和地震动地卓越周期有何区别和联系? 由于地震动地周期成分很多,而仅与场地固有周期T接近地周期成分被较大地放大,因此场地固有周期T也将是地面运动地主要周期,称之为地震动地卓越周期. 2.为什么地基地抗震承载力大于静承载力? 地震作用下只考虑地基土地弹性变形而不考虑永久变形.地震作用仅是附加于原有静荷载上地一种动力作用,并且作用时间短,只能使土层产生弹性变形而来不及发生永久变形,其结果

最经典的抗震设计思路

一。抗震设计思路发展历程 随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。 最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用(0.1倍自重)用于结构设计。到了60年代,随着地面运动记录的不断丰富,人们通过单自由度体系的弹性反应谱,第一次从宏观上看到地震对弹性结构引起的反应随结构周期和阻尼比变化的总体趋势,揭示了结构在地震地面运动的随机激励下的强迫振动动力特征。但同时也发现一个无法解释的矛盾,当时规范所取的设计用地面运动加速度明显小于按弹性反应谱得出的作用于结构上的地面运动加速度,这些结构大多数却并未出现严重损坏和倒塌。后来随着对结构非线性性能的不断研究,人们发现设计结构时取的地震作用只是赋予结构一个基本屈服承载力,当发生更大地震时,结构将在一系列控制部位进入屈服后非弹性变形状态,并靠其屈服后的非弹性变形能力来经受地震作用。由此,也逐渐形成了使结构在一定水平的地震作用下进入屈服,并达到足够的屈服后非弹性变形状态来耗散能量的现代抗震设计理论。 由以上可以看出,结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力的“抗”到允许结构屈服,并赋予结构一定的非弹性变形性能力的“耗”的一系列转变。 二。现代抗震设计思路及关系 在当前抗震理论下形成的现代抗震设计思路,其主要内容是: 1.合理选择确定结构屈服水准的地震作用。一般先以一具有统计意义的地面峰值加速度作为该地区地震强弱标志值(即中震的),再以不同的R(地震力降低系数)得到不同的设计用地面运动加速度(即小震的)来进行结构的强度设计,从而确定了结构的屈服水准。 2.制定有效的抗震措施使结构确实具备设计时采用的R所对应的延性能力。其中主要包括内力调整措施(强柱弱梁、强剪弱弯)和抗震构造措施。 现代抗震设计理念是基于对结构非弹性性能的研究上建立起来的,其核心是关系,关系主要指在不同滞回规律和地面运动特征下,结构的屈服水准与自振周期以及最大非弹性动力反应间的关系。其中R为弹塑性反应地震力降低系数,简称地震力降低系数;而为最大非弹性反应位移与屈服位移之比,称为位移延性系数;T则为按弹性刚度求得的结构自振周期。 60年代开始,研究者在滞回曲线为理想弹塑性及弹性刚度始终不变的前提下,通过对不同周期,不同屈服水准的非弹性单自由度体系做动力分析,得到了有关弹塑性反应下最大位移的规律:对T大于1.0秒的体系适用“等位移法则”即非弹性反应下的最大位移总等于同一地面运动输入下的弹性反应最大位移。对于T在0.12-0.5秒之间的结构,适用“等能量法则”即非弹性反应下的弹塑性变形能等于同一地震地面运动输入下的弹性变形能。当“等能量原则”适用时,随着R的增大,位移延性需求的增长速度比“等位移原则”下按与R 相同的比例增长更快。由以上规律我们可以看出,如果以结构弹性反应为准,把结构用来做

最新13章建筑结构抗震设计基础知识

青岛黄海职业学院教师教案 (编号1)年月日课题第十三章建筑结构抗震设计基本知识 课时 13.1 概述13.2抗震设计的基本要求 教学目的熟悉地震波、震级、烈度的概念;明确建筑抗震设防依据、目标及分类标准;理解抗震概念设计的基本内容和要求 教学重点抗震设防要求 教学难点抗震设防要求 教学关键点地震波、震级、烈度的概念 教具《建筑结构》教材及教案 板书设计第十三章建筑结构抗震设计基本知识 13.1 概述 三、震级 一、构造地震 二、地震波

四、烈度 13.2抗震设计的基本要求 五、抗震设防 青岛黄海职业学院教师教案 教案内容及教学过程提示与补充

课题导入: 地球是一个近似于球体的椭球体,平均半径约6370km,赤道半径约6378km,两极 半径约6357km. 地球内部可分为三大部分:地壳、地幔和地核. 课程新授: 第十三章建筑结构抗震设计基本知识 13.1 概述 一、构造地震 地震按其成因划分为四种类型: 1.火山地震:由于火山爆发而引起的地震; 2.陷落地震:由于地表或者地下岩层突然发生大规模陷落和崩塌而造成的地震; 3.诱发地震:由于人工爆破,矿山开采及工程活动引发的地震; 4.构造地震:由于地球内部岩层的构造变动引起的地震(约占地震发生的90%)—— 是结构抗震的主要研究对象 震源、震中和震中距 地球内部断层错动并引起周围介质振动的部位为震源;震源正上方的地面位置为震 中;地面某处至震中的水平距离为震中距. 二、地震波 地震时振动以波的形式从震源向各个方向传播并释放能量,这就是地震波。它包括在地球内部传 播的体波和只限于在地球表面传播的面波。 1.体波 体波中包括有纵波和横波两种形式。 纵波是由震源向外传递的压缩波,这种波质点振动的方向与波的前进方向一致,其特点是 振幅小、传播速度快,能引起地面上下颠簸(竖向振动)。 横波是由震源向外传递的剪切波,其质点振动的方向与波的前进方向垂直,其特点是周 幅大、传播速度较慢,能引起地面水平摇晃。 2.面波 面波是体波经地层界面多次反射传播到地面后,又沿地面传播的次生波。面波的特点是 振幅大,能引起地面建筑的水平振动。面波的传播是平面的,衰减较体波慢,故能传播到很远地震波的传播以纵波最快,横波次之,面波最慢。因此,地震时一般先出现由纵波 引起的上下颠簸,而后出现横波和面波造成的房屋左右摇晃和扭动。 青岛黄海职业学院教师教案 教案内容及教学过程提示与补充

抗震及设计计算题答案

高层建筑结构抗震与设计(练习题1) 1. 某单跨单层厂房如图1所示,集中于屋盖的重力荷载代表值为G =2800kN ,柱抗侧移刚度 系数k1=k2=2.0×104kN/m,结构阻尼比ζ=0.03,Ⅱ类建筑场地,设计地震分组为第一组,设计基本地震加速度为0.15g 。分别求厂房在多遇地震和罕遇地震时水平地震作用。 图1 单层厂房 计算简图 2 k 1k k G G 2. 图2为两层房屋计算简图,楼层集中质量分别为m1=120t,m2=80t,楼板刚度无穷大,楼层 剪切刚度系数分别为k1= 5×104kN/m , k2= 3×104kN/m 。求体系自振频率和振型,并验算振型的正交性。 图2 两层房屋计算简图 1 m 2 m 1 k 2 k 3. 钢筋混凝土3层框架计算简图如图3所示。分别按能量法和顶点位移法计算结构的基本自 振周期(取填充墙影响折减系数为0.6)。

图3 3层框架计算简图 kg m 3310180?=kg m 3210270?=kg m 3 110270?=m kN k /98003=m kN k /1950002=m kN k /2450001= 4. 钢筋混凝土3层框架经质量集中后计算简图如图4所示。各层高均为5米,各楼层集中质 量代表值分别为:G1=G2=750kN ,G3=500kN ;经分析得结构振动频率和振型如图4所示。结构阻尼比ζ=0.05,Ⅰ类建筑场地,设计地震分组为第一组,设计基本地震加速度为0.10g 。试按振型分解反应谱法确定结构在多遇地震时的地震作用效应,绘出层间地震剪力图。 s rad /22.101=ωs rad /94.272=ωs rad /37.383=ω1 2 图4 计算简图 5. 已知条件和要求同上题,试按底部剪力法计算。 1、表1为某建筑场地的钻孔资料,试确定该场地的类别。 表1

未来抗震设计发展趋势之我见(内容清晰)

未来抗震发展趋势之我见 作者:张子北发布:2015.05.29 【摘要】 随着我国城镇化道路的逐步实现,在可预见的未来,最大限度地预防和减小地震灾害所引发的损失,必将是我国未来几年最急迫的课题。因此,适合本国国情的新的地震预防和抗震设计理念,以及新兴的抗震材料应用也变得越来越急迫!本文通过比较传统的抗震方法和新兴的设防理念,介绍了新理论的优越性以及未来在我国的应用发展趋势。 【关键字】 地震抗震传统结构发展趋势 【正文】 一、引言 随着21世纪的到来,国家制定了未来几年的城镇化规划,随着人口密度的增加,伴之而来的由自然灾害而带来的损失也越大。为应对频发的自然灾害,有效提高建筑安全等级则成为了一个必须面对且更需有效解决的现实问题,这关乎生命,关乎未来,关乎国家的可持续发展。而在所有危害建筑的自然灾害当中,地震危害首当其冲。在人口密集区的一次大型地震,不仅给该地区带来了极其巨大的经济损失,也带给本地区人民无以平复的生命灾难的创伤! 地震灾害具有突发性强、破坏性大和比较难预测的特点。目前,地震的监测预报还是个世界性的难题。而且即使做到震前预报,如果建筑及其设施的抗震性能薄弱,也难以避免经济损失。因此,有效的抗震设防是建筑防震减灾的关键性任务。随着城镇化道路步伐的加快,未来抗震研究与发展则变得越来越重要,也变得极具挑战性,就此,分析未来抗震技术的发展也变得不可或缺。 二、地震的机理及破坏力 地震,俗称地动,其本质为一种自然现象。触发此种自然现象的原因极多,如:地层受到挤压而断裂错动,局部岩层的坍塌,火山喷发等。各种原因引起的震动以波的形式向上传递至地表时引起地面的运动,形成地震。震中距越小,破坏力越强。其中,以构造型地震的破坏性为最大,影响面为最广。而火山地震和陷落地震则因为成因的不同,影响较小,破坏性也较小。 类型成因影响

建筑结构抗震设计方法

谈建筑结构抗震设计方法 摘要:地震具有突发性,且可预见性低,因此应以贯彻预防为主要方针,而其最根本的就是要搞好抗震设防和提高现代高层建筑抗震能力。本文从多个角度的建筑抗震设计方法,建筑抗震概念设计两方面进行概述。 地震是自然灾害在我国比较常见的之一,它的特点是突发性强,破坏性和可预见性低,所以为了增强建筑结构的抗震性能,一定要科学合理的抗震设计,有效提高现代建筑的抗震性能,以预防为主,从根本上有效保证建筑物的抗震性能,如何尽量减少地震所造成的破坏和损失。 一、建筑抗震概念设计 地震是一种难以把握的随机振动,其自身的复杂性和不确定性对于准确预测房屋遭遇的参数和特性无非是现代建筑科技的挑战。抗震在结构分析方面仍存在许多不确定性因素,例如未充分考虑非弹性性质,空间结构作用和阻尼变化,材料实效等诸多因素,因此抗震设计不能完全依赖计算得到的结果。长期抗震经验总结的抗震工程基本概念和抗震工程的基本理论应是抗震问题的基本立足点,同时也是良好结构性能的决定因素。 1 建筑场地的选择 地震中经常出现的“轻灾区有重灾,重灾区有轻灾的现象,就是由于地震对房屋的破坏不只是在结构上还有对房屋周围场地条件的破坏。例如地基土的不均匀沉陷滑坡,粉土沙土液化,地表的错动

与地裂。抗震设防区的建筑工程场地选择应遵循以下几点原则:(1)密实均匀的中硬场地土和开阔平坦的坚硬场地土是建筑抗震有利地段的最好选择。 (2)避开对建筑抗震的不利地段,例如突出的山嘴、高耸孤立的山丘、河岸和边坡边缘、采矿区、软弱场地土、非岩质陡坡、在平面分布上岩性状态成因明显不均匀的场地土。 二、建筑结构抗震设计的主要方法 建筑结构的抗震设计所采用的方法是多样的,在抗震设计过程中不但要设计出完美的方案,还应该做好建筑物的补救措施。因此,通常建筑师在抗震设计过程中需要进行综合分析,合理的对结构的布置与材料使用进行探讨,这将直接影响到建筑结构抗震能力的效果。所以,在设计过程中要合情合理,不偷工减料,这样才能够最大程度的减轻地震带来的破坏。 1、建筑抗震结构体系的选择 建筑的抗震结构体系是建筑结构设计需要重点考虑的内容,建筑结构方案的选择是否合理对整个建筑的安全性与经济性起着至关重要的作用。具体来看,应该从以下几个方面进行设计: (1)建筑结构体系应该尽量避免由于部分结构或作建筑构件破坏而造成整个结构失去抗震能力,甚至失去其自身的承载能力。抗震结构设计的一个基本原则就是要求结构具有足够的赘余度以及内力的重分配能力,即使由于地震而使得建筑结构的部分构件丧失,其他的构件依然可以承担其建筑载荷的能力,保证整个结构的稳定性;

抗震结构设计理念的应用与设计要点分析

抗震结构设计理念的应用与设计要点分析 摘要对于一个高层结构的设计,遇到的问题可能错综复杂,只能具体问题具体分析。工程实践表明在高层结构的设计过程中,设计人员只有抗震概念清晰,构造措施得当,应用合适的结构分析软件三者有机结合才能取得比较理想的结果,在这个过程中抗震构造重于结构计算。本文对建筑抗震进行必要的理论分析,从而探索高层建筑的设计理念、方法,采取必要的抗震措施。 关键词建筑结构;抗震设计;方法 1 抗震设计思路的概述 地震具有随机性、不确定性和复杂性,要准确预测建筑物所遭遇地震的特性和参数,目前是很难做到的。而建筑物本身又是一个庞大复杂的系统,在遭受地震作用后其破坏机理和破坏过程十分复杂。且在结构分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,也存在着不确定性。按照结构的破坏过程,灵活运用抗震设计准则,全面合理地解决结构设计中的基本问题,既注意总体布置上的大原则,又顾及关键部位的细节构造,从根本上提高结构的抗震能力[1]。 2 现代抗震设计思路及关系在当前抗震理论下形成的现代抗震设计思路,其主要内容是 2.1 合理选择确定结构屈服水准的地震作用 一般先以具有统计意义的地面峰值加速度作为该地区地震强弱标志值(即中震的),再以不同的R(地震力降低系数)得到不同的设计用地面运动加速度(即小震的)来进行结构的强度设计,从而确定了结构的屈服水准。 2.2 制定有效的抗震措施使结构确实具备设计时采用的R所对应的延性能力 其中主要包括内力调整措施(强柱弱梁、强剪弱弯)和抗震构造措施。现代抗震设计理念是基于对结构非弹性性能的研究上建立起来的,其核心是关系,关系主要指在不同滞回规律和地面运动特征下,结构的屈服水准与自振周期以及最大非弹性动力反应间的关系。其中R为弹塑性反应地震力降低系数,简称地震力降低系数;而为最大非弹性反应位移与屈服位移之比,称为位移延性系数;T则为按弹性刚度求得的结构自振周期。 把结构用来做承载能力设计的地震作用取的越低,即R越大,则结构在与弹性反应时相同的地震作用下达到的非弹性位移就越大,位移延性需求就越高。这意味着结构必须具有更高的塑性变形能力。规律初步揭示出不同弹性周期的结构,当其弹塑性屈服水准取值大小不同时,在同一地面运动输入下屈服水准与所

对钢筋混凝土建筑结构现代抗震思路

对钢筋混凝土建筑结构现代抗震思路 摘要:该论文从1、抗震设计思路发展历程;2、现代抗震设计思路及关系;3、保证结构延性能力的抗震措施;4、我国抗震设计思路中的部分不足;5、常用抗震分析方法这五个方面,结全重庆大学白绍良老师的教义来对钢筋混凝土建筑结构现代抗震思路及我国设计规范抗震设计方法的理解和讨论 关键词:结构设计抗震 一。抗震设计思路发展历程 随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。 最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用(0.1 倍自重)用于结构设计。到了60年代,随着地面运动记录的不断丰富,人们通过单自由度体系的弹性反应谱,第一次从宏观上看到地震对弹性结构引起的反应随结构周期和阻尼比变化的总体趋势,揭示了结构在地震地面运动的随机激励下的强迫振动动力特征。但同时也发现一个无法解释的矛盾,当时规范所取的设计用地面运动加速度明显小于按弹性反应谱得出的作用于结构上的地面运动加速度,这些结构大多数却并未出现严重损坏和倒塌。后来随着对结构非线性性能的不断研究,人们发现设计结构时取的地震作用只是赋予结构一个基本屈服承载力,当发生更大地震时,结构将在一系列控制部位进入屈服后非弹性变形状态,并靠其屈服后的非弹性变形能力来经受地震作用。由此,也逐渐

形成了使结构在一定水平的地震作用下进入屈服,并达到足够的屈服后非弹性变形状态来耗散能量的现代抗震设计理论。 由以上可以看出,结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力的“抗”到允许结构屈服,并赋予结构一定的非弹性变形性能力的“耗”的一系列转变。 二。现代抗震设计思路及关系 在当前抗震理论下形成的现代抗震设计思路,其主要内容是: 1.合理选择确定结构屈服水准的地震作用。一般先以一具有统计意义的地面峰值加速度作为该地区地震强弱标志值(即中震的),再以不同的R(地震力降低系数)得到不同的设计用地面运动加速度(即小震的)来进行结构的强度设计,从而确定了结构的屈服水准。 2.制定有效的抗震措施使结构确实具备设计时采用的R所对应的延性能力。其中主要包括内力调整措施(强柱弱梁、强剪弱弯)和抗震构造措施。 现代抗震设计理念是基于对结构非弹性性能的研究上建立起来的,其核心是关系,关系主要指在不同滞回规律和地面运动特征下,结构的屈服水准与自振周期以及最大非弹性动力反应间的关系。其中R为弹塑性反应地震力降低系数,简称地震力降低系数;而为最大非弹性反应位移与屈服位移之比,称为位移延性系数;T则为按弹性刚度求得的结构自振周期。 60年代开始,研究者在滞回曲线为理想弹塑性及弹性刚度始终

抗震设计方法综述

抗震设计方法综述 作者:佚名文章来源:不详 抗震设计方法一:基于承载力设计方法 基于承载力设计方法又可分为静力法和反应谱法。静力法产生于二十世纪初期,是最早 的结构抗震设计方法。上世纪初前后日本浓尾、美国旧金山和意大利Messina的几次大地震 中,人们注意到地震产生的水平惯性力对结构的破坏作用,提出把地震作用看成作用在建筑 物上的一个总水平力,该水平力取为建筑物总重量乘以一个地震系数。意大利都灵大学应用 力学教授M.Panetti建议,1层建筑物取设计地震水平力为上部重量的1/10,2层和3层取 上部重量的1/12。这是最早的将水平地震力定量化的建筑抗震设计方法。日本关东大地震后, 1924年日本都市建筑规范"首次增设的抗震设计规定,取地震系数为0.1。1927年美国UBC 规范第一版也采用静力法,地震系数也是取0.1。用现在的结构抗震知识来考察,静力法没 有考虑结构的动力效应,即认为结构在地震作用下,随地基作整体水平刚体移动,其运动加 速度等于地面运动加速度,由此产生的水平惯性力,即建筑物重量与地震系数的乘积,并沿 建筑高度均匀分布。考虑到不同地区地震强度的差别,设计中取用的地面运动加速度按不同 地震烈度分区给出。根据结构动力学的观点,地震作用下结构的动力效应,即结构上质点的 地震反应加速度不同于地面运动加速度,而是与结构自振周期和阻尼比有关。采用动力学的 方法可以求得不同周期单自由度弹性体系质点的加速度反应。以地震加速度反应为竖坐标, 以体系的自振周期为横坐标,所得到的关系曲线称为地震加速度反应谱,以此来计算地震作 用引起的结构上的水平惯性力更为合理,这即是反应谱法。对于多自由度体系,可以采用振 型分解组合方法来确定地震作用。反应谱法的发展与地震地面运动的记录直接相关。1923年, 美国研制出第一台强震地震地面运动记录仪,并在随后的几十年间成功地记录到许多强震记 录,其中包括1940年的El Centro和1952年的Taft等多条著名的强震地面运动记录。1943 年M.A.Biot发表了以实际地震纪录求得的加速度反应谱。二十世纪50到70年代,以美国的 G. W. Housner、N. M. Newmark和R. W. Clough为代表的一批学者在此基础上又进行了大 量的研究工作。对结构动力学和地震工程学的发展作出了重要贡献,奠定了现代反应谱抗震 设计理论的基础。然而,静力法和早期的反应谱法都是以惯性力的形式来反映地震作用,并 按弹性方法来计算结构地震作用效应。当遭遇超过设计烈度的地震作用,结构进入弹塑性状 态,这种方法显然无法应用。同时,在由静力法向反应谱法过渡的过程中,人们发现短周期 结构加速度谱值比静力法中的地震系数大1倍以上。这使得地震工程师无法解释以前按静力 法设计的建筑物如何能够经受得住强烈地震作用。 抗震设计方法二:基于承载力和构造保证延性设计方法 为解决由静力法向反应谱法的过渡问题,以美国UBC规范为代表,通过地震力降低系数 R将反应谱法得到的加速度反应值am降低到与静力法水平地震相当的设计地震加速度ad, ad=am/R地震力降低系数R对延性较差的结构取值较小,对延性较好的结构取值较高。尽管 最初利用地震力降低系数R将加速度反应降下来只是经验性的,但人们已经意识到应根据结 构的延性性质不同来取不同的地震力降低系数。这是考虑结构延性对结构抗震能力贡献的最 早形式。然而对延性重要性的认识却经历了一个长期的过程。在确定和研究地震力降低系数 R的过程中,G. W. Housner和N. M. Newmark分别从两个角度提出了各自的看法。G. W. Housner认为考虑地震力降低系数R的原因有:每一次地震中可能包括若干次大小不等的较 大反应,较小的反应可能出现多次,而较大的地震反应可能只出现一次。此外,某些地震峰 值反应的时间可能很短,震害表明这种脉冲式地震作用带来的震害相对较小。基于这一观点, 形成了现在考虑地震重现期的抗震设防目标。随着研究的深入,N. M. Newmark认识到结构

工程建筑结构抗震设计试题与答案

建筑结构抗震设计试题 一、名词解释(每题3分,共30分) 1、地震烈度 2、抗震设防烈度 3、场地土的液化 4、等效剪切波速

5、地基土抗震承载力 6、场地覆盖层厚度 7、重力荷载代表值 8、强柱弱梁

9、砌体的抗震强度设计值 10、剪压比 二、填空题(每空1分,共25分) 1、地震波包括在地球内部传播的体波和只限于在地球表面传播的面波,其中体波包括波和波, 而面波分为波和波,对建筑物和地表的破坏主要 以波为主。 2、场地类别根据和划分为类。 3、在用底部剪力法计算多层结构的水平地震作用时,对于 T1>1.4T g时,在附加ΔF n,其目的是考虑的影响。

4、《抗震规范》规定,对于烈度为8度和9度的大跨和结构、烟囱和类似的高耸结构以及9度时的等,应考虑竖向地震作用的影响。 5、钢筋混凝土房屋应根据烈度、和 采用不同的抗震等级,并应符合相应的计算和构造措施要求。 6、地震系数表示与之比;动力系数是单质点与的比值。 7、多层砌体房屋的抗震设计中,在处理结构布置时,根据设防烈度限制房屋高宽比目的是 ,根据房屋类别和设防烈度限制房屋抗震横墙间距的目的是。 8、用于计算框架结构水平地震作用的手算方法一般 有和。 9、在振型分解反应谱法中,根据统计和地震资料分析,对于各振型所产生的地震作用效应,可近似地采用 的组合方法来确定。 10、为了减少判别场地土液化的勘察工作量,饱和沙土液化的判别可分为两步进行,即 和判别。 三、简答题(每题6分,共30分) 1、简述两阶段三水准抗震设计方法。

2、简述确定水平地震作用的振型分解反应谱法的主要步骤。3、简述抗震设防烈度如何取值。 4、简述框架节点抗震设计的基本原则。 5、简述钢筋混凝土结构房屋的震害情况。

抗震设计方法的发展

XKAN TECHNOLOGICAL UNIVERSITY 建筑工程学院 2013—2014学年第二学期 研究生课程读书报告题目:抗震设计方法的发展 考核科目:高层建筑结构设计与分析 所在院系:建筑工程学院 专业:结构工程_____________ 姓名:刘继龙_______________ 学号:1307210443 _______

目录 摘要: (2) 1 引言 (2) 2 基于承载力的抗震设计方法 (2) 3 基于延性的抗震设计方法 (2) 4 基于位移的抗震设计方法 (3) 4.1 按延性系数设计方法 (3) 4.2 能力谱方法 (3) 4.3 直接基于位移的方法 (4) 5 基于性能的抗震设计方法 (4) 6 结论 (6) 参考文献 (7)

抗震设计方法的发展 摘要:介绍了抗震设计概念的发展过程,分析了近100 年来提出的五种主要抗震设计方法的优缺点,并重点论述了基于性能的抗震设计方法,以促进结构抗震性能的研究,更好地做好结构设计。 Abstract:It introdueces the development of aseismatic design,analyzes advantages and disadvantages of five aseismatic design methods of recent one hundred years,puts great emphasis on the designing method based on performance in order to promote the research of structural anti-quake capability and make better job of structure design. Key words : aseismatic design,structural component,ductile index 1 引言 对应于地震动和结构反应分析研究的发展,人们的抗震设计概念经历了基于承载力—基于延性+承载力—基于性能的过程。这个过程从以结构承载力分析为主,发展到兼顾承载力和结构变形,再到全面分析结构的承载力、变形、损伤和耗能。这些设计方法在实际结构的设计当中常常融合在一起,下面按照他们侧重点的不同分类,虽有偏颇,但能体现出随着科技水平的发展,人们对于结构抗震性能的认识水平和要求的逐步提高。在100 多年的发展过程中,大致提出了以下几种主要抗震设计方法。 2 基于承载力的抗震设计方法 20 世纪70 年代以前的抗震设计采用基于承载力的抗震设计方法,地震分析属于等效静力分析阶段,以结构构件的强度或刚度是否达到特定的极限状态作为结构是否失效的准则。基于承载力的抗震设计方法建立在静力分析理论之上。静力法和早期的反应谱法都是以惯性力的形式来反映地震作用,并按弹性方法来计算结构地震作用效应。该方法的缺点在于无法准确描述结构进入弹塑性阶段的表现,对结构在地震作用下的破坏程度控制不够。 3 基于延性的抗震设计方法 20 世纪60 年代,人们认识到对于一般的房屋结构、土体结构以及地基等,需要利用结构体系的非线性变形来充分考虑结构物的抗震性能。1973年—1976 年,纽马克和霍尔总结当时的经验,提出了用延性概念来概括结构超过弹性结构时的抗震能力。他们认为在抗震设计中除了重视强度和刚度外,还必须重视加强延性;并提出了延性系数将弹性反应谱修改成弹塑性反应谱的方法,并建议用于实际结构的抗震计算。 1979年,他们计算了10个地震动作用下的非线性反应谱,从而归纳出确定非线性反应谱原则、方法和数据,以及相应的机构地震反应分析方法。 非线性的大小用延性系数U二;max/;y来表示;max和鋼分别为所考虑的整体结构或部分结构的最

相关文档
相关文档 最新文档