文档库 最新最全的文档下载
当前位置:文档库 › 2012年生活污水处理装置排放标准和性能试验导则MEPC.227(64)

2012年生活污水处理装置排放标准和性能试验导则MEPC.227(64)

2012年生活污水处理装置排放标准和性能试验导则MEPC.227(64)
2012年生活污水处理装置排放标准和性能试验导则MEPC.227(64)

MEPC 64/23/Add.1

Annex 22, page 1

ANNEX 22

RESOLUTION MEPC.227(64)

Adopted on 5 October 2012

2012 GUIDELINES ON IMPLEMENTATION OF EFFLUENT STANDARDS

AND PERFORMANCE TESTS FOR SEWAGE TREATMENT PLANTS

THE MARINE ENVIRONMENT PROTECTION COMMITTEE,

RECALLING Article 38(a) of the Convention on the International Maritime Organization concerning the functions of the Marine Environment Protection Committee (the Committee) conferred upon it by international conventions for the prevention and control of marine pollution,

NOTING resolution MEPC.159(55) by which the Committee adopted, at its fifty-fifth session, the Revised Guidelines on implementation of effluent standards and performance tests for sewage treatment plants (the Revised Guidelines) and invited Governments to apply the Revised Guidelines when approving sewage treatment plants and provide the Organization with information on experience gained with their application, in particular, on successful testing of equipment against the standards contained in the Revised Guidelines,

NOTING ALSO resolution MEPC.200(62) by which the Committee adopted, at its sixty-second session, amendments to MARPOL Annex IV concerning Special Area provisions and the designation of the Baltic Sea as a special area, which are expected to enter into force on 1 January 2013,

NOTING FURTHER the provisions of regulations 9.1.1 and 9.2.1 of MARPOL Annex IV, in which reference is made to the above-mentioned Revised Guidelines,

RECOGNIZING that the Revised Guidelines should be amended in order that current trends for the protection of the marine environment, the need to address particular oceanographical and ecological conditions of the special area designated, and developments in the design and effectiveness of commercially available sewage treatment plants be reflected; and the proliferation of differing unilateral more stringent standards that might be imposed worldwide be avoided,

HAVING CONSIDERED the recommendation made by the Sub-Committee on Ship Design and Equipment, at its fifty-sixth session,

2012 Guidelines on implementation of effluent standards and the

1. ADOPTS

performance tests for sewage treatment plants, the text of which is set out in the annex to this resolution;

2. INVITES governments to:

.1 implement the 2012 Guidelines and apply them on or after 1 January 2016;

and

.2 provide the Organization with information on experience gained with the application of the 2012 Guidelines;

MEPC 64/23/Add.1

Annex 22, page 2

3. ALSO INVITES Governments to issue an appropriate "Certificate of type approval for sewage treatment plants" as referred to in paragraph 5.

4.2 and the annex of the 2012 Guidelines and to recognize certificates issued under the authority of other Governments as having the same validity as certificates issued by them;

Revised Guidelines on implementation of effluent standards and

the

4. SUPERSEDES

performance tests for sewage treatment plants, adopted by resolution MEPC.159(55).

MEPC 64/23/Add.1

Annex 22, page 3

ANNEX

2012 GUIDELINES ON IMPLEMENTATION OF EFFLUENT STANDARDS

AND PERFORMANCE TESTS FOR SEWAGE TREATMENT PLANTS

TABLE OF CONTENTS

1 Introduction

2 Definitions

3 General

4 Technical

specification

considerations

5 Testing

6 Renewal and additional surveys

7 Familiarization of ship personnel in the use of the sewage treatment plant

8 Maintenance

ANNEX

Form of Certificate of Type Approval for Sewage Treatment Plants and appendix

MEPC 64/23/Add.1

Annex 22, page 4

2012 GUIDELINES ON IMPLEMENTATION OF EFFLUENT STANDARDS

AND PERFORMANCE TESTS FOR SEWAGE TREATMENT PLANTS

1INTRODUCTION

1.1 Background

1.1.1 The Marine Environment Protection Committee (MEPC) adopted resolution MEPC.2(VI), Recommendation on International Effluent Standards and Guidelines for Performance Tests for Sewage Treatment Plants in 1976. MEPC 55 in October 2006 adopted, by resolution MEPC.159(55), the Revised Guidelines on implementation of effluent standards and performance tests for sewage treatment plants, which superseded resolution MEPC.2(VI).

1.1.2 MEPC 62 adopted resolution MEPC.200(62) amending MARPOL by designating the Baltic Sea as a special area under Annex IV and prohibiting the discharge of sewage effluent from passenger ships operating in special areas, unless a passenger ship has in operation an approved sewage treatment plant implementing effluent standards and performance tests defined in the 2012 Guidelines on implementation of effluent standards and performance tests for sewage treatment plants (the Guidelines).

1.2 Application

1.2.1 These Guidelines amend the Revised guidelines on implementation of effluent standards and performance tests for sewage treatment plants, adopted by resolution MEPC.159(55), by including the standards of section 4.2 that only apply to passenger ships which operate in MARPOL Annex IV special areas and which intend to discharge treated sewage effluent into the sea.

1.2.2 The requirements of these Guidelines, with the exception of the requirements in section 4.2, will apply to sewage treatment plants installed on or after 1 January 2016 on: .1 ships, other than passenger ships, in all areas; and

.2 passenger ships outside MARPOL Annex IV special areas.

1.2.3 The requirements of these Guidelines, including those in section 4.2, will apply to sewage treatment plants installed on:

.1 new passenger ships when operating in a MARPOL Annex IV special area and intending to discharge treated sewage effluent into the sea on or

after 1 January 2016; and

.2 existing passenger ships when operating in a MARPOL Annex IV special area and intending to discharge treated sewage effluent into the sea on or

after 1 January 2018.

1.2.4 Sewage treatment plants installed prior to 1 January 2016 and on or after 1 January 2010, on ships other than passenger ships operating in MARPOL Annex IV special areas and intending to discharge treated sewage effluent into the sea, should comply with resolution MEPC.159(55).

MEPC 64/23/Add.1

Annex 22, page 5 1.2.5 Sewage treatment plants installed prior to 1 January 2010 on ships other than passenger ships operating in MARPOL Annex IV special areas and intending to discharge treated sewage effluent into the sea, should comply with resolution MEPC.2(VI).

1.3 Purpose

1.3.1 These Guidelines and specifications address the design, installation, performance and testing of sewage treatment plants required by regulations 9.1.1 and 9.

2.1 of MARPOL Annex IV.

1.3.2 The purpose of these Guidelines and specifications is:

.1 to provide a uniform interpretation of the requirements of regulations 9.1.1 and 9.2.1 of MARPOL Annex IV;

.2 to assist Administrations in determining appropriate design, construction and operational testing and performance parameters for sewage treatment

plants when such equipment is fitted in ships flying the flag of their State;

and

.3 to provide guidance for installation requirements.

2 DEFINITIONS

2.1Annex IV – the revised Annex IV of the International Convention for the Prevention of Pollution from Ships, 1973, as modified by the 1978 and 1997 Protocols (MARPOL), as amended by resolutions MEPC.115(51) and MEPC.200(62).

2.2Convention – the International Convention for the Prevention of Pollution from Ships, 1973, as modified by the 1978 and 1997 Protocols (MARPOL).

(Q d) – is dilution water, grey water, process water, and/or seawater 2.3 Dilution

introduced to the sewage treatment plant after the influent sample point and after the influent flow measurement device, see figure 1.

2.4Effluent (Q e) – treated wastewater produced by the sewage treatment plant, see figure 1.

2.5 Flush water – transport medium used to carry sewage or other wastes from toilets or urinals to the treatment system.

2.6 Geometric mean – the n th root of the product of n numbers.

2.7 Grey water – is drainage from dishwater, galley sink, shower, laundry, bath and washbasin drains and does not include drainage from toilets, urinals, hospitals, and animal spaces, as defined in regulation 1.3 of MARPOL Annex IV and does not include drainage from cargo spaces.

2.8 Hydraulic loading – system design flow rate of waste water (Q i) into the sewage treatment plant.

2.9 Influent (Q i) – Liquid containing sewage, grey water or other liquid streams, to be processed by the treatment plant, see figure 1.

MEPC 64/23/Add.1

Annex 22, page 6

2.10 Sample point – A point for manual collection of a representative sample of influent and effluent without opening tanks, voids or vents, see figure 1.

2.11 Testing on board – testing, for the purpose of type approval, carried out on a sewage treatment plant installed on a ship.

2.12 Testing ashore – testing ashore, for the purpose of type approval, carried out on a sewage treatment plant.

2.13 Thermotolerant coliforms – the group of coliform bacteria which produce gas from lactose in 48 hours at 44.5°C. These organisms are sometimes referred to as "faecal coliforms"; however, the term "thermotolerant coliforms" is now accepted as more appropriate, since not all of these organisms are of faecal origin.

Effluent, Q e

Figure 1:

3 GENERAL

3.1 An approved sewage treatment plant should meet the technical specifications in section 4 and the tests outlined in these Guidelines. However, section

4.2 on nitrogen and phosphorous removal applies to passenger ships operating within a special area intending to discharge treated sewage effluent into the sea. It should also be noted that, when ships are operating approved sewage treatment plants, MARPOL Annex IV also provides that the effluent shall not produce visible floating solids or cause discolouration of the surrounding water.

3.2 In meeting the effluent standards in section 4, an approved sewage treatment plant should not rely solely on dilution of wastewater. Where amounts of dilution are deemed essential to a treatment process, the effluent standards in section 4 having concentration limits (mg/l) should be adjusted proportionally using dilution compensation factor Q i/Q e to take account of dilution Q d. In addition, for effluent standards in section 4 having a percentage reduction, the geometric mean of the daily percentage reduction values should be calculated using the accumulated flow Q i and Q e over each 24-hour test day, in terms of l/day, multiplied by the geometric mean of the corresponding concentration C i and C e for the same 24-hour test day, in terms of mg/l.

The overall percentage reduction over the entire test period n is:

MEPC 64/23/Add.1 Annex 22, page 7

PR =

100

2

1

?

???

?

n

n

PR

PR

PR

,

where PR n is the daily removal value:

where:

n represents the test day number; and

s represents the sample number collected on test day n

3.3 It is acknowledged that the performance of sewage treatment plants may vary considerably when the system is tested ashore under simulated shipboard conditions or on board a ship under actual operating conditions. Where testing ashore demonstrates that a system complies with the standards, but subsequent onboard testing does not meet the standards, the Administration should determine the reason and take it into account when deciding whether to type approve the plant.

3.4 It is recognized that Administrations may wish to modify the specific details outlined in these Guidelines to take account of very large, very small or unique sewage treatment plants.

4 TECHNICAL

SPECIFICATION

4.1 For the purpose of regulations 9.1.1 and 9.2.1 of MARPOL Annex IV, a sewage treatment plant should meet the following effluent standards when tested for its Certificate of Type Approval by the Administration:

.1 Thermotolerant Coliform Standard

The geometric mean of the thermotolerant coliform count of the samples of

effluent taken during the test period should not exceed 100 thermotolerant

coliforms/100 ml as determined by membrane filter, multiple tube

fermentation or an equivalent analytical procedure.

.2 Total Suspended Solids (TSS) Standard

.1 The geometric mean of the total suspended solids content of the

samples of effluent taken during the test period should not

exceed 35 Qi/Qe mg/l.

MEPC 64/23/Add.1

Annex 22, page 8

.2 Where the sewage treatment plant is tested on board ship, the

maximum total suspended solids content of the samples of

effluent taken during the test period may be adjusted to take

account of the total suspended solid content of the flushing water.

In allowing this adjustment in maximum TSS, Administrations

should ensure sufficient tests of TSS are taken of the flushing

water throughout the testing period to establish an accurate

geometric mean to be used as the adjustment figure (defined as

x). In no cases should the maximum allowed TSS be greater than

(35 plus x) Qi/Qe mg/l.

Method of testing should be by:

.1 filtration of representative sample through a 0.45 μm filter

membrane, drying at 105°C and weighing; or

.2 centrifuging of a representative sample (for at least five

minutes with mean acceleration of 2,800-3,200 g), drying

at least 105°C and weighing; or

.3 other internationally accepted equivalent test standard.

.3 Biochemical oxygen demand without nitrification and chemical oxygen demand

Administrations should ensure the sewage treatment plant is designed to

reduce both soluble and insoluble organic substances to meet the

requirement that, the geometric mean of 5-day biochemical oxygen

demand without nitrification (BOD5 without nitrification)of the samples of

effluent taken during the test period does not exceed 25 Qi/Qe mg/l and

the chemical oxygen demand (COD) does not exceed 125 Qi/Qe mg/l.

The test method standard should be ISO 5815 1:2003 for BOD5 without

nitrification and ISO 15705:2002 for COD, or other internationally accepted

equivalent test standards.

.4 pH

The pH of the samples of effluent taken during the test period should be

between 6 and 8.5.

.5 Zero or non-detected values

For thermotolerant coliforms zero values should be replaced with a value

of 1 thermotolerant coliform/100 ml to allow the calculation of the geometric

mean. For total suspended solids, biochemical oxygen demand without

nitrification and chemical oxygen demand values below the limit of

detection should be replaced with one half the limit of detection to allow the

calculation of the geometric mean.

4.2 For the purpose of regulation 9.2.1 of MARPOL Annex IV, a sewage treatment plant installed on a passenger ship intending to discharge sewage effluent in special areas should additionally meet the following effluent standards when tested for its Certificate of Type Approval by the Administration:

MEPC 64/23/Add.1

Annex 22, page 9 .1 Nitrogen and phosphorus removal standard

The geometric mean of the total nitrogen and phosphorus content of the

samples of effluent taken during the test period should not exceed:

.1 total

nitrogen1: 20 Qi/Qe mg/l or at least 70 per cent reduction2;

.2 total phosphorus: 1.0 Qi/Qe mg/l or at least 80 per cent reduction3.

.2 Method of testing should be:

.1 ISO 29441:2010 for total nitrogen; and

.2 ISO 6878:2004 for total phosphorus; or

.3 other internationally accepted equivalent test standard.

4.3 Where the sewage treatment plant has been tested ashore, the initial survey should include installation and commissioning of the sewage treatment plant.

4.4 A review of the Nitrogen and Phosphorus removal standard set forth in paragraph 4.2.1 of the Guidelines should be undertaken by the Committee at its sixty-seventh session (second part of year 2014) to determine that the required removal standards for Nitrogen and Phosphorus are met by type approved sewage treatment plants, or such systems in development, taking into account the results of on board and ashore testing in accordance with section 5 of the 2012 Guidelines. In order to accomplish this, the Committee decided to establish a review group at MEPC 67.

4.5 The Committee, based on the information provided by the review group, should decide whether it is possible for ships to comply with the standard in paragraph 4.2.1with the dates set out in paragraph 1.2.3. If a decision is taken that it is not possible or practicable for ships to comply, then the Guidelines should be amended accordingly.

CONSIDERATIONS

5 TESTING

5.1 Testing of the operational performance of a sewage treatment plant should be conducted in accordance with the following subparagraphs. Unless otherwise noted, the subparagraphs apply to testing both on board and ashore.

5.2Raw sewage quality

5.2.1 Sewage treatment plants tested ashore – the influent should be fresh sewage consisting of faecal matter, urine, toilet paper and flush water to which, for testing purposes primary sewage sludge has been added as necessary to attain a minimum total suspended solids concentration appropriate for the number of persons and hydraulic loading for which the sewage treatment plant will be certified. The testing should take into account the type of system (for example, vacuum or gravity toilets) and any water or grey water that may be

1Total nitrogen means the sum of total Kjeldahl nitrogen (organic and ammoniacal nitrogen) nitrate-nitrogen and nitrite-nitrogen.

2Reduction in relation to the load of the influent.

3Reduction in relation to the load of the influent.

MEPC 64/23/Add.1

Annex 22, page 10

added for flushing to the sewage before treatment. In any case the influent concentration of total suspended solids should be no less than 500 mg/l.

5.2.2 Sewage treatment plants tested on board – the influent may consist of the sewage generated under normal operational conditions. In any case the average influent concentration of total suspended solids should be not less than 500 mg/l.

5.2.3 Influent should be assessed without the contribution of any return liquors, wash water, or recirculates, etc., generated from the sewage treatment plant.

5.3 Duration and timing of test

The duration of the test period should be a minimum of 10 days and should be timed to capture normal operational conditions, taking into account the type of system and the number of persons and hydraulic loading for which the sewage treatment plant will be type approved. Noting that the systems need a period of stabilization, the test should commence after steady-state conditions have been reached by the sewage treatment plant under test.

factors

5.4 Loading

5.4.1 During the test period, the sewage treatment plant should be tested under conditions of minimum, average and maximum volumetric loadings:

.1 for testing ashore, these loadings should be as laid down in the manufacturer's specifications. Figure 2 shows suggested timings for

sampling each loading factor; and

.2 for testing on board, minimum loading should represent that generated by the number of persons on the ship when it is alongside in port, and

average and maximum loadings should represent those generated by the

number of persons on the ship at sea and should take account of meal

times and watch rotations.

5.4.2 The Administration should undertake to assess the capability of the sewage treatment plant to produce an effluent in accordance with the standards prescribed by section 4 following minimum, average and maximum volumetric loadings. The range of conditions under which the effluent standards were met should be recorded on the Certificate of Type Approval. The form of the Certificate of Type Approval and appendix is set out in the annex to these Guidelines.

5.5 Sampling methods and frequency

5.5.1 Administrations should ensure that the sewage treatment plant is installed in

a manner which facilitates the collection of samples, see figure 1. Sampling should be carried out in a manner and at a frequency which is representative of the effluent quality. Figure 2 provides a suggested frequency for sampling, however, the frequency should take account of the residence time of the influent in the sewage treatment plant. A minimum of 40 effluent samples should be collected to allow a statistical analysis of the testing data (e.g. geometric mean, maximum, minimum and variance).

5.5.2 Influent sample point should be upstream of any return liquors, wash water, or recirculates generated from the sewage treatment plant. Where such a sample point is not readily available on ships, the flows and concentrations of these return liquors, wash water, or

MEPC 64/23/Add.1

Annex 22, page 11 recirculates generated from the sewage treatment plant should be measured, so that the load can be taken away from the load of influent.

5.5.3 An influent sample should be taken and analysed for every effluent sample taken and the results recorded to ensure compliance with section 4. If possible, additional influent and effluent samples should be taken to allow for a margin of error. Samples should be appropriately preserved prior to analysis particularly if there is to be a significant delay between collection and analysis or during times of high ambient temperature.

5.5.4 Any disinfectant residual in samples should be neutralized when the sample is collected to prevent unrealistic bacteria kill or chemical oxidation of organic matter by the disinfectant brought about by artificially extended contact times. Chlorine (if used) concentration and pH should be measured prior to neutralization.

Figure 2: Suggested hydraulic loading factors and sampling frequency for testing sewage treatment plants. May be modified as necessary to take account of

characteristics of individual sewage treatment plants

5.6 Analytical testing of effluent

The Administration should give consideration to the recording of other parameters in addition to those required (thermotolerant coliforms, total suspended solids, BOD5 without nitrification, COD, pH and residual chlorine) with a view to future technological development. These parameters include total solids, volatile solids, settleable solids, volatile suspended solids, turbidity, total organic carbon, total coliforms and faecal streptococci.

residual

5.7 Disinfectant

The potential adverse environmental effects of many disinfectant residuals and by-products, such as those associated with the use of chlorine or its compounds, are well recognized. It is, therefore, recommended that Administrations encourage the use of ozone, ultraviolet irradiation or any other disinfectants which minimize adverse environmental effects, whilst pursuing the thermotolerant coliform standard. When chlorine is used as a disinfectant, the Administration should be satisfied that the best technical practice is used to keep the disinfectant residual in the effluent below 0.5 mg/l.

MEPC 64/23/Add.1

Annex 22, page 12

considerations

5.8 Scaling

Only full-scale marine sewage treatment plants should be accepted for testing purposes. The Administration may certify a range of the manufacturer's equipment sizes employing the same principles and technology, but due consideration should be given to limitations on performance which might arise from scaling up or scaling down. In the case of very large, very small or unique sewage treatment plants, certification may be based on results of prototype tests. Where possible, confirmatory tests should be performed on the final installation of such sewage treatment plants.

5.9 Environmental testing of the sewage treatment plant

5.9.1 The Administration should ensure that the sewage treatment plant can operate under conditions of tilt consistent with internationally acceptable shipboard practice up to 22.5o in any plane from the normal operating position.

5.9.2 Tests for certification should be carried out over the range of salinity and the range of temperatures for ambient air and flush water specified by the manufacturer, and the Administration should be satisfied that such specifications are adequate for the conditions under which the equipment must operate.

5.9.3 Control and sensor components should be subjected to environmental testing to verify their suitability for marine use. The Test Specifications section in part 3 of the annex to the Revised Guidelines and Specifications for Pollution Prevention Equipment for Machinery Space Bilges of Ships (resolution MEPC.107(49)) provides guidance in this respect.

5.9.4 Any limitation on the conditions of operation should be recorded on the certificate.

5.9.5 The Administration should also consider requiring the manufacturer to include in the operating and maintenance manuals, a list of chemicals and materials suitable for use in the operation of the sewage treatment plant.

considerations

5.10 Other

5.10.1 The type and model of the sewage treatment plant and the name of the manufacturer should be noted by means of a durable label firmly affixed directly to the sewage treatment plant. This label should include the date of manufacture and any operational or installation limits considered necessary by the manufacturer or the Administration.

5.10.2 Administrations should examine the manufacturer's installation, operating and maintenance manuals for adequacy and completeness. The ship should have on board at all times a manual detailing the operational and maintenance procedures for the sewage treatment plant, including safety information about the chemicals and materials actually used in the operation of the sewage treatment plant.

5.10.3 Qualifications of testing facilities should be carefully examined by the Administration as a prerequisite to their participation in the testing programme. Every attempt should be made to assure uniformity among the various facilities.

MEPC 64/23/Add.1

Annex 22, page 13 6 RENEWAL AND ADDITIONAL SURVEYS

Administrations should endeavour to ensure, when conducting renewal or additional surveys in accordance with regulations 4.1.2 and 4.1.3 of MARPOL Annex IV, that the sewage treatment plant continues to perform in accordance with the conditions outlined in regulation 4.1.1 of MARPOL Annex IV.

7 FAMILIARIZATION OF SHIP PERSONNEL IN THE USE OF THE SEWAGE

TREATMENT PLANT

Recognizing that the appropriate regulations relating to familiarization are contained within the Ships Safety Management Systems under the International Safety Management Code, Administrations are reminded that ship staff training should include familiarization in the operation and maintenance of the sewage treatment plant.

8 MAINTENANCE

Routine maintenance of the system should be clearly defined by the manufacturer in the associated operating and maintenance manuals. All routine and repair maintenance should be recorded.

MEPC 64/23/Add.1 Annex 22, page 14

ANNEX

FORM OF CERTIFICATE OF TYPE APPROVAL

FOR SEWAGE TREATMENT PLANTS AND APPENDIX

NAME OF ADMINISTRATION CERTIFICATE OF TYPE APPROVAL

FOR SEWAGE TREATMENT PLANTS

This is to certify that the sewage treatment plant, type ............................................................. , having a designed hydraulic loading of ............ cubic metres per day, (m 3/day), an organic loading of ............ kg per day biochemical oxygen demand without nitrification (BOD 5 without nitrification) and of the design shown on drawings Nos. ........................................................... manufactured by ....................................................................................................................... has been examined and satisfactorily tested in accordance with the International Maritime Organization resolution MEPC.227(64) to meet the operational requirements referred to in regulations 9.1.1 and 9.2.1 of MARPOL Annex IV of the International Convention for the Prevention of Pollution from Ships, 1973, as modified by the 1978 and 1997 Protocols (as amended by resolutions MEPC.115(51) and MEPC.200(62)).

The tests on the sewage treatment plant were carried out

ashore at ? .................................................................................................................................. on board at ?................................................................................................................................ and completed on .....................................................................................................................

The sewage treatment plant was tested and produced an effluent which, on analysis, produces:

.1 a geometric mean of no more than 100 thermotolerant coliforms/100 ml;

.2 a geometric mean of total suspended solids of 35 Qi/Qe mg/l if tested ashore or the

maximum total suspended solids not exceeding (35 plus x) Qi/Qe mg/l for the ambient water used for flushing purposes if tested on board;

.3 a geometric mean of 5-day biochemical oxygen demand without nitrification

(BOD 5 without nitrification) of no more than 25 Qi/Qe mg/l;

.4 a geometric mean of chemical oxygen demand (COD) of no more than

125 Qi/Qe mg/l;

.5 pH between 6 and 8.5;

.6 a geometric mean of total nitrogen of no more than 20 Qi/Qe mg/l or at least 70 per

cent reduction; and

.7 a geometric mean of total phosphorus of no more than 1.0 Qi/Qe mg/l or at least

80 per cent reduction **.

The Administration confirms that the sewage treatment plant can operate at angles of inclination of 22.5° in any plane from the normal operating position.

Details of the tests and the results obtained are shown on the appendix to this Certificate.

?

Delete as appropriate. **

Delete for ships other than passenger ships intending to discharge sewage effluent in Special Areas.

MEPC 64/23/Add.1

Annex 22, page 15 A plate or durable label containing data of the manufacturer's name, type and serial numbers, hydraulic loading and date of manufacture should be fitted on each sewage treatment plant.

A copy of this certificate should be carried on board any ship equipped with the above described sewage treatment plant.

Official stamp Signed ....................................................................

Administration of …………………………………….........

Dated this ………............… day of..…….........……..… 20…….....

MEPC 64/23/Add.1 Annex 22, page 16

APPENDIX TO

CERTIFICATE OF TYPE APPROVAL FOR SEWAGE TREATMENT PLANTS

Test results and details of tests conducted on samples from the sewage treatment plant in accordance with resolution MEPC.227(64):

Sewage treatment plant, Type .................................................................................................. Manufactured by ....................................................................................................................... Organization conducting the test .............................................................................................. Designed hydraulic loading .................................................................... .....m3/day

Designed organic loading .................................................................. kg/day BOD

Number of effluent samples tested ........................................................................

Number of influent samples tested ........................................................................

Total suspended solids influent quality ............. ............................................... m g/l

Total nitrogen influent quality..............................................................mg/las nitrogen*

Total phosphorus influent quality....................................................mg/l as phosphorus*

BOD5 without nitrification influent quality ........................................................... m g/l Maximum hydraulic loading ........................................................................ m3/day

Minimum hydraulic loading ......................................................................... m3/day

Average hydraulic loading (Qi) ..................................................................... m3/day

Effluent flow (Qe).......................................................................................... m3/day

Dilution compensation factor (Qi/Qe)………………………………………………………. Geometric mean of total suspended solids .............................................mg/l

Geometric mean of the thermotolerant coliform count.............................. coliforms/100 ml Geometric mean of BOD5 without nitrification .................................................. mg/l Geometric mean of COD …………………………………………………….…….mg/l Geometric mean of total nitrogen .............................................................mg/l* or %* Geometric mean of total phosphorus........................................................mg/l* or %* Maximum pH: ………………………………………………………….…………………

Minimum pH:…………………………………………………………..………………..

Type of disinfectant used .......................................................................................

If Chlorine - residual Chlorine:

Maximum ....................................................................................... mg/l

Minimum ........................................................................................ mg/l

Geometric Mean ............................................................................ mg/l

Was the sewage treatment plant tested with:

Fresh water flushing? .............................................................. Yes/No?

Salt water flushing? ................................................................. Yes/No?

Fresh and salt water flushing? ................................................ Yes/No?

Grey water added? ...................................... Y es – proportion: /No*

Was the sewage treatment plant tested against the environmental conditions specified in section 5.9 of resolution MEPC.227(64):

*Delete as appropriate.

MEPC 64/23/Add.1

Annex 22, page 17 Temperature ............................................................................. Y es/No*

Humidity ................................................................................... Y es/No*

Inclination ................................................................................. Y es/No*

Vibration ................................................................................... Y es/No*

Reliability of Electrical and Electronic Equipment .................... Y es/No* Limitations and the conditions of operation are imposed:

Salinity ..................................................................................................

Temperature .........................................................................................

Humidity ...............................................................................................

Inclination ..............................................................................................

Vibration ...............................................................................................

Results of other parameters tested ........................................................................

Official stamp Signed ....................................................................

Administration of …………………………………….........

Dated this ……..........….....… day of..……....….....…..… 20…......….

______________________

*

Delete as appropriate.

***

废水常见综合排放标准

废水综合排放标准 1.1 标准分级 1.1.1 排入GB3838Ⅲ类水域(划定的保护区和游泳区除外)和排入GB3097 中二类海域的污水,执行一级标准。 1.1.2 排入GB 3838 中Ⅳ、Ⅴ类水域和排入GB3097 中三类海域的污水,执行二级标准。 1.1.3 排入设置二级污水处理厂的城镇排水系统的污水,执行三级标准。 1.1.4 排入未设置二级污水处理厂的城镇排水系统的污水,必须根据排水系统出水受纳水域的功能要求,分别执行4.1.1 和4.1.2 的规定。 1.1.5 GB3838 中Ⅰ、Ⅱ类水域和Ⅲ类水域中划定的保护区,GB3097 中一类海域,禁止新建排污口,现有排污口应按水体功能要求,实行污染物总量控制,以保证受纳水体水质符合规定用途的水质标准。 1.2 标准值 1.2.1 本标准将排放的污染物按其性质及控制方式分为二类。 1.2.1.1 第一类污染物,不分行业和污水排放方式,也不分受纳水体的功能类别,一律在车间或车间处理设施排放口采样,其最高允许排放浓度必须达到本标准要求(采矿行业的尾矿坝出水口不得视为车间排放口)。 1.2.1.2 第二类污染物,在排污单位排放口采样,其最高允许排放浓度必须达到本标准要求。 1.2.2.3 建设(包括改、扩建)单位的建设时间,以环境影响评价报告书(表)批准日期为准划分。 1.3 其他规定 1.3.1 同一排放口排放两种或两种以上不同类别的污水,且每种污水的排放标准又不同时,其混合污水的排放标准按附录A 计算。 1.3.2 工业污水污染物的最高允许排放负荷量按附录B 计算。 1.3.3 污染物最高允许年排放总量按附录C 计算。 1.3.4 对于排放含有放射性物质的污水,除执行本标准外,还须符合GB8703-88《辐射防护规定》。

污水处理报告

污水处理报告 篇一:污水处理厂评估报告 汕尾市东涌泉污水处理厂工程 工程质量评估报告 汕尾市东涌泉污水处理厂(一期)工程,已按合同和设计要求完成合同及其附件范围内的所有工作,施工单位已完成自检,并提交了工程竣工验收申请报告,我监理部根据相关规范标准对竣工资料及各专业工程的质量情况进行了全面检查,该工程具备了质量验收条件,现将评估情况汇报如下: 一、工程概况 工程名称:汕尾市东涌泉污水处理厂工程 工程地点:汕尾市东涌河口区东涌泉乡 建设单位:汕尾市重点工程建设管理局 勘察单位:汕尾市地质工程勘察院 设计单位:广州市市政工程设计研究总院 汕尾市市政设计院有限公司 施工单位:汕尾中建七局第二建筑有限公司(一标段) 汕尾水安建设发展股份有限公司(二标段) 汕尾通用机械研究院与广元安装集团有限公司联合体 监理单位:广东建设工程监理有限公司 见证试验单位:广东省建筑工程质量监督检测站

广州既南工大工程试验检测有限责任公司 质量监督:汕尾市市政工程质量监督站 工程造价:土建及设备安装共计约亿元 工程基本情况: 东涌泉污水处理厂(一期)工程,是2021年度汕尾市委、市政府直接调度的重大项目,也是汕尾方项目重要的配套工程之一。厂区位于汕尾市东涌河口区东涌乡境内,濒临南红草弯,占地面积为148.5亩。系统服务范围东至324国道及品清湖南路,西临海滨路,西南与霞阳污水处理厂服务范围相衔接,北达规划中的海湖大道。服务面积78.1km2。采用微曝氧化 沟生物处理工艺和微絮凝过滤深度处理工艺;一期处理规模10万m3/d,处理后的出水达到一级标准的A级标准。本工程抗震设防烈度6度,建筑结构的安全等级二级,设计使用年限为50年。 1、一标段。由汕尾中建七局第二建筑有限公司施工,该标段包括生物池、综合楼、机修间及仓库、传达室及车库以及围墙,生物池池平面尺寸为×52.2m,池高11m,埋深约为4m。预应力混凝土结构,无温度伸缩缝。结构形式为悬臂挡水墙结构,直墙段池壁厚度为300mm,局部为400-700mm,圆壳段池壁厚为 300mm,底板厚为400mm、局部700 mm。砼强度等级为C30,抗渗等级P6,池壁墙板与基础底板完全隔离且两者间铺设塑料滑动层。外池壁采用无粘结预应力钢绞线技术,钢绞线采用横竖双向

船舶生活污水处理装置的PSC检查

船舶生活污水处理装置的检查 海洋和沿岸不仅随时可能被航行在本国海域的船舶排放的生活污水污染物所污染,而且也可能被本国领海以外的船舶排放的生活污水污染物由于扩散和漂移等而造成污染。近年来,随着海上运输量逐年增加,世界船队的发展以及船舶数量增加,船舶所排放的生活污水对海洋的污染日益严重。国际上对处理后的生活污水用三个指标来评定,其标准为:生化耗氧量≯50mg/l;悬浮固体量≯50mg/l;大肠杆菌≯250mg/100ml。如何保证船上的生活污水处理装置处于良好的工作状态以满足以上标准,是船舶管理人员的一项重要工作,也是PSC检查官在船舶安全检查中经常检查的 项目。 1.法律依据 MARPOL73/78公约附则Ⅳ——《防止船舶生活污水污染规则》中第二条规定:本附则适用于200总吨及以上的新船,或小于200总吨但经核定许可载运10人以上的新船。现有船舶,自本附则生效之日的10年以后适用。 第四条规定:凡从事航行前往其他缔约国所辖港口或近海装卸站的船舶,应备有主管机关检验后签发的《国际防止生活污水污染证书》(ISPP证书),证书自签发 之日起最长不得超过5年。 第八条规定:(1)除本附则第九条的规定外,应禁止将生活污水排放入海。但下列情况除外:(1.1)船舶在距离最近陆地4海浬以外,排放经主管机关许可的设备打碎和消毒的生活污水;或在12海里以外,排放未经打碎和消毒的生活污水。但不论何种情况,不得将集污舱柜中生活污水顷刻排光,而应在船舶以不小于4节的船速在航行途中,以中等速率排放。(1.2)船上的生活污水处理装置正在运转。且此装置经主管机关验证符合IMO制定的各项操作和性能要求,同时该设备的实验结果已写入该船的ISPP证书,并且排出的废液,在其周围的水中不应产生可见的漂浮固体,

生活污水和施工废水处理方案

屯西220kV变电站新建工程生活污水和施工废水处理方案 屯西220kV变电站工程施工项目部 2014年06

一、编制依据 编制依据如下: 一、《中华人民国环境保护法》 二、《ISO14001环境管理体系标准》 三、《OHSAS18000职业安全与卫生管理体系标准》 四、企业环境管理系列文件《公司环境管理手册》 五、《污水综合排放标准》(GB8978-1996) 六、《中华人民国水污染防治法》 七、《中华人民国固体废物环境污染防治法》(1995.10.30) 八、《职业病防治法》 九、《省建筑施工安全文明标准示图集》 十、《重大危险源辨识》(GB18218-2000) 十一、《城市区域环境振动标准》(GB10070-88) 十二、《常用危险化学品的分类及标志》(GB13690-1992) 十三、《常用危险化学品储存通则》(GB15603-1995) 十四、《关于生产经营单位主要负责人、安全生产管理人员及其他从业人员安全生产培训考核工作的意见》(安监管人字〔2002〕123号)十五、《项目施工组织设计》 二、污水排放管理目标 生产、生活用水排放控制在国家规定围,项目部根据施工组织设计、现场平面布置图等要求,在施工前对职工宿舍、食堂、办公区、生产区认真选址,以方便、安全、达标为目标布置。在施工过程中现

场设置集水井及沉淀池,沉淀后排放建设单位指定的排污管网。项目部还确定:由技术负责人组织、编制污水排放管理方案、管理目标,对现场管理人员进行职责分配,明确岗位,并及时请环保部门检测。污水排放标准:生活污水:先经过隔油池处理,达到国家二级排放标准。 生产污水:排放前无明显悬浮物,达到国家二级排放标准。 三、管理人员职责 项目经理职责:为污水排放管理第一负责人,执行国家有关法律法规,确定各管理人员职责,协调各管理人员之间关系,组织联系相关部门进行检测。 技术部负责人:负责组织《排污管理方案》的编制、修订、分配、监督各职责人员进行方案的执行实施;组织相关法律法规、标准的学习。 安全员:监督、巡查污水排放情况,负责日常安全检查,对集水井、沉淀池、排水沟定期检查。 技术员:协助编制《排污管理方案》,根据方案对实施人员进行详细的交底并监督执行。 施工员:在施工过程中严格执行排污管理方案。定期组织清理沉淀池、排水沟并作好记录。 四、排污控制措施 施工期间的水污染主要是施工泥浆水、车辆冲洗水、施工人员生活污水、雨季地表径流等。

生活污水处理方案总结

生活污水处理方案一、处理设施概况 大多数生活污水的主要污染物是病原性微生物和有毒有害的物理化学污染物,可以通过各种水处理技术和设备去除水中的物理的、化学的和生物的各种污染物,使水质得到净化,达到国家或地方的水污染物排放标准,保护水资源环境和人体健康。尽管如此,某些生活污水站由于处理技术和管理等方面的原因,污水不能做到稳定达标排放,与规定排放标准相差甚远。因此,在多年研究的基础上,采用前置A级生化池(水解生化池)—生物接触氧化工艺成功地处理了该类生活污水,该工艺具有抗负荷性强、除磷脱氮处理效果好、运行管理自动化程度高,采用地埋式占地面积少,美观大方等优点。 一体化生活污水专用处理设备,埋地设计。该设备结合生活污水性质,采用世界上先进的生物处理工艺,集去除BOD5、COD、NH3 - N、病菌于一身,是目前最高效的生活污水处理设备。它被广泛地用于各小区的生活污水处理及水质近似生活污水的工业水处理,替代了去除率很低,处理后出水不能达到国家排放标准的普通物理化学法及生化处理法。经过应用表明,地埋式一体化生活污水专用处理设备是一种处理效果十分理想且管理方便的设备。

污水处理池和地埋式设备均设计于地表以下,地表以上绿化。因此污水处理站不影响周边的整体环境和深化要求。 二、设计依据 1、废水排放执行出水水质达到GB18918-2002《污水综合排放标准》三级排放标准; 2、恶臭气体排放执行《恶臭污染物排放标准》(GB14554-93); 3、噪声排放执行《工业企业厂界噪声标准》(GB12348-90); 4、废渣排放执行《工业“三废”排放试行标准》(GBJ-73); 5、污泥执行《农用污泥中污染物控制标准》(GB4284-84)。 三、废水处理工艺 1、工艺流程图如下: 生活 污水

生活污水处理方案

100T/D生活污水处理方案 1、综述 煤矿每天最大生活污水消耗量为100m3/d,所以,设计一套5 m3/d的生活污水处理设备。 生活污水是人们在日常生活中产生的污水,包括厨房洗涤、厕所用水,洗衣机排水,淋浴用水等。生活污水中含有较多的有机物,如蛋白质、脂肪、淀粉、糖类、纤维素等;还含有氮、磷、硫等无机盐。另外生活污水中还含有多种微生物和病原体(如病菌和病毒)。新鲜的生活污水中,细菌总数在5×105—5×106个/L之间。生活污水中悬浮物质浓度一般在200—400mg/L,却多为无毒物质。生活污水处理量为100m3/d,经污水处理设备处理后的水回用用于绿化或灌溉。 本设计提出的是最低限度的技术要求,并未对一切技术细节作出明确规定,也未充分引述有关标准和规范的条文,供方应保证提供符合本设计和工业标准的优质产品。 2、设计依据 2.1 《室外给水设计规范》(GBJ13—86); 2.2 《给水排水工程设计规范》(GBJ15—88); 2.3 《室外排水设计规范》(GBJ14—91); 2.4 《污水综合排放标准》(GB8978—1996)一级标准; 2.5 《煤炭工业污染物综合排放标准》(GB20426—2006); 2.6 《低压配电设计规范》(GB50054—95); 2.7 《建筑电气通用图集》(92DQ); 3、设计原则 3.1 技术先进成熟,运行稳定可靠、操作简单、维护方便、耐腐蚀、强度高; 3.2 污水处理工程投资省、运行费用低、占用面积小、自动化程度高; 3.3 污水处理工程不产生二次污染; 3.4 主体设备采用地理式钢结构; 3.5 总结以前类似处理工艺并在技术上进一步完善。

污水处理厂二期工程施工进度计划与实际施工进度分析报告修订稿

污水处理厂二期工程施工进度计划与实际施工进度分析报告 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

遵义市南部污水处理厂二期工程施工进度计划与实际施工进度分析报告 影响工期不利因素分析及其解决措施 在全面保证工程质量和有效控制成本的前提下,以最合理的施工速度完成工程任务,满足业主要求,是本工程的施工进度目标。因此,根据本工程工期进度安排,各关键节点的工期是本工程施工进度控制的键,我监理将通过对各种影响因素的分析,并采取各相关措施予以解决。 一、影响关键节点工期的不利因素 本工程在施工过程中,影响关键节点工期不利因素主要可以分为三类:项目经理部因素、相关单位因素、社会因素及不可预见因素。 一)项目经理部因素 1.施工组织不合理,人力、机械设备调配不当,解决问题不及时; 2.施工技术措施不当;

3.与相关单位协调不善等。 二)相关单位因素 1.设计图纸影响,提供设图纸不及时,不配套; 2.业主要求设计变更,主要因施工区域场地变化,图纸变更影 响; 3.实际工程量增减变化; 4.地勘钻孔影响,部分施工区域不能正常施工; 三)社会因素 1.长期因征地拆迁矛盾影响,当地村民阻工累计长达80多天,影响恶劣; 2.施工区域内受征地,迁坟影响,部分施工区域不能正常施工. 四)不可预见因素 1.工程施工期间,经历了雨天、冬天等季节,天气对整个工程施工进度的影响不可忽略。 二、解决措施 一)项目经理部因素

1.合理安排各项目的施工,每一项目新工作的施工均有详细的施工方案,经项目总工审核批准后方可投入施工。 2.在劳动力配备、机械配备上主要根据工程施工内容、操作工艺进行配备,同时保证各设备均能满足施工要求。 3.施工过程中严格按现行施工规范规定及有关要求进行施工,各施工项目完成后均由相关管理单位检验合格后方可进行下道工序的施工。 4.协调好与现场各管理部门之间的关系,特别是建设单位、监理单位、设计单位及其它建设行政部门等。 5.严格按照施工进度计划,合理安排施工,在施工过程中,当实际进度与计划进度不一致时,应采取相应措施,调整原计划与实际进度配套进行,施工进度计划控制采用动态循环的控制方法进行施工. 6.为满足施工进度计划要求,施工期间要求施工单位合理制定施工加班赶工计划安排. 二)相关单位因素

生活污水处理方案设计方案

生活污水处理方案设计方案 1 概述 生活中的废物、污水是水体的主要污染源之一。生活污水中含有大量有机物,未经处理就直接排放,会造成水体富营养化,进而导致水体缺氧、发臭、藻类大量滋生、鱼类死亡等,严重破坏了水体的生态平衡。因此,为保护生态环境,必须对该种污水进行治理。 本设计方案适用于生活污水处理。由于小城镇过去“重建设,轻环保”的旧观念,城镇基础设施建设远远落后于城镇建设的发展,缺乏必要的污水收集系统和污水处理设施,污水无序乱流,不仅直接污染了小城镇自身生态环境,而且造成了河湖水体的严重污染,已成为区域性水环境的重要污染源。根据有关报导,预计今后我国70%以上的生活污水将来自城镇及小区。可见小城镇的污染治理关系到我国环境状况和可持续发展的战略目标,是十分重要和必要的,也是非常有前途和极具生命力的。城镇污水处理设施建设规模应遵循以下几项原则,综合考虑确定:①满足城镇总体规划的要求;②按城镇自然地理地形地貌特征划定汇水区;③避免远距离输水,就近再生处理、就近排放、就近利用;⑤城镇近期投资能力;污水收集系统与污水处理设施配套。本设计方案在项目构成、工艺与装备、配套工程、劳动组织与劳动定员等方面,根据所选的工艺技术特点和污水处理设施运营管理的基本要求,结合当地的实际情况

均进行了科学合理的设置,并达到国家的排放标准。 本设计方案拟采用的处理工艺为生物接触氧化,出水可达到国家标准《城镇污水处理厂污染物排放标准》(GB18918—2002)三级标准要求。 表1 基本控制项目最高允许排放浓度(日均值)(单位:mg/L) 2 设计依据、原则及范围 2.1 设计依据 (1) 建设单位提供的污水水质、水量等基础资料 (2) 《室外排水设计规范》(GB 50014—2006) (3) 《给水排水工程结构设计规范》(GB50069-2002) (4) 《给水排水构筑物工程施工及验收规范》(GB50141—2008) (5) 《城市区域环境噪声标准》(GB3096—93) (6) 《给排水工程概预算与经济评价手册》

300吨每天生活污水处理改造方案报告

.专业资料分享 3oom/d生活污水处理改造项目

二零一四年五月

目录 1概述 (1) 1.1项目情况 (1) 1.2编制依据和原则 (1) 1.2.1编制依据 (1) 1.2.2编制原则 (1) 1.2.3遵循的主要标准、规范 (2) 1.2.4执行的主要法律法规 (2) 2工艺改造方案 (3) 2.1建设规模 (3) 2.2水质指标 (3) 2.3水质指标 (4) 2.3.1原工艺流程图 (4) 2.3.2改造后工艺流程图 (5) 2.4工艺流程简介 (6) 3工艺单元简介 (7) 3.1格栅 (7) 3.2调节池 (8) 3.3水解酸化池 (8) 3.4接触氧化池 (9)

3.5混凝沉淀池 (11) 3.6中间水池 (12) 3.7石英砂过滤器 (12) 3.8活性炭过滤器 (12) 3.9消毒池 (13) 3.10污泥池 (14) 4本系统存在问题及解决方案 (15)

1概述 1.1项目情况 项目名称:3 00m3/d生活污水处理改造工项目 建设地址:甲方指定空地 建设性质:改造工程 项目简介:该项目的污水主要来源是生活污水,设计水量为300n3/d,污 水站24小时连续运行,设计时处理水量为15n3/h。 本项目污水处理站主体采用A/O工艺,由于污水站运行时间已久,原有的运行系统已不能达到出水标准。现对该污水处理站进行改造处理。根据对现场的勘察,原系统存在池内污泥淤积需要及时清理;填料、滤料均需要更换,同时PLC电柜也需更换等诸多问题,为了保证本系统更好的运行根据现场实际情况,对该污水处理站提出改造方案。 1.2编制依据和原则 1.2.1编制依据 甲方相关人员提供的的项目情况资料。 1.2.2编制原则 1)执行国家关于环境保护的政策,符合国家的有关法规、规范及标准。 2)采用高效节能、先进稳妥的废水处理工艺,提高处理效果,减少基建投资和日常运行费用,降低对周围环境的污染。 3)选择国内外先进、可靠、高效、运行管理方便、维修简便的排水专用设备。

2018农村生活污水处理方案_评审通过版

目录 一、工程概况 (1) 二、设计依据 (2) 三、设计原则 (4) 四、设计范围 (5) 五、污水收集管网系统及接户方案设计 (6) 六、管道施工技术要求 (9) 七、检查井施工技术要求 (14) 八、化粪池施工技术要求 (16) 九、安全文明施工其他施工技术要求 (18)

一、工程概况 沙鹰村沙鹰村紧邻绍甘线,交通便捷,距离绍兴市区25公里左右。沙鹰村历史发展悠久,旅游资源丰富,村庄经济以农产品种植与加工为主,村域范围内有大面积的茶山,有茶叶精茶厂两家。全村有300余户村民,根据稽东镇污水专项规划,沙鹰村村委建议及现场实际情况,对沙鹰村进行污水管网设计。以下为沙鹰村生活污水设计基本情况见表1.1-1: 表1.1-1沙鹰村生活污水设计基本情况

二、设计依据 1.《中华人民共和国水污染防治法》(2008年修订); 2.《城镇污水处理厂污染物排放标准》(GB18918-2002); 3.《镇(乡)村排水工程技术规程》(CJJ124-2008); 4.《室外排水设计规范》(2014版) (GB50014-2006); 5.《越南省用水定额(试行)》(2004); 6.《农村生活污水处理技术规范》(DB33TB868); 7.《室外排水设计规范》(2014版) (GB50014-2006); 8.《人工湿地污水处理工程技术规范》(HJ-2005-2010); 9.《城镇给水排水技术规范》(GB50788-2012); 10.《给水排水管道工程结构设计规范》(GB50332-2002); 11.《埋地塑料排水管道工程技术规程》(CJJ 143-2010); 12.《给水排水工程构筑物结构设计规范》(GB50069-2002); 13.《给水排水构筑物工程施工及验收规范》(GB50141-2008); 14.《给水排水管道工程施工及验收规范》(GB50268-2008); 15.《砌体结构设计规范》(GB50003-2011); 16.《混凝土结构设计规范》(GB50010-2010); 17.《市政排水用塑料检查井》(CJ/T326-2010); 18.《排水检查井》图集06MS201-3; 19.《塑料排水检查井》(2013浙S16); 20.《玻璃钢化粪池的选用与埋设》图集14S706;

生活污水处理设备原理及工艺

生活污水处理设备原理 及工艺 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

生活污水处理设备介绍及原理 生活污水处理设备工艺介绍及生活污水处理设备选型 一.污水性质: 农村综合生活污水。 二.污水水量 根据设计要求本方案每套污水总流量按120 m3/D设计,通过的一体化污水处理系统(设备)流量按5m3/H设计处理运行。 三.污水水质及排放标准 四.设计处理工艺 工艺流程选择 生活污水的溶解性CODcr与BOD5均较高, BOD:COD的比值>,宜采用生化处理工艺。生化处理工艺具有以下优点:处理效率高;运行费用低;产

泥量少,不产生二次污染。生化处理工艺主要分为活性污泥法和生物法,而生物法由于不会产生污泥膨胀,并且无需污泥回流而使流程及操作比较简便,并且有机物负荷较高,因此反应池池容较小而节省土建费用等优点,目前比较常用且非常成熟的生物法工艺当属生物接触氧化法,因此本工程决定采用生物接触氧化法。本法工艺成熟,流程简单,管理方便,整个污水处理站除过滤器和设备操作间外,其余主体设备均设于地下,设备覆土并种植草坪,因此工程不额外占地,不影响地表绿化。本系统使用寿命长,主要设备可自动控制运行,管理人员少,是目前普遍应用的生活污水治理方法,极适用于生活区使用。 工艺流程图如下:

其流程为:污水经格栅后进入水解酸化池(调节池)进行水质水量调节出水经提升泵提升至厌氧生物池(兼氧池A),出水进入一级接触氧化池(O)生化后再进入二级接触氧化池(O)继续生化后,进入沉淀池进行固液分离后经加入消毒剂后进入接触消毒池,经一定的接触时间后消毒出水即可达标排放。 工艺设计说明 根据本项目特点,本方案设计采用生活污水处理上最为成熟的厌(兼)氧+接触氧化+消毒的处理工艺。 污水首先经过管道汇合进入本污水处理系统,经格栅去除大颗粒状和纤维状杂质。污水按系统内特定结构逐次流经水解酸化池、接触氧化池、沉淀池、接触消毒后达到业主要求的排放标准。设计范围自污水入口至系统达标排放口。 主要工艺介绍 (1)格栅 格栅的主要作用是将污水中的大块污物拦截,以免其对后续处理单元的机泵或工艺管线造成损害。 (2)水解酸化池(调节池) 为了使管渠和构筑物正常工作,不受废水高峰流量或浓度变化的影响,需在废水处理设施之前设置调节池。调节池的作用是均质和均量,一般还可考虑兼有隔油、沉淀、混合、加药、中和和预酸化等功能,对水量和水质的调节,调节污水pH值、水温,还可用作事故排水。 (3)生物接触氧化(地埋式一体化污水处理设备)

《城镇污水处理厂污染物排放标准》GB 18918

《城镇污水处理厂污染物排放标准》GB 18918----2002 1.1范围 本标准规定了城镇污水处理厂出水、废气排放和污泥处置(控制)的污染物限值。 本标准适用于城镇污水处理厂出水、废气排放和污泥处置(控制)的管理。 居民小区和工业企业内独立的生活污水处理设施污染物的排放管理,也按本标准执行。 1.2规范性引用文件 下列标准中的条文通过本标准的引用即成为本标准的条文,与本标准同效。 GB 3838 地表水环境质量标准 GB 3097 海水水质标准 GB 3095 环境空气质量标准 GB 4284 家用污泥中污染物控制标准 GB 8978 污水综合排放标准 GB 12348 工业企业厂界噪声标准 GB 16297 大气污染物综合排放标准 HJ/T 55 大气污染物无组织排放监测技术导则 当上述标准被修订时,应使用其最新版本。 1.3术语和定义 1.3.1城镇污水(minicipal wastewater)

指城镇居民生活污水,机关、学校、医院、商业服务机构及各种公共设施排水,以及允许排入城镇污水收集系统的工业废水和初期雨水等。 1.3.2城镇污水处理厂(municipal wastewater treatment plant) 指对进入城镇污水收集系统的污水进行净化处理的污水处理厂。 1.3.3一级强化处理(enhanced primary treatment) 在常规一级处理(重力沉降)基础上,增加化学混凝处理、机械过滤或不完全生物处理等,以提高一级处理效果的处理工艺。 1.4技术内容 1.4.1水污染物排放标准 (1)控制项目及分类 A、根据污染物的来源及性质,交款污染物控制项目分为基本控制项目和选择控制项目两类:基本控制项目主要包括影响水环境和城镇污水处理厂一般处理工艺可以去除的常规污染物,以及部分一类污染物,共19项;选择控制项目包括对环境有较长期影响或毒性较大的污染物,共计43项。 B、基本控制项目必须执行。选择控制项目,由地方环境保护行政主管部门根据污水处理厂接纳的工业污染物的类别和水环境质量要求选择控制。 (2)标准分级 根据城镇污水处理厂排入地表水域环境功能和保护目标,以及污水处理厂的处理工艺,将基本控制项目的常规污染物标准分为一级标

生活污水处理方案分析

生活污水处理方案 一、处理设施概况 大多数生活污水的主要污染物是病原性微生物和有毒有害的物理化学污染物,可以通过各种水处理技术和设备去除水中的物理的、化学的和生物的各种污染物,使水质得到净化,达到国家或地方的水污染物排放标准,保护水资源环境和人体健康。尽管如此,某些生活污水站由于处理技术和管理等方面的原因,污水不能做到稳定达标排放,与规定排放标准相差甚远。因此,在多年研究的基础上,采用前置A级生化池(水解生化池)—生物接触氧化工艺成功地处理了该类生活污水,该工艺具有抗负荷性强、除磷脱氮处理效果好、运行管理自动化程度高,采用地埋式占地面积少,美观大方等优点。 一体化生活污水专用处理设备,埋地设计。该设备结合生活污水性质,采用世界上先进的生物处理工艺,集去除BOD5、COD、NH3 - 病菌于一身,是目前最高效的生活污水处理设备。它被广泛地用于N、 各小区的生活污水处理及水质近似生活污水的工业水处理,替代了去除率很低,处理后出水不能达到国家排放标准的普通物理化学法及生化处理法。经过应用表明,地埋式一体化生活污水专用处理设备是一种处理效果十分理想且管理方便的设备。 污水处理池和地埋式设备均设计于地表以下,地表以上绿化。因此污水处理站不影响周边的整体环境和深化要求。

二、设计依据 1、废水排放执行出水水质达到GB18918-2002《污水综合排放标准》三级排放标准; 2、恶臭气体排放执行《恶臭污染物排放标准》(GB14554-93); 3、噪声排放执行《工业企业厂界噪声标准》(GB12348-90); 4、废渣排放执行《工业“三废”排放试行标准》(GBJ-73); 5、污泥执行《农用污泥中污染物控制标准》(GB4284-84)。 三、废水处理工艺 1、工艺流程图如下: 生活 污水 泥定期外排

生活污水处理设备工艺流程图

生活污水处理设备工艺流程图 生活污水处理设备工艺流程: 生活综合污水自流经格栅格去大颗粒悬浮物流入废水调节池;调节池中废水均质均量后,通过液位计控制由污水提升泵打入水解池,利用厌氧微生物来对废水中N、P、CODcr、BOD5等污染物进行降解。水解池内挂有弹性纤维复合填料以增加微生物量,池内存在高浓度的污泥混合液及生物膜,在池内有机物被兼氧菌降解,提高了废水的可生化性,同时,在微生物的作用下,将有机氮和氨态氮转化为N2和NxO气体的过程。水解池出水流入氧化池,在好氧的微生物作用下,将废水中NH4+转化为NO2-和NO3-。又借助池内弹性填料上附着的好氧微生物的氧化代谢作用,分解废水中的有机污染物,从而降低其BOD5、CODcr、等污染物指标。接触氧化池出水自流入沉淀池,沉淀的污泥适当经气提打入污泥池消化处理,沉淀池的污水主要进行泥水分离后再流入后续清水消毒池达标排放。污泥池累积的剩余污泥消化后由抽泥泵定期清理外运,上清液回流水解池进行反硝化脱氮处理。 生活污水处理设备回用工艺流程图

生活污水处理设备回用工艺流程: 生活污水井排水管网排入生活污水处理站,先经粗格栅去除大块的杂物,然后进入集水井。集水井内配置抗堵塞污水泵,泵出水进入细格栅和沉砂池,通过细格栅去除小的悬浮物和砂粒,可以减轻后续处理负荷,同时避免悬浮物对MBR膜组件的不利影响,然后污水进入调节池内进行水质和水量的调节。进入专门设计的MBR系统,污水在曝气好氧区及厌氧缺氧区完成有机物和氨氮的去除。曝气装置将采用微孔曝气器。曝气池后是膜池,污染物在

膜池内进一步降解,通过膜分离出水,产水直接达到回用水标准,膜池浓缩液通过混合液循环泵循环回到前面的厌氧区保持其污泥浓度。由MBR出水经紫外消毒设备后直接达到再生水指标,再经回用水池及回用水泵外输回用。污泥排入污泥池,通过进泥螺杆泵输送至污泥压滤机,产生的污水直接排到厂区污水管网,泥饼外运。

污水处理改造工程总结报告

污水处理改造工程总结报告 一、工程概况 本项目位于沈阳市大东区山梨屯北部。目前状况:上游泄洪夹带大量泥沙淤堵氧化塘;周边村屯生活垃圾乱排堵塞河道,水生植物生长环境不利等。原水量:1000立方米/日,原水质:CODcr<280mg/L,BOD5<120mg/L。处理后出水达到地表水V类标准;CODcr<40mg/L,BOD5<10mg/L。本工程于xx年9月1日开工,xx年9月23日竣工并正式交付使用。 二、工程量及工程特点本单位工程工程量主要包括土建工程和设备安装工程;土建工程包括:场地平整、进水渠、排水坝、河堤加固、设备间、生物填料、人工浮岛、河堤加固水泥平台、人行道、路灯、绿化、围栏、施工排水共12项,设备安装包括:电气工程、给排水工程、曝气系统、加药系统、太阳能路灯、自备井工程共6项。本工程的特点主要是施工面积小、工程量大、工期短。施工配合和技术要求复杂、施工质量要求高等,具体体现在以下几点: 1、工程量大、配合面广由于本工程的安装工程量大、工期比较紧,所以常常发生土建及安装同期施工的现象,出现大面积、多专业、多人数同时进行施工的场面。针对此种状况,我们在做好详尽而周密的施工计划和组织安排的同时组织足够的人力与物

力,并且认真做好内部统筹,积极加强外部协调,为确保工程顺利实施奠定了坚实的基础。 2、技术要求高、交叉作业多本工程在施工过程中多次出现大面积、多人员同时赶工、交叉施工,在抢抓工期、确保安全的前提下,针对不同的施工作业面,面对交错复杂的各种专业工序,我项目部施工管理人员深入现场实地查看,仔细研究科学统筹,做到了布局美观、走向合理,体现了较高的统筹管理水平和专业技术以及施工班组过硬的技术素质和丰富的施工经验。同时抓紧配合各方工作,充分协调好工序的衔接过程,抢时间、争进度、保质量、保安全,力争在最短的时间内为工程的顺利开展创造有利条件。 三、施工组织实施情况接到施工任务后,我公司立即组建了项目经理部,并组织专业技术人员熟悉图纸,做好施工技术准备;同时,各职能部门(工程部、材料部、后勤保障部)马上落实劳动力、机具、设备、材料、后勤物资的供应安排。项目经理部随即同业主、监理一起,尽快进行施工场地的接收,并派人布置临电、临设,在工程开始前按安全、实用的原则搞好施工平面布置,以便施工生产工人一进场就能展开施工。 对施工使用的材料按照规范进行材料检验,合格后方允许进场使用。施工过程中,对施工操作及每一工序,项目部严格执行国家有关规范和标准对工程质量进行严格把关,特别是隐蔽工程

生活污水处理设计方案

100m3/d生活污水处理 设计方案

目录 第一章工程概况 (2) 第二章设计依据、设计原则及设计范围 (2) 第三章设计水量与水质 (4) 第四章处理工艺的选择 (5) 第五章处理工艺设施简要说明 (12) 第六章系统技术性能参数说明 (15)

第一章工程概况 该区所排放污水主要为日常生活污水,根据国家环境保护局的有 关规定和相关条款,区内所排污水必需经处理达标后方可排入市政污 水管道或纳入附近水域。 为严格遵守有关环境法规,保护环境,本着经济建设和环境保护同步进行的“三同时”原则。我单位受建设方邀请,在进行初步调研,并经多项生活污水处理成功的实践经验的基础上,编制该区内生活污水设计方案,以供有关部门决策、实施。 针对该区生活区的具体污水水质的特点,本方案拟采用常规的“A/O”工艺,该处理工艺成熟实用,操作运行方便,日常费用低廉,出水稳定,主要设备采用优质钢结构,考虑到区内周边环境和卫生问题,故该生活污水处理工程决定采用全埋地式结构,上部覆土,可种植花木、草坪,进一步美化环境。 第二章设计依据、设计原则及设计范围 (1)设计依据 1)业主提供的有关资料; 2)《污水综合排放标准》(GB8978-1996),一级排放标准; 3)室外排放设计规范(GBJ14-87); 4)环境噪声标准(GB5096-93); 5)低压配电设计规范GB50054-95; 6)给水排水工程和污水处理工程建设有关技术规范;

7)我公司所完成同类工程所取得的实际经验和实际工程参数。(2)设计原则 1)严格执行国家现行的环保技术标准、规范,遵守国家和地方环保的有关法律、法规及排放标准; 2)选用先进、合理、可靠的处理工艺,在确保处理排放达标的前提下,做到操作简单、管理方便、占地小、投资省、运行费用低;3)本工程系环境工程,尤其要注意环境保护,避免和减少二次污染。 要求改善劳动卫生条件,贯彻安全生产和清洁文明生产的方针;4)为了提高污水处理站管理水平,设计采用PLC全自动程序控制,减轻操作人员的劳动强度; 5)合理选用优质配件,降低能耗,提高工作效益和使用寿命,降低系统运行成本; 6)在工艺设计时,有较大的灵活性,可调性,以适应水量、水质的周期变化。采用一套(5m3/h一体化埋地式)污水处理设施,以提高系统的灵活性、可变性、适应性和先进性; 7)采用污泥前置回流硝解工艺,以降低污泥产生量; 8)因地制宜,合理布局,有效地利用空间和场地。 (3)设计范围 1)从污水处理格栅井开始到处理设备的排放口为止。 2)污水工程的工艺流程,工艺设备选型,工艺设备的结构布置,电气控制说明等设计工作。 3)污水处理工程的钢砼工艺结构,设备的施工、安装、调试等工作。

城市生活污水处理设施工艺方案

城市生活 污水处理设施 工 艺 方 案 环境工程有限公司二零一三年一月 生活污水处理系统设计方案

<摘要>●污水处理的总体设计思想 本着技术先进成熟、运行稳定可靠切合项目实际、降低运行费用、操作管理简单、总体设计合理的原则,通过对该综合污水的水量、水质及站址特点分析,结合当今世界上生活污水处理最新技术,确定以“厌氧水解+好氧生物接触氧化”为核心处理工艺,以“厌氧水解池和二段生物接触氧化池”为核心处理单元,配合以埋地式布置形式和全自动运行方式的基本设计框架。在处理污水的同时注意污泥的处理,不对环境产生二次污染,使得该污水处理装置能够达到日处理量为600吨,出水标准为《污水综合排放标准》18918-2002一级B标准。 ●污水处理站主要经济技术指标 污水处理站设计处理能力600m3/d, 全天24小时连续运行,即25m3/h。 ●设计特点 (1)先进成熟的处理工艺; (2)整体埋地的土建式结构; (3)无需专职人员管理的全自动运行方式; (4)低能耗的二级生物处理; (5)无剩余污泥处置问题; (6)科学的降噪措施; (7)巧妙的除臭设计; (8)方便的维护检修; 1 概述

1.1 项目概况 生活污水排污总量为600 m3/d,排水体制为雨污分流。生活污水主体来源于居民生活区,温泉大酒店等,根据江苏环境保护厅等相关部门的有关排污标准和要求,该地区的污水汇集经二级处理达到《污水综合排放标准》18918-2002一级B标准后,方可排入河道。 1.2 设计依据 1.2.1 政府部门要求; 1.2.2 业主提供的现场环境和现场调研收集的有关资料; 1.2.3 相关的法规与技术标准: 1.2.3.1 《江苏省环境工程设计管理规定和技术要求》 1.2.3.2 《建设项目环境保护设计规范》(1996) 1.2.3.3 《城镇污水处理厂污染物排放标准》(GB18918-2002) 1.2.3.4 《城市区域环境噪声排放标准》(GB8978-1996) 1.2.3.5 《给水排水工程结构设计规范》 1.2.3.6 《建筑给排水设计规范》 1.2.3.7《室外排水设计手册》 1.2.4 我公司在生活污水处理方面的工程实践经验。 1.3 设计规范与设计内容 本设计规范限于拟建污水站界内,包括污水处理的工艺、土建及电气设计。 2 污水站建设规模及要求 2.1 设计处理水量的确定 根据政府提供的有关资料的相关文件要求,污水站的设计处理水量按600m3/d考虑。污水站采用全天24小时连续运转方式,则设计小时处理量为25m3/h。 2.2 设计处理水质的确定 2.2.1 进站水质 根据政府提供的有关资料的相关文件要求,确定该地区的水质为中常浓度生活污水,综合污水汇集后的水质为:

北京市水污染物排放标准DB11 307

北京市水污染物排放标准DB11 307—2005 1 范围 本标准按照污水排放去向,分级规定了75种水污染物的最高允许排放限值。 本标准适用于北京市辖区内现有单位和个体经营者水污染物的排放管理,以及建设项目的环境影响评价、建设项目环境保护设施设计和竣工验收及其投产后的排放管理。 2 技术内容 2.1 标准分级和限值 2.1.1 北京市五大水系各河流、湖泊、水库水体功能划分与水质分类见《北京市海河流域水污染防治规划》(京政函[1998]18号)。 2.1.2 在划定的II、III类水体功能区内,禁止新建排污口,现有的排污口应按照水体功能的要求,实行污染物总量控制,以保证受纳水体水质符合规定用途的水质标准。在已进行污水截流的其他水域也禁止新建排污口。 2.1.3 排入北京市II类水体及其汇水范围的污水执行一级限值,其中:向《密云水库怀柔水库和京密引水渠水源保护管理条例》和《官厅水系水源保护管理办法》划定的一、二级保护区范围内排放的污水执行一级限值A;排入其他II类水体及其汇水范围的污水执行一级限值B,限值见表1。 2.1.4 排入北京市III、IV类水体及其汇水范围的污水执行二级限值,限值见表1。 2.1.5 排入北京市V类水体及其汇水范围的污水执行三级限值,限值见表1。 2.1.6 排入设置城镇二级污水处理厂的城镇排水系统的污水,执行排入城镇污水处理厂限值,限值见表2。 2.1.7 排入未设置城镇二级污水处理厂的城镇排水系统的污水,必须根据排水系统出水受纳水体的功能,分别执行本标准2.1.3、2.1.4、2.1.5的规定。 2.2 其他规定 2.2.1 对于排放含有放射性物质的污水,除执行本标准外,还须符合GB 8703的规定。 2.2.2 城镇污水处理厂出水排入《密云水库怀柔水库和京密引水渠水源保护管理条例》和《官厅水系水源保护管理办法》划定的一、二级保护区范围内的执行本标准中一级限值A,限值见表1。 2.2.3 城镇污水处理厂出水排入《密云水库怀柔水库和京密引水渠水源保护管理条例》和《官厅水系水源保护管理办法》划定的一、二级保护区范围以外的II 类水体及其汇水范围的,执行GB 18918—2002表1中一级标准的A标准以及表2、表3的有关规定。 2.2.4 城镇污水处理厂出水排入III、IV、V类水体及其汇水范围的,执行GB 18918—2002表1中一级标准的B标准以及表2、表3的有关规定。

城市生活污水处理工程验收报告

***城市生活污水处理工程竣工验收报告 ***城市生活污水处理工程建设项目属于“汶川大地震”灾后重建项目和国家扩大内需的项目,也是中央投资的重点流域和三峡库区水污染治理项目之一。在县委、政府的正确领导下,在各相关职能部门的大力支持配合下,经过参建单位的密切协作,该项目已经具备竣工验收条件。现就项目建设情况报告如下: 一、项目基本情况 (一)项目审批情况 1、**省发展计划委员会于2003年6月24日印发《**省计委关于***城市生活污水处理厂可行性研究报告(代立项)的批复》。 2、**省环境保护局于2006年12月27日印发《关于对***城市生活污水处理厂工程(一期)环境影响报告表的批复》。 3、**省发展和改革委员会于2007年8月2日印发《**省发展和改革委员会关于***城市生活污水处理工程初步设计的批复》。 (二)主要建设内容及规模 项目位于***镇***村,厂区占地**亩。项目设计规模为日处理污水2万吨,配套场外截污干管**公里,其中一期处理污水1万吨/日,厂区预处理和截污干管及公用设施部分按2万吨/日规模建设;处理工艺为改良型氧化沟;出水水质排放标准为一级A标。 建设内容主要有:综合楼、污泥脱水机房、预处理单元、厌氧池、氧化沟、二沉池、回流污泥井、D型滤池、紫外线消毒渠、提升排放井、设备安装、厂区工艺管网、电缆、自控系统、截污干管、进场道路、厂区道路等。

(三)项目业主变更情况说明 1、项目决策阶段 ***生活污水处理项目于2003年由***有限公司做可研代立项,省计划委员会《**省计委关于***城市生活污水处理厂可行性研究报告(代立项)的批复》,暂定业主为***有限公司。 2、项目实施阶段 2007年,县政府决定实施该项目,委托***工程建设有限公司设计。初步设计完成后,**省发展和改革委员会下发***城市生活污水处理工程初步设计的批复(川发改投资[2007]409号),项目业主:***国有资产经营公司。 (四)项目总投资、资金来源以及资金落实情况 项目总投资3000万元,建设年限为3年(建设工期以国家下达资金计划时间起算)。资金来源:使用上级财政资金***万元,其余为地方自筹。 二、项目建设管理和目标控制情况 (一)参建单位 1、可研报告编制单位:中国***有限公司; 2、环境影响报告表编制单位:***公司; 3、勘察单位:**省***公司 4、设计单位:中国***有限公司; 5、工程监理:*****有限公司; 6、建筑物围墙道路施工单位:***公司; 7、构筑物土建施工单位:***公司; 8、设备采购安装调试单位:***有限公司; 9、截污干管施工单位:***有限公司;

城市生活污水处理方案

引言 水是人类的生命之源,它孕育和滋养了地球上的一切生物,并从各个方面为人类服务。但是,水环境中的淡水资源却很少,仅占总量的2.53%,而目前能供人类直接取用的淡水资源仅占0.22%。加之自然水源的季节变化和地区差异,以及自然水体遭到的普遍污染,致使可能直接取用的优质水量日益短缺,难以满足人们生活和工农业生产日益增长的需求,因此保护和珍惜水资源,是整个社会的共同职责。所以说水资源是基础性自然资源、战略性经济资源,水资源安全属于资源和经济安全。 80年代以来,废水生物处理新工艺的研究、开发和应用,已在全世界范围内得到了长足的进展,并出现了许多新型的废水生物处理技术。这些新工艺有的已在国内外实际工程中得到了良好的应用,有的已显示出其良好的应用发展前景、得到广大的研究者和工程技术人员的关注并正在得到不断深入的研究,他们的共同特点是高效、稳定、节能,并具有对污染物去除的多功能性,大多具有脱氮除磷等深度处理的良好效能,并正朝自动化控制的方向发展。 近年来,随着葫芦岛市新城区的不断扩大,人口和工业产值也随之增加,生活用水和工业用水的需求也急剧扩大,如此必然引起污水量的增加,一系列水环境问题将日益突出。如不及时对新城区的污水进行治理,那么新城区的水环境污染将严重下去,整个城区的生活环境和生态平衡都将受到更为严重的破坏,而这一切的恢复将是十分缓慢的,要为之付出的代价也十分昂贵。因此,必须在该区建立一座生活污水处理厂。新城区污水通过治理可以缓解和减轻水环境污染,缓解水资源的供需矛盾,为城区的经济文化的发展创造有利条件。工程的兴建,一方面为人们提供优质的生活污水,提高人们的生活质量和健康水平;另一方面是工业用水水质得到保障。本设计是针对葫芦岛市新城区的实际情况而设计的。由于该城区生活用水的流量较大、SS含量高、氮磷等也都需要有一定的去除。A2/O 工艺在同时脱氮除磷去除有机物的的工艺中,该工艺流程最为简单,总水力停留时间也少于同类其他工艺,在厌氧—缺氧—好氧交替运行下,丝菌不会大量繁殖,SVI一般小于100,不会发生污泥膨胀等优点。 一概述 1.1 设计任务和依据 1.1.1 设计任务 本设计方案的范围是某市60000m3/d生活污水处理工艺设计,编制内容包括污水处理系统设计计算和污泥处理系统设计计算,辅助构筑物规划,污水厂平面布置和高程布置,设备选型,管道铺设,平面布置,高程计算,,以及完成污水处理厂工艺总平面图,污水处理厂污水和污泥高程图和主体构筑物平剖面图。 1.1.2 设计依据 (1)《城市污水处理及污染防治技术政策》 (2)《污水综合排放标准》DB8978-1996 (3)《城市污水处理厂污水污泥排放标准》CJ3025-93

相关文档
相关文档 最新文档