文档库 最新最全的文档下载
当前位置:文档库 › Hash算法MD5 实验报告

Hash算法MD5 实验报告

Hash算法MD5 实验报告
Hash算法MD5 实验报告

哈尔滨工程大学

实验报告

实验名称:Hash 算法MD5

班级:

学号:

姓名:

实验时间:2014年6月

成绩:

指导教师:

实验室名称:

哈尔滨工程大学实验室与资产管理处制

一、实验名称

Hash算法MD5

二、实验目的

通过实际编程了解MD5 算法的加密和解密过程,加深对Hash 算法的认识。

三、实验环境(实验所使用的器件、仪器设备名称及规格)

运行Windows 或Linux 操作系统的PC 机,具有gcc(Linux)、VC(Windows)等C 语言编译环境。

四、任务及其要求

(1)利用自己所编的MD5 程序对一个文件进行处理,计算它的Hash 值,提交程序代程和运算结果。

(2)微软的系统软件都有MD5 验证,尝试查找软件的MD5 值。同时,在Windows 操作系统中,通过开始→运行→sigverif 命令,利用数字签名查找验证非Windows 的系

统软件。__

五、实验设计(包括原理图、真值表、分析及简化过程、卡诺图、源代码等)

在MD5 算法中,首先需要对信息进行填充,使其字节长度与448 模512 同余,即信息的字节长度扩展至n*512+448,n 为一个正整数。填充的方法如下:在信息的后面填充第一位为1,其余各位均为0,直到满足上面的条件时才停止用0 对信息填充。然后,再在这个结果后面附加一个以64 位二进制表示的填充前信息长度。经过这两步的处理,现在的信息字节长度为n*512+448= (n+1)*512,即长度恰好是512 的整数倍,这样做的目的是为满足后面处理中后面处理中对信息长度的要求。n 个分组中第q 个分组表示为Yq。MD5 中有A、B、C、D,4 个32 位被称作链接变量的整数参数,它们的初始值分别为:

A=01234567B=89abcdef,C=fedcba98,D=76543210

当设置好这个4 个链接变量后,就开始进入算法的4 轮循环运算。循环的次数是信息中512 位信息分组数目。首先将上面4 个链接变量复制到另外4 个变量中A 到AA,B 到BB,C 到CC,D 到DD,以备后面进行处理。然后进入主循环,主循环

有4 轮,每轮循环都很相似。第1 轮进行16 次操作,每次操作对A、B、C 和D 中的其中3 个作一次非线性函数运算,然后将所得结果加上第4 个变量,文本的一个子分组和一个常数。再将所得结果向左循环移S 位,并加上A、B、C 或D 其中之一。最后用该结果取代A、B、C 或D 其中之一。

以下是每次操作中用到的4 个非线性函数(每轮一个)。

F(B,C,D)=(B∧C)∨__________(B∧D)(此处需修改)

G(B,C,D)=(B∧D)∨(C∧D)

H(B,C,D)=B⊕C⊕D

I (B,C,D)=C⊕(B∨D)

(注:∧是与,∨是或,是非,⊕是异或。)

2

下面为每一轮16 步操作中的4 次操作,16 步操作按照一定次序顺序进行。

FF(A,B,C,D,M[j],S,T[i])表示A=B+(A+(F(B,C,D)+M[j]+T[i])<<

GG(A,B,C,D,M[j],S,T[i])表示A=B+(A+(G(G,C,D)+M[j]+T[i] )<<

HH(A,B,C,D,M[j],S,T[i])表示A=B+(A+(H(B,C,D)+M[j]+T[i] )<<

II (A,B,C,D,M[j],S,T[i])表示A=B+(A+(I (B,C,D)+M[j]+T[i] )<<

M[j]表示在第q 个512 位数据块中的第j 个32 位子分组,0≤j≤15。

常数T[i]可以有如下选择,在第i 步中,T[i]是4294967296*abs(sin(i))的整数部分(注:4294967296= 232 。),i 的单位是弧度。其中,T[i]是32 位的随机数源,它消除了输入数据中任何规律性的特征。表1-4 说明了四轮主循环中每轮16 步操作的具体步骤。

所有这些完成之后,将A、B、C、D 分别加上AA、BB、CC、DD。然后用下一分组数据继续运行算法,最后的输出是A、B、C 和D 的级联。

#include

#include

#include

#include

typedef unsigned char *POINTER;

typedef unsigned short int UINT2;

typedef unsigned long int UINT4;

typedef struct

{

UINT4 state[4];

UINT4 count[2];

unsigned char buffer[64];

} MD5_CTX;

void MD5Init(MD5_CTX *);

void MD5Update(MD5_CTX *, unsigned char *, unsigned int);

void MD5Final(unsigned char [16], MD5_CTX *);

#define S11 7

#define S12 12

#define S13 17

#define S14 22

#define S21 5

#define S22 9

#define S23 14

#define S24 20

#define S31 4

#define S32 11

#define S33 16

#define S34 23

#define S41 6

#define S42 10

#define S43 15

#define S44 21

static unsigned char PADDING[64] = {

0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

};

#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))

#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))

#define H(x, y, z) ((x) ^ (y) ^ (z))

#define I(x, y, z) ((y) ^ ((x) | (~z)))

#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

#define FF(a, b, c, d, x, s, ac) { (a) += F ((b), (c), (d)) + (x) + (UINT4)(ac);

(a) = ROTATE_LEFT ((a), (s)); (a) +=

(b); }

#define GG(a, b, c, d, x, s, ac) { (a) += G ((b), (c), (d)) + (x) + (UINT4)(ac);

(a) = ROTATE_LEFT ((a), (s)); (a) +=

(b); }

#define HH(a, b, c, d, x, s, ac) { (a) += H ((b), (c), (d)) + (x) + (UINT4)(ac);

(a) = ROTATE_LEFT ((a), (s)); (a) +=

(b); }

#define II(a, b, c, d, x, s, ac) { (a) += I ((b), (c), (d)) + (x) + (UINT4)(ac);

(a) = ROTATE_LEFT ((a), (s)); (a) +=

(b); }

inline void Encode(unsigned char *output, UINT4 *input, unsigned int len)

{

unsigned int i, j;

for (i = 0, j = 0; j < len; i++, j += 4) {

output[j] = (unsigned char)(input[i] & 0xff);

output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);

output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);

output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);

}

}

inline void Decode(UINT4 *output, unsigned char *input, unsigned int len)

{

unsigned int i, j;

for (i = 0, j = 0; j < len; i++, j += 4)

output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) |

(((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24);

}

inline void MD5Transform (UINT4 state[4], unsigned char block[64])

{

UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];

Decode (x, block, 64);

FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */

FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */

FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */

FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */

FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */

FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */

FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */

FF (b, c, d, a, x[ 7], S14, 0xfd469501);

/* 8 */

FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */

FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */

FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */

FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */

FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */

FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */

FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */

FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */

GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */

GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */

GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */

GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */

GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */

GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */

GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */

GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */

GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */

GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */

GG (c, d, a, b, x[ 3], S23, 0xf4d50d87);

/* 27 */

GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */

GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */

GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */

GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */

GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */

HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */

HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */

HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */

HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */

HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */

HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */

HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */

HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */

HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */

HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */

HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */

HH (b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */

HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */

HH (d, a, b, c, x[12], S32, 0xe6db99e5);

/* 46 */

HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */

HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */

II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */

II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */

II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */

II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */

II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */

II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */

II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */

II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */

II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */

II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */

II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */

II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */

II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */

II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */

II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */

II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */

state[0] += a;

state[1] += b;

state[2] += c;

state[3] += d;

memset ((POINTER)x, 0, sizeof (x));

}

inline void MD5Init(MD5_CTX *context)

{

context->count[0] = context->count[1] = 0;

context->state[0] = 0x67452301;

context->state[1] = 0xefcdab89;

context->state[2] = 0x98badcfe;

context->state[3] = 0x10325476;

}

inline void MD5Update(MD5_CTX *context, unsigned char *input, unsigned int inputLen)

{

unsigned int i, index, partLen;

index = (unsigned int)((context->count[0] >> 3) & 0x3F);

if ((context->count[0] += ((UINT4)inputLen << 3))

< ((UINT4)inputLen << 3))

context->count[1]++;

context->count[1] += ((UINT4)inputLen >> 29);

partLen = 64 - index;

if (inputLen >= partLen) {

memcpy((POINTER)&context->buffer[index], (POINTER)input, partLen);

MD5Transform(context->state, context->buffer);

for (i = partLen; i + 63 < inputLen; i += 64)

MD5Transform (context->state, &input[i]);

index = 0;

}

else

i = 0;

memcpy((POINTER)&context->buffer[index],

(POINTER)&input[i], inputLen-i);

}

inline void MD5Final(unsigned char digest[16], MD5_CTX *context)

{

unsigned char bits[8];

unsigned int index, padLen;

Encode (bits, context->count, 8);

index = (unsigned int)((context->count[0] >> 3) & 0x3f);

padLen = (index < 56) ? (56 - index) : (120 - index);

MD5Update (context, PADDING, padLen);

MD5Update (context, bits, 8);

Encode (digest, context->state, 16);

memset ((POINTER)context, 0, sizeof (*context)); }

void MD5Digest(char *pszInput, unsigned long nInputSize, char *pszOutPut)

{

MD5_CTX context;

unsigned int len = strlen (pszInput);

MD5Init (&context);

MD5Update (&context, (unsigned char *)pszInput, len);

MD5Final ((unsigned char *)pszOutPut, &context); }

Int main()

{ char szDigest[16];

char encrypt[200];

printf("请输入要计算MD5值的字符串:");

gets(encrypt);

printf("\n加密结果:");

MD5Digest(encrypt,strlen(encrypt),szDigest);

int i;

for (i=0;i<16;i++) printf ("%02X",(unsigned char)szDigest[i]);

getchar();

}

六、实验步骤

1.算法分析

在光盘中附加了有关MD5 算法的头文件md5.h 和md5.c,根据所提供的文件分析MD5 算法的实现过程。

下面简单介绍所用到的结构体变量和函数。程序中用到的结构体变量如下:typedef struct md5_state{

ulong64 lengty;

ulong32 state[4],curlen;

unsigned char buf[64];

}md5_state;

length 记录已经处理过的位数,curlen 记录已经处理过的字节数,数组state 存储上

面所说的4 个链接变量,buf 作为处理过程中的缓存。

程序中用到的函数如下:

(1) void md5_init(md5_state *md)

函数名称:初始化函数

参数说明:

md 指向一个上面所提到的结构体变量。初始化时把curlen 和length 置为0,并把4 个

链接变量储存到state 中。

(2)int md5_process(md5_state *md, const unsigned char *buf, unsigned long len)

函数名称:处理函数

参数说明:

md 指向经过初过初始化函数处理过的一个结构体变量。

3

buf 指向待处理的信息。

len 是buf 中信息的长度,以字节为单位。

这个函数对待处理的信息以512 位为单位进行压缩,不足的部分存储在结构体中的buf

中,并且用len 来指示信息的末尾,这样下次调用时会接着上一次的结果进行。(3)int md5_done(md5_state *md, unsigned char *Hash)

函数名称:完成函数

参数说明:md 指向上面所处理过的结构体。Hash 指向存储结果的缓冲区。

这个函数对未完成的信息先进行padding 操作,然后处理,并把最终结果存在Hash 指

向的缓冲区中。

(1) int md5_text(void)

函数名称:测试函数

这个函数对上面的3 个函数进行测试。函数内部定义了一组信息和Hash 结果一一对应

的数组。通过调用上面的3 个函数,并把结果和正确结果相比较,可以判断程序正确与

否。

2.使用实例分析

下面的程序实现了对”hello,world”进行MD5 处理的功能,可以作为调用MD5 函数接口

的参考。

#include “md5.h”

int main( int argc,char *argv[])

{

md5_state md;

unsigned char *in=”hello, world!”,out[16];

md5_init(&md);

md5_process(&md,in,strlen(in));

md5_done(&md,out);

printf(“%s”,out);

system(“PAUSE”);

return 0;

}

说明:由于程序中所用的结构体只在初始化函数中赋初始值,其中间过程可以保留下来,

所以对一段信息分多次处理可以得到同样的结果。比如说使用下面的语句可以得到和上

面例子相同的结果:

md5_init(&md);

md5_process(&md, “hello,”,6);

md5_process(&md, “world”,5);

md5_done(&md, out);

七、实验过程与分析

八、实验结果总结

Hash 函数是将任意长的数据块转换成一个较短的定长输出数字串的函数,

输出的结果称为Hash 值。MD5 算法对任意长度的输入值处理后产生128 位的输出值。

九、心得体会

MD5对单个512bit分组的执行将得到相同的输出(伪冲突),MD5比MD4复杂,并且速度较MD4降低了近30%,,但在抗安全性分析方面表现更好

学生自评

项目评定内容评定结果预

习情况1、实验准备情况

2、预习报告完整性

(√)优秀

()良好

()中等

()及格

()不及格

实验表现1、实验规范性

2、实验原理掌握

3、调试排错能力

4、操作熟练程度

5、演示与答辩

6、设计创新能力

(√)优秀

()良好

()中等

()及格

()不及格

实验报告1、报告内容完整性

2、报告内容组织结构

3、报告文字表达

4、实验过程与分析

5、图表规范性

6、字迹与版面

(√)优秀

()良好

()中等

()及格

()不及格

备注

实验成绩()优秀()良好()中等

()及格()不及格

学生签字:

日期:

注:根据自己所做实验情况,实事求是的给出“评定结果”和“实验成绩”,在相应等级的()内填入■。

Md5加密算法的原理及应用

Md5加密算法的原理及应用 1.前言Md5的全称是Message-Digest Algorithm 5(信息-摘要算法),在90年代初由Mit Laboratory For Computer Science和Rsa Data Security Inc的Ronaldl.rivest 开发出来,经md2、md3和md4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被 1.前言 Md5的全称是Message-Digest Algorithm 5(信息-摘要算法),在90年代初由Mit Laboratory For Computer Science和Rsa Data Security Inc的Ronaldl.rivest开发出来,经md2、md3和md4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被“压缩”成一种保密的格式。由于md5算法的使用不需要支付任何版权费用的,所以在一般的情况下,md5也不失为一种非常优秀的加密算法,被大量公司和个人广泛使用。2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果,MD5破解工程权威网站(https://www.wendangku.net/doc/8817060057.html,)也因此关闭,从此宣布MD5加密算法不再是一种安全的加密算法。 虽然王小云教授公布了破解MD5算法的报告,宣告该算法不再安全,但是对于公司以及普通用户来说,从算法上来破解MD5非常困难,因此MD5仍然算是一种安全的算法。 MD5是一个安全的散列算法,输入两个不同的明文不会得到相同的输出值,根据输出值,不能得到原始的明文,即其过程不可逆;所以要解密MD5没有现成的算法,只能用穷举法,把可能出现的明文,用MD5算法散列之后,把得到的散列值和原始的数据形成一个一对一的映射表,通过比在表中比破解密码的MD5算法散列值,通过匹配从映射表中找出破解密码所对应的原始明文。 对信息系统或者网站系统来说,MD5算法主要用在用户注册口令的加密,对于普通强度的口令加密,可以通过以下三种方式进行破解: (1)在线查询密码。一些在线的MD5值查询网站提供MD5密码值的查询,输入MD5密码值后,如果在数据库中存在,那么可以很快获取其密码值。 (2)使用MD5破解工具。网络上有许多针对MD5破解的专用软件,通过设置字典来进行破解。 (3)通过社会工程学来获取或者重新设置用户的口令。 因此简单的MD5加密是没有办法达到绝对的安全的,因为普通的MD5加密有多种暴力破解方式,因此如果想要保证信息系统或者网站的安全,需要对MD5进行改造,增强其安全性,本文就是在MD5加密算法的基础上进行改进! 2.Md5算法应用 2.1Md5加密原理

MD5加密算法-c源代码

md5加密算法c实现 七分注释收藏 经常到csdn来是查资料,每次都会有所收获。总是看别人的感觉很不好意思,于是决定自己也写一点东西贡献出来。于是就有了这篇md5七分注释。希望对用到的朋友有所帮助。 记得当初自己刚开始学习md5的时候,从网上搜了很多关于算法的原理和文字性的描述的东西,但是看了很久一直没有搞懂,搜c的源代码又很少。直到后来学习rsa算法的时候,从网上下了1991年的欧洲的什么组织写的关于rsa、des、md5算法的c源代码(各部分代码混在一块的,比如rsa用到的随机大素数就是用机器的随机时间的md5哈希值获得的)。我才彻底把md5弄明白了。这里的代码就是我从那里面分离出来的,代码的效率和可重用性都是很高的。整理了一下希望对需要的朋友能够有帮助。 md5的介绍的文章网上很多,关于md5的来历,用途什么的这里就不再介绍了。这里主要介绍代码。代码明白了就什么都明白了。 //////////////////////////////////////////////////////////////////// /* md5.h */ #ifndef _MD5_H_ #define _MD5_H_ #define R_memset(x, y, z) memset(x, y, z) #define R_memcpy(x, y, z) memcpy(x, y, z) #define R_memcmp(x, y, z) memcmp(x, y, z) typedef unsigned long UINT4; typedef unsigned char *POINTER; /* MD5 context. */ typedef struct { /* state (ABCD) */ /*四个32bits数,用于存放最终计算得到的消息摘要。当消息长度〉512bits时,也用于存放每个512bits的中间结果*/ UINT4 state[4]; /* number of bits, modulo 2^64 (lsb first) */ /*存储原始信息的bits数长度,不包括填充的bits,最长为2^64 bits,因为2^64是一个64位数的最大值*/ UINT4 count[2]; /* input buffer */ /*存放输入的信息的缓冲区,512bits*/ unsigned char buffer[64];

MD5加密算法原理

MD5加密算法原理 MD5的全称是Message-Digest Algorithm 5(信息-摘要算法),在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和C语言源代码在Internet RFCs 1321中有详细的描述 (https://www.wendangku.net/doc/8817060057.html,/rfc/rfc1321.txt),这是一份最权威的文档,由Ronald L. Rivest 在1992年8月向IEFT提交。. . Van Oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(Brute-Force Hash Function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5 的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。如果在以后传播这个文件的过程中,无论文件的内容发生了任何形式的改变(包括人为修改或者下载过程中线路不稳定引起的传输错误等),只要你对这个文件重新计算MD5时就会发现信息摘要不相同,由此可以确定你得到的只是一个不正确的文件。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的"抵赖",这就是所谓的数字签名应用。 MD5还广泛用于加密和解密技术上。比如在UNIX系统中用户的密码就是以MD5(或其它类似的算法)经加密后存储在文件系统中。当用户登录的时候,系统把用户输入的密码计算成MD5值,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这不但可以避免用户的密码被具有系统管理员权限的用户知道,而且还在一定程度上增加了密码被破解的难度。

污水监测指导手册

水质指标监测指导手册 目录 化学需氧量(COD)的重铬酸钾法测定 (2) 化学需氧量(COD)测定方法比较 (6) 废水中悬浮物(SS)的测定 (9) 生化需氧量(BOD5)测定 (10) 氨氮的测定 (17) 水样pH值的测定 (21)

化学需氧量(COD)的重铬酸钾法测定化学需氧量(COD)是指在一定的条件下,用强氧化剂处理水时所消耗氧化剂的量。COD反映了水中受还原性物质污染的程度。水中的还原性物质有有机物、亚硝酸盐、亚铁盐、硫化物等,所以COD测定又可反映水中有机物的含量。 一、重铬酸钾法测定(COD Cr)的原理 在强酸性溶液中,准确加入过量的重铬酸钾标准溶液,加热回流,将水样中还原性物质(主要是有机物)氧化,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据所消耗的重铬酸钾标准溶液量计算水样化学需氧量。 二、仪器 1、500mL全玻璃回流装置。 2、加热装置(电炉)。 3、25mL或50mL酸式滴定管、锥形瓶、移液管、容量瓶等。 三、试剂 1、重铬酸钾标准溶液(C1/6K2Cr2O7);称取预先在120℃烘干2h的基准或优质纯重铬酸钾12.258g溶于水中,移入1000mL容量瓶,稀释至标准线,摇匀。 2、试亚铁灵指示液:称取1.485g邻菲啰啉(C12H8N2?H2O)、0.695g 硫酸亚铁(FeSO4?7H2O)溶于水中,稀释至100mL,储于棕色瓶内。 3、硫酸亚铁铵标准溶液(C(NH4)2 Fe(SO4)2?6H2O):称取39.5g硫酸亚铁铵溶于水中,边搅拌边缓慢加入20mL浓硫酸,冷却后移入

1000mL容量瓶中,加水稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。 标定方法:准确吸取10.00mL重铬酸钾标准溶液于500mL锥形瓶中,加水稀释至110mL左右,缓慢加入30mL浓硫酸,混匀。冷却后,加入3滴试亚铁灵指示液(约0.15mL),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。 C=0.2500×10.00/V 式中:C-----硫酸亚铁铵标准溶液的浓度(mol/L); V-----硫酸亚铁铵标准溶液的用量(mL)。 4、硫酸-硫酸银溶液:于500mL浓硫酸中加入5g硫酸银。放置1-2d,不时摇动使其溶解。 5、硫酸汞:结晶或粉末。 四、测定步骤 1、取20.00mL混合均匀的水样(或适量水样稀释至20.00ml)置于250ml磨口的回流锥形瓶中,准确加入10.00mL重铬酸钾标准溶液及数粒小玻璃珠或沸石,连接磨口的回流冷凝管,从冷凝管上口慢慢地加入30mL硫酸-硫酸银溶液,轻轻摇动锥形瓶使溶液混匀,加热回流2h(自开始沸腾时计时)。 对于化学需氧量高的废水样,可先取上述操作所需体积1/10的废水样和试剂于15×150mm硬质玻璃试管中,摇匀,加热后观察是否成绿色。如溶液显绿色,在适当减少废水取样量,直至溶液不变绿色为止,从而确定废水样分析时应取用的体积。稀释时,所取废水样量

【2018最新】笔试题目介绍一下MD5加密算法-精选word文档 (2页)

【2018最新】笔试题目介绍一下MD5加密算法-精选word文档 本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 笔试题目介绍一下MD5加密算法 MD5算法是一种非常优秀的加密算法。 MD5加密算法特点:灵活性、不可恢复性。 介绍MD5加密算法基本情况MD5的全称是Message-Digest Algorithm 5, 在90年代初由MIT的计算机科学实验室和RSA Data Security Inc发明,经 MD2、MD3和MD4发展而来。 Message-Digest泛指字节串(Message)的Hash变换,就是把一个任意长度 的字节串变换成一定长的大整数。请注意我使用了”字节串”而不是”字符串”这个词,是因为这种变换只与字节的值有关,与字符集或编码方式无关。 MD5将任意长度的”字节串”变换成一个128bit的大整数,并且它是一个 不可逆的字符串变换算法,换句话说就是,即使你看到源程序和算法描述,也 无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字 符串有无穷多个,这有点象不存在反函数的数学函数。 MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防 止被”篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对 这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现。 如果再有一个第三方的认证机构,用MD5还可以防止文件作者的”抵赖”,这就是所谓的数字签名应用。 MD5还广泛用于加密和解密技术上,在很多操作系统中,用户的密码是以 MD5值(或类似的其它算法)的方式保存的,用户Login的时候,系统是把用户 输入的密码计算成MD5值,然后再去和系统中保存的MD5值进行比较,而系统 并不”知道”用户的密码是什么。 一些黑客破获这种密码的方法是一种被称为”跑字典”的方法。有两种方 法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方 法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值 在这个字典中检索。

密码学实验(MD5实验)

密码学实验 ——计算文件MD5值 姓名: 班级: 学号: 教师: 助教:

【1】Hash算法实验 (1)MD5\SHA1\SHA-256算法比较 A.【相同点】MD5,SHA1,SHA-256属于密码级散列函数,算法相对比较复杂,参与加密算法的过程中时也 比较安全,三者都是属于哈希算法一类,都是任意长 度的消息压缩到某一固定长度的消息摘要的函数B.【不同点】 MD5输出128bit SHA1输出160bit SHA256输出256bit ①普通密码可以用MD5,但数字证书和数字签名就法 定必须用SHA256 ②MD5比SHA1快,SHA1比MD5强度高 C.截图

(2)相同与相似字符串MD5差异比较

【2】Hash算法过程与填充方式

【常见Hash算法的数据填充方式】 1.首位填充1,后面填满0位;【即:先补一个1,然后再补 0,直到长度满足对512取模后余数是448。】 2.补长度;【通常用一个64位的数据来表示原始消息的长度。 如果消息长度不大于2^64,那么第一个字就是0;如果原始的消息长度超过了512,我们需要将它补成512的倍数。 然后我们把整个消息分成一个一个512位的数据块,分别处理每一个数据块,从而得到消息摘要】 【3】计算文件MD5值 1.源代码【hello.exe\erase.exe文件放在其中的src文件夹中】package com.topcheer; import java.io.File; import java.io.FileInputStream; import java.io.IOException; import java.nio.MappedByteBuffer; import java.nio.channels.FileChannel; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import java.util.Scanner; publicclass EXEMD5 { /*设置MD5值输出为16进制(从0到F)*/

java生成MD5加密

使用Java 生成MD5 编码 MD5即Message-Digest Algorithm 5(信息-摘要算法5),是一种用于产生数字签名的单项散列算法,在1991年由MIT Laboratory for Computer Science(IT计算机科学实验室)和RSA Data Security Inc(RSA数据安全公司)的Ronald L. Rivest教授开发出来,经由MD2、MD3和MD4发展而来。MD5算法的使用不需要支付任何版权费用。它的作用是让大容量信息在用数字签名软件签私人密匙前被"压缩"成一种保密的格式(将一个任意长度的“字节串”通过一个不可逆的字符串变换算法变换成一个128bit的大整数,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。) 在Java 中,java.security.MessageDigest 中已经定义了MD5 的计算,所以我们只需要简单地调用即可得到MD5 的128 位整数。然后将此128 位计16 个字节转换成16 进制表示即可。 代码如下: package com.tsinghua; /** * MD5的算法在RFC1321 中定义 * 在RFC 1321中,给出了Test suite用来检验你的实现是否正确: * MD5 ("") = d41d8cd98f00b204e9800998ecf8427e * MD5 ("a") = 0cc175b9c0f1b6a831c399e269772661 * MD5 ("abc") = 900150983cd24fb0d6963f7d28e17f72 * MD5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0 * MD5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3d76192e4007dfb496cca67e13b * * @author haogj * * 传入参数:一个字节数组 * 传出参数:字节数组的MD5 结果字符串 */ public class MD5 { public static String getMD5(byte[] source) { String s = null; char hexDigits[] = { // 用来将字节转换成16 进制表示的字符 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'}; try { java.security.MessageDigest md = java.security.MessageDigest.getInstance( "MD5" ); md.update( source ); byte tmp[] = md.digest(); // MD5 的计算结果是一个128 位的长整数, // 用字节表示就是16 个字节 char str[] = new char[16 * 2]; // 每个字节用16 进制表示的话,使用两个字符, // 所以表示成16 进制需要32 个字符 int k = 0; // 表示转换结果中对应的字符位置 for (int i = 0; i < 16; i++) { // 从第一个字节开始,对MD5 的每一个字节

【免费下载】hash算法实验

实验课程名称:电子商务安全管理实验项目名称1:DES 、RSA 和Hash 算法的实现实验成绩 试验者 王秀梅专业班级1105441 组别同组者无实验的目的 (1) 掌握常用加密处理软件的使用方法。 (2) 理解DES 、RSA 和Hash 算法的原理。 (3) 了解MD5算法的破解方法。实验环境 (1) 装有Windows XP/2003操作系统的PC 机1台。 (2) MixedCS 、RSATool 、DAMN_HashCalc 、MD5Crack 工具软件各1套。实验步骤1、请参考实验指导PPT 。并在最后写实验心得体会。2、将实验电子版提交FTP——1105441电子商务安全管理——第一次实验报告,文件名为“学号(1105441)+姓名+实验一”。 实验过程记录 (1) 对称加密算法DES 的实现 步骤1:双击运行MixedCS.exe 程序,打开的程序主界面步骤2:单击“浏览文件”按钮,选择要进行DES 加密的源文件,选择完成后在“输出文件”文本框中会自动出现默认的加密后的文件名。步骤3:选中“DES 加密”单选按钮,在“DES 密钥”文本框中输入5个字符 (区分大小、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

MD5加密与解密

MD5加密与解密算法代码 一:字符串加密: public static String GetMD5(string input) { System.Security.Cryptography.MD5CryptoServiceProvider x=new System.Security.Cryptography.MD5CryptoServiceProvider(); byte[]bs =System.Text.Encoding.UTF8.GetBytes(input); bs =https://www.wendangku.net/doc/8817060057.html,puteHash(bs); System.Text.StringBuilder s =newSystem.Text.StringBuilder(); foreach(byte b inbs) { s.Append(b.ToString("x2").ToLower()); } returns.ToString(); } public static string GetMD5(string sDataIn) { MD5CryptoServiceProvider md5 = new MD5CryptoServiceProvider(); byte[] bytValue, bytHash; bytValue = System.Text.Encoding.UTF8.GetBytes(sDataIn); bytHash = https://www.wendangku.net/doc/8817060057.html,puteHash(bytValue); md5.Clear(); string sTemp = ""; for(int i = 0; i < bytHash.Length; i++) { sTemp += bytHash[i].ToString("X").PadLeft(2, '0'); } return sTemp.ToLower(); }

Hash算法MD5 实验报告

哈尔滨工程大学 实验报告 实验名称:Hash 算法MD5 班级: 学号: 姓名: 实验时间:2014年6月 成绩: 指导教师: 实验室名称: 哈尔滨工程大学实验室与资产管理处制

一、实验名称 Hash算法MD5 二、实验目的 通过实际编程了解MD5 算法的加密和解密过程,加深对Hash 算法的认识。 三、实验环境(实验所使用的器件、仪器设备名称及规格) 运行Windows 或Linux 操作系统的PC 机,具有gcc(Linux)、VC(Windows)等C 语言编译环境。 四、任务及其要求 (1)利用自己所编的MD5 程序对一个文件进行处理,计算它的Hash 值,提交程 序代程和运算结果。 (2)微软的系统软件都有MD5 验证,尝试查找软件的MD5 值。同时,在Windows 操作系统中,通过开始→运行→sigverif 命令,利用数字签名查找验证非Windows 的系 统软件。__ 五、实验设计(包括原理图、真值表、分析及简化过程、卡诺图、源代码等) 在MD5 算法中,首先需要对信息进行填充,使其字节长度与448 模512 同余,即信息的字节长度扩展至n*512+448,n 为一个正整数。填充的方法如下:在信息的后面填充第一位为1,其余各位均为0,直到满足上面的条件时才停止用0 对信息填充。然后,再在这个结果后面附加一个以64 位二进制表示的填充前信息长度。经过这两步的处理,现在的信息字节长度为n*512+448= (n+1)*512,即长度恰好是512 的整数倍,这样做的目的是为满足后面处理中后面处理中对信息长度的要求。n 个分组中第q 个分组表示为Yq。MD5 中有A、B、C、D,4 个32 位被称作链接变量的整数参数,它们的初始值分别为: A=01234567B=89abcdef,C=fedcba98,D= 当设置好这个4 个链接变量后,就开始进入算法的4 轮循环运算。循环的次数是信息中512 位信息分组数目。首先将上面4 个链接变量复制到另外4 个变量中A

MD5加密解密算法的描述

MD5 算法描述 对MD5算法简要的叙述可以为:MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。 在MD5算法中,首先需要对信息进行填充,使其字节长度对512求余的结果等于448。因此,信息的字节长度(Bits Length)将被扩展至N*512+448,即N*64+56个字节(Bytes),N为一个正整数。填充的方法如下,在信息的后面填充一个1和无数个0,直到满足上面的条件时才停止用0对信息的填充。然后,在在这个结果后面附加一个以64位二进制表示的填充前信息长度。经过这两步的处理,现在的信息字节长度=N*512+448+64=(N+1)*512,即长度恰好是512的整数倍。这样做的原因是为满足后面处理中对信息长度的要求。 MD5中有四个32位被称作链接变量(Chaining Variable)的整数参数,他们分别为:A=0x01234567,B=0x89abcdef,C=0xfedcba98,D=0x76543210。 当设置好这四个链接变量后,就开始进入算法的四轮循环运算。循环的次数是信息中512位信息分组的数目。

将上面四个链接变量复制到另外四个变量中:A到a,B到b,C到c,D到d。 主循环有四轮(MD4只有三轮),每轮循环都很相似。第一轮进行16次操作。每次操作对a、b、c和d中的其中三个作一次非线性函数运算,然后将所得结果加上第四个变量,文本的一个子分组和一个常数。再将所得结果向右环移一个不定的数,并加上a、b、c或d中之一。最后用该结果取代a、b、c或d中之一。 以一下是每次操作中用到的四个非线性函数(每轮一个)。 F(X,Y,Z) =(X&Y)|((~X)&Z) G(X,Y,Z) =(X&Z)|(Y&(~Z)) H(X,Y,Z) =X^Y^Z I(X,Y,Z)=Y^(X|(~Z)) (&是与,|是或,~是非,^是异或) 这四个函数的说明:如果X、Y和Z的对应位是独立和均匀的,那么结果的每一位也应是独立和均匀的。 F是一个逐位运算的函数。即,如果X,那么Y,否则Z。函数H是逐位奇偶操作符。

加解密算法实验报告

实验加/解密算法 实验日期:__年__月_日实验成绩:___________ 1.实验目的: (1)数据机密性; (2)数据完整性; (3)不可抵赖性 2.实验环境(设备、仪器、网络): (1)虚拟机 (2)加密工具 (3)Windows系统环境 3.实验内容(实验方案、实验步骤、测量数据及处理等): 3.1实验方案 加密方和解密方利用RSA加密算法分别生成一对公钥和私钥,并告知对方自己的公钥。 加密方实验流程如图3-1所示: 图3-1 将加密后的明文和签名发送给解密方。 解密方实验流程如图3-2所示:

图3-2 将明文同样进行hash运算得出摘要,与验证签名后得出的摘要相比较,如果相同则可以证明明文没有被破坏或改变,同时也可使确定是加密方发送的信息。 3.2实验过程 加密方 (1)加密方通过RSA算法得出公钥(e,n)=(101,253),私钥(d,n)=(61,253); (2)编辑明文为we are in xinjiang,and you? (3)在加密工具的环境中利用解密方的公钥对明文进行加密,如图3-3所示: 图3-3 (4)在加密工具中利用MD5对明文进行hash运算,如图3-4所示:

图3-4 (5)用加密方的私钥对生成的摘要进行签名,如图3-5所示: 图3-5 (6)将签名与密文发送给解密方。

解密方 (1)通过RSA算法得出公钥(e,n)=(1003,2173),私钥(d,n)=(1827,2173) (2)利用解密方的私钥对密文解密,如图3-6所示: 图3-6 (3)验证签名,将加密方发送的签名用加密方的公钥解密,如图3-7所示:

数字签名实验的报告

数字签名实验报告 比较散列算法MD5和SHA所得到的结果 从三方面进行分析: 一、安全性:SHA优于MD5,由于160>128 二、速度:SHA慢了约25%,因为160>128且80>60 三、简易性:SHA对每一步骤的操作描述比MD5简单 对实验记录2这个源文件进行各类实验: SHA-1的信息摘要比MD5的要长,无论对源文件做出空格、修改、删除、增加等任何操作,两种散列函数的信息摘要都会发生改变。 1 查找资料,掌握不同散列算法的原理和特点,掌握MD5和SHA散列算法的特点和应用条件。

散列函数有三个主要特点: (1)它能处理任意大小的信息,并将其按信息摘要(Message Digest)方法生成固定大小的数据块,对同一个源数据反复执行Hash函数将总是得到同样的结果。 (2)它是不可预见的。产生的数据块的大小与原始信息看起来没有任何明显关系,原始信息的一个微小变化都会对小数据块产生很大的影响。 (3)它是完全不可逆的,没有办法通过生成的数据块直接恢复源数据。 常见散列函数有MD5、SHA、MAC、CRC。 MD5(Message Digest Algorithm 5):是RSA数据安全公司开发的一种单向散列算法,MD5被广泛使用,可以用来把不同长度的数据块进行暗码运算成一个128位的数值。有两个特点: 1、输入两个不同的明文(一段原始的数字信息)不会得到相同的输出值 2、根据输出值,不能得到原始的明文,即过程不可逆 所以要解密MD5没有现成的算法,只能用穷举法,把可能出现的明文,用MD5算法散列之后,把得到的散列值和原始的数据形成一个一对一的映射表,然后在所谓的解密的时候,都是通过这个映射表来查找其所对应的原始明文。而绝对没有一种算法,可以通过输出加密后的散列值算出原始明文。 ·SHA(Secure Hash Algorithm)这是一种较新的散列算法,可以对任意长度的数据运算生成一个160位的数值; ·MAC(Message Authentication Code):消息认证代码,是一种使用密钥的单向函数,可以用它们在系统上或用户之间认证文件或消息。HMAC(用于消息认证的密钥散列法)就是这种函数的一个例子。 ·CRC(Cyclic Redundancy Check):循环冗余校验码,CRC校验由于实现简单,检错能力强,被广泛使用在各种数据校验应用中。占用系统资源少,用软硬件均能实现,是进行数据传输差错检测地一种很好的手段(CRC 并不是严格意义上的散列算法,但它的作用与散列算法大致相同,所以归于此类)。 2 总结信息摘要的特点,分析比较原始文件和信息摘要的关系。 (1)对于任何大小的数据,单向散列函数产生定长的信息摘要——定长性

MD5加密算法

我们知道,现在网络上一般的网站,稍微完善一点的,往往都需要用户先注册,提供诸如电子邮件、账号、密码等信息以后,成为网站栏目的注册用户,才可以享受网站一些特殊栏目提供的信息或者服务,比如免费电子邮件、论坛、聊天等,都需要用户注册。而对于电子商务网站,比如igo5等大型电子商务网站,用户需要购买商品,就一定需要详细而准确的注册,而这些信息,往往是用户很隐秘的信息,比如电话、电子邮件、地址等,所以,注册信息对于用户和网站都是很重要的资源,不能随意透露,更加不能存在安全上的隐患。 如果我们也设计一个需要用户注册的网站,根据现在的常用技术实现方法,可以在数据库中建立一个用于存放用户信息的表,这个表中至少包括用户账号字段:UserAccount和用户密码字段:Password,当然,实际应用中一个用户信息表不可能就只有这些信息,往往根据网站服务要求,会适当增加一些其他的信息,以方便网站提供更加完善的服务。一般的,一个用户信息占用这个用户信息表的一行也就是一个数据记录,当用户登录或者提交资料的时候,程序将用户填写的信息与表中的信息对照,如果用户账号和密码都准确无误,那么说明这个用户是合法用户,通过注册;反之,则是非法用户,不许通过。 然而,是不是这样就安全了了?是不是这样就能满足网站的注册要求了呢?仔细想想,我们一般将用户资料直接保存在数据库中,并没有进行任何的保密措施,对于一些文件型数据库比如Access等,如果有人得到这个文件,岂不是所有的资料都泄露无疑?更加重要的是,如果一个不负责任的网管,不需要任何技术手段,就可以查看网站中的任何资料,如果我们的用户信息在数据库中没有加密,对于网管而言,查看这些信息是太简单了。所以,为了增加安全性,我们有必要对数据库中的资料进行加密,这样,即使有人得到了整个数据库,如果没有解密算法,也一样不能查看到数据库中的用户信息。但是,在考虑数据库是否安全之前,我们有必要对我们的数据是否真的那么重要进行考虑,如果数据只是简单的一些文件资料,没有保密的必要,显然,没有必要对这些数据进行加密而浪费系统资源、加重程序负担,

水质在线监测系统方案_哈希

哈希地表水水质自动监测站 建 设 方 案

目录 一、概述3 (一)水源地自动监测站概念 (3) (二)水源地自动监测站组成 (3) (三)水源地自动站建设步骤 (3) 二、站房建设及配套设施基本要求4 (一)确定站房位置 (4) (二)站房主体 (4) (三)站房基础及外环境 (4) (四)站房仪器间 (5) (五)配套设施 (5) (六)站房给排水要求 (5) (七)防雷及其他电器设计要求 (6) (八)防火和防盗设施 (7) (九)站房建设经费 (8) 三、分析仪器选项要求9 (一)水质在线监测分析仪器主要监测的参数项 (9) (二)通常标准监测项目 (9) (三)自动监测仪器分析方法 (9) (四)在线监测仪器选型要求 (9) (1)水质五参数分析仪 (9) (2)高锰酸盐指数分析仪 (11) (3)氨氮分析仪 (11) (4)总磷/总氮分析仪 (12) (5)总有机碳分析仪TOC (12) (6)蓝绿藻分析仪 (13) 四、水质重金属在线监测方案14 (一)水质重金属在线分析仪种类: (14) (二)水质重金属在线分析仪性能介绍 (15) (1)在线总砷分析仪 (15) (2)在线总铅分析仪 (17) (3)在线总铬分析仪 (20) (4)在线总镉分析仪 (22) 五、水质自动监测系统建设说明25 (一)系统构成及性能要求 (25) (1)系统构成 (25) (2)系统说明 (26) (3)系统主要功能 (26) (二)控制系统及中心软件 (28) (三)水质自动站监测系统主要参数要求 (30) (四)水样预处理系统 (35) (五)数据采集及通讯系统 (37) (六)质量控制与质量保证 (47)

实验三 MD5算法的设计与实现

实验三MD5算法的设计与实现 MD5算法及C++实现 一、理论部分: 1、预备知识 1.1什么是数据校验 通俗的说,就是为保证数据的完整性,用一种指定的算法对原始数据计算出的一个校验值。接收方用同样的算法计算一次校验值,如果和随数据提供的校验值一样,就说明数据是完整的。 1.2最简单的检验 实现方法:最简单的校验就是把原始数据和待比较数据直接进行比较,看是否完全一样这种方法是最安全最准确的。同时也是效率最低的。 适用范围:简单的数据量极小的通讯。 应用例子:龙珠cpu在线调试工具bbug.exe。它和龙珠cpu间通讯时,bbug发送一个字节cpu返回收到的字节,bbug确认是刚才发送字节后才继续发送下一个字节的。 1.3奇偶校验Parity Check 实现方法:在数据存储和传输中,字节中额外增加一个比特位,用来检验错误。校验位可以通过数据位异或计算出来。 应用例子:单片机串口通讯有一模式就是8位数据通讯,另加第9位用于放校验值。 1.4 bcc异或校验法(block check character)

实现方法:很多基于串口的通讯都用这种既简单又相当准确的方法。它就是把所有数据都和一个指定的初始值(通常是0)异或一次,最后的结果就是校验值,通常 把她附在通讯数据的最后一起发送出去。接收方收到数据后自己也计算一次异或和校验值,如果和收到的校验值一致就说明收到的数据是完整的。 校验值计算的代码类似于: unsigned uCRC=0;//校验初始值 for(int i=0;i

MD5算法实现解读

md5加密算法c实现 md5的介绍的文章网上很多,关于md5的来历,用途什么的这里就不再介绍了。这里主要介绍代码。代码明白了就什么都明白了。 //////////////////////////////////////////////////////////////////// /*md5.h*/ #ifndef_MD5_H_ #define_MD5_H_ #defineR_memset(x,y,z)memset(x,y,z) #defineR_memcpy(x,y,z)memcpy(x,y,z) #defineR_memcmp(x,y,z)memcmp(x,y,z) typedefunsignedlongUINT4; typedefunsignedchar*POINTER; /*MD5context.*/ typedefstruct{ /*state(ABCD)*/ /*四个32bits数,用于存放最终计算得到的消息摘要。当消息长度〉512bits时,也用于存放每个512bits的中间结果*/ UINT4state[4]; /*numberofbits,modulo2^64(lsbfirst)*/ /*存储原始信息的bits数长度,不包括填充的bits,最长为2^64bits,因为2^64是一个64位数的最大值*/ UINT4count[2]; /*inputbuffer*/ /*存放输入的信息的缓冲区,512bits*/ unsignedcharbuffer[64]; }MD5_CTX; voidMD5Init(MD5_CTX*); voidMD5Update(MD5_CTX*,unsignedchar*,unsignedint); voidMD5Final(unsignedchar[16],MD5_CTX*); #endif/*_MD5_H_*/

实验四Hash算法和密码应用网络与信息安全实验报告

实验四Hash算法和密码应用 同组实验者实验日期成绩 练习一MD5算法 实验目的1理解Hash函数的计算原理和特点,2理解MD5算法原理 实验人数每组2人 系统环境Windows 网络环境交换网络结构 实验工具密码工具 实验类型验证型 一、实验原理 详见“信息安全实验平台”,“实验4”,“练习一”。 二、实验步骤 本练习主机A、B为一组,C、D为一组,E、F为一组。首先使用“快照X”恢复Windows 系统环境。 1.MD5生成文件摘要 (1)本机进入“密码工具”|“加密解密”|“MD5哈希函数”|“生成摘要”页签,在明文框中编辑文本内容: __________________________________________________________________________。 单击“生成摘要”按钮,生成文本摘要: __________________________________________________________________________。 单击“导出”按钮,将摘要导出到MD5共享文件夹(D:\Work\Encryption\MD5\)中,并通告同组主机获取摘要。 (2)单击“导入摘要”按钮,从同组主机的MD5共享文件夹中将摘要导入。 在文本框中输入同组主机编辑过的文本内容,单击“生成摘要”按钮,将新生成的摘要与导入的摘要进行比较,验证相同文本会产生相同的摘要。 (3)对同组主机编辑过的文本内容做很小的改动,再次生成摘要,与导入的摘要进行对比,验证MD5算法的抗修改性。 2.MD5算法 本机进入“密码工具”|“加密解密”|“MD5哈希函数”|“演示”页签,在明文输入区输入文本(文本不能超过48个字符),单击“开始演示”,查看各模块数据及算法流程。根据实验原理中对MD5算法的介绍,如果链接变量的值分别为(其中,M[1]=):A: 2B480E7C B: DAEAB5EF

相关文档