文档库 最新最全的文档下载
当前位置:文档库 › 一条传输开15个载波的算法

一条传输开15个载波的算法

一条传输开15个载波的算法
一条传输开15个载波的算法

一条传输开15个载波的算法

一般来说,对于2000站一条传输如果用4比1的信令压缩方式,最多也只能开13个载波,但现在很多地区都出现过一条传输开15个载波的情况,至于如何实现呢?看看下面的数据和算法:

1、TRX的信令类型为CONC的传输使用情况(通常的做法)

当TRX的信令类型(即SIG)设置为CONC,则用RXAPP查看传输的结果如下(以5个TRU为例):

RADIO X-CEIVER ADMINISTRATION

ABIS PA TH STATUS

MO

RXOTG-1

DEV DCP APUSAGE APSTATE 64K TEI

RBLT-623 15 MPLEX16 SPEECH/DA TA NO

MPLEX16 SPEECH/DA TA NO

MPLEX16 SPEECH/DA TA NO

MPLEX16 SPEECH/DA TA NO

RBLT-624 16 MPLEX16 SPEECH/DA TA NO

MPLEX16 SPEECH/DA TA NO

MPLEX16 SPEECH/DA TA NO

MPLEX16 IDLE NO

RBLT-625 17 CONC CF/TRXC SIGNAL NO 61 0 2 3 4

RBLT-626 18 UNDEF IDLE NO

RBLT-627 19 MPLEX16 SPEECH/DA TA NO

MPLEX16 SPEECH/DA TA NO

MPLEX16 SPEECH/DA TA NO

MPLEX16 SPEECH/DA TA NO

RBLT-628 20 CONC TRXC SIGNAL NO 1

可以看到,每个DEV是4个MPLEX16的数据单位,每个TRXC SIGNAL占1/4个DEV;但是如果TRX不是4的倍数,也会占用1个DEV,如RBLT-628,也就是说,该DEV还有3/4个DEV是没有使用的。

2、TRX的信令类型为MPLEX16的传输使用情况(传输不够的做法)

当其中1个TRX的信令类型设置为MPLEX16,用RXAPP查看传输的结果如下:

RADIO X-CEIVER ADMINISTRATION

ABIS PA TH STATUS

MO

RXOTG-232

DEV DCP APUSAGE APSTATE 64K TEI

RBLT-596 20 CONC CF/TRXC SIGNAL NO 60 0 1 2 3

RBLT-597 21 MPLEX16 SPEECH/DA TA NO

MPLEX16 SPEECH/DA TA NO

MPLEX16 SPEECH/DA TA NO

MPLEX16 SPEECH/DA TA NO

RBLT-600 24 MPLEX16 TRXC SIGNAL NO 4

MPLEX16 SPEECH/DA TA NO

MPLEX16 SPEECH/DA TA NO

MPLEX16 SPEECH/DA TA NO

从上面LOG可以看到,信令与数据共同使用同一个DEV,如RBLT-600,这样可以将另外3/4个DEV利用起来走数据,这样就可以充分利用所有的传输设备。这就是把TRX的信令压缩方式设置为MPLEX16时的优势。

所用的指令就是:

rxmoi:mo=rxotrx-1-0,tei=0,dcp1=128,dcp2=129&130,sig=CONC;

rxmoi:mo=rxotrx-38-0,tei=0,dcp1=128,dcp2=129&130,sig=MPLEX16;

3、一条传输怎样开15个载波

当然,并不是说单单把信令压缩方式设置为MPLEX16就可以的,有时还需要我们通过计算出足够的SDCCH数目才可以顺利把所有载波开起来。为什么要这样做呢?下面先介绍一下逻辑信道的组成吧。

我们打RLCRP指令,可以看到以下输出:

CELL RESOURCES

CELL BCCH CBCH SDCCH NOOFTCH

DGLSJD3 1 1 31 27

从红色字体部分可以看到,一个小区的逻辑信道主要由BCCH、CBCH、SDCCH和TCH 组成的,所有的信道数加起来就应该是:载波数×8=BCCH+(CBCH+SDCCH)/8+TCH 也就是说:TCH=载波数×8-BCCH-(CBCH+SDCCH)/8

=载波数×8-BCCH—SDCCH定义数(因为SDCCH以8比1压缩)

下面以一个例子来说明:一个小区配置为4/5/6,按照常规分别需要9、12、14共36个DEV;但是可以只分配8、10、13共31个DEV就可以开起来。具体算法如下:

CELL1——4个TRU:

传输设备TS=8(DEV)×4(MPLEX16)=32(可理解为最大的传输能力为32个TS,即32个MPLEX16)

TRXC SIGNAL=4 (四个载波,四个控制信令)

TCH=载波数×8-BCCH—SDCCH定义数

=4×8(1个TRU8个TS)-1(BCCH)-3(SDCCH)=28

因为只要TS>= TRXC SIGNAL+ TCH即可满足传输的分配,所以只要把SDCCH数定为3就可以达到这个要求。当然,SDCCH个数也可以设为4个,但是绝对不能超过TRU的个数。

从这里我们可以看到,这样的算法其实是提高了SDCCH数目,牺牲了TCH数来实现的,不过,SDCCH数目多一些也未必是坏事,而且更主要是节省了传输。

CELL2——5个TRU:

TS=10×4=40

TRXC SIGNAL=5

TCH=5×8-1(BCCH)-4(SDCCH)=35

这里算法是一样,但要注意其中有一个TRX的SIG必须设置成MPLEX16,另外4个设置为CONC或MPLEX16都无所谓。

CELL3——6个TRU:

A、在TRX的SIG都设置成CONC的情况下

TS=13×4=52

TRXC SIGNAL=8(在TRX的SIG都设置成CONC的情况下占用2个DEV,共8个MPLEX16)

TCH=6×8-1(BCCH)-3(SDCCH)=44

B、将2个TRX的SIG设置成MPLEX16的情况下,6个TRU也可以只用12个DEV:TS=12×4=48

TRXC SIGNAL=6(将1个TRX的SIG设置成MPLEX16的情况下)

TCH=6×8-1(BCCH)-5(SDCCH)=42

通过上述计算结果,我们可以总结得出,如果TRU个数不是4的倍数,可以通过设置TRX的信令类型为MPLEX16来提高传输的使用率,而大多数情况下,是需要修改SDCCH 个数的,我们只要学会算,就可以达到我们需要的效果,一条传输开15个载波也不是梦想了。

相位恢复问题研究

Pure Mathematics 理论数学, 2019, 9(3), 330-335 Published Online May 2019 in Hans. https://www.wendangku.net/doc/8217123627.html,/journal/pm https://https://www.wendangku.net/doc/8217123627.html,/10.12677/pm.2019.93044 Research on Phase Retrieval Problem Gan Gong, Huimin Wang*, Qian Wu, Yunyang Lu Department of Applied Statistics, Shaoxing University, Shaoxing Zhejiang Received: Apr. 23rd, 2019; accepted: May 3rd, 2019; published: May 15th, 2019 Abstract Phase retrieval is an important issue in the field of engineering physics, studying how to estimate a signal from its Fourier transform magnitude. Generally speaking, this problem is ill-posed. Therefore, to recover the signal accurately, some a priori information of the signal is needed. Very rich research results have emerged in the phase recovery problem. This paper will review the lat-est theories and algorithms of sparse phase recovery. Keywords Sparsity, Phase Retrieval, Iterative Algorithm, Nonconvex Optimization 相位恢复问题研究 龚敢,王会敏*,邬谦,卢云洋 绍兴文理学院,应用统计系,浙江绍兴 收稿日期:2019年4月23日;录用日期:2019年5月3日;发布日期:2019年5月15日 摘要 相位恢复问题是工程物理领域的一个重要的问题,研究如何从一个傅立叶测量的模中估计一个信号。一般来说,这个问题是病态的,因此,要准确恢复信号,需要信号的一些先验信息。关于相位恢复问题已经涌现了非常丰富的研究成果,本文将对稀疏相位恢复问题最新的理论和算法进展进行综述。 关键词 稀疏性,相位恢复,迭代算法,非凸优化 *通讯作者。

理解载波恢复

理解载波恢复 简介 在数字通信系统中,信息可以通过载波基本特性的变化来进行传输。这些特性,如相位、频率、和幅度,在发射端被修改并且必须在接收端被检测到。因此,对于接收端来说,恢复载波的频率、相位、和符号时序是绝对必需的。这一过程就被称作载波恢复并且可以通过各种技术得以实现。在本演示(或文档)中,我们将探讨频率偏移的影响以及载波恢复中存在的通道噪声。 ASCII 码文本的QAM 调制(带噪声) 幅度 瞬时正弦波状态:M(t)<Φ(t) 载波恢复基础知识

In-Class Demos 一个QAM 发送端使用特定的相位和幅度来调制载波信号,而另一方面,如果接收器能够确定原始信号的相位和频率,那它就能准确地检测到这个信号。因此,两者之间的同步是必需的。在理想情况下,发送端和接收端将会完美地同步工作。换句话说,两者将会以同样的方式解释信号的相位和频率。然而,实际的硬件并不是完美的,而且即使利用某种纠错机制,接收端也不可能精确地锁定到与发送端完全相同的相位和频率。为了弥补这些不尽完美的特性,采用锁相环或PLL 来匹配接收端和发送端之间的频率(1)。 利用星座图,我们可以表示出每个符号的 幅度和相位。此外,每个符号覆盖在另一 个符号之上是为了说明与我们所能恢复载 波的相位和幅度之间的一致性。理想情况 下,当接收端的PLL 能够恢复载波,那么 每个符号就会在星座图上清楚地分布。然 而,当载波由于通道噪声或频率误差的原 因而无法恢复时,星座图也能表示来了。 在右边,我们示出了一幅符号出现在正确 幅度处,但其相位正持续变化的星座图。 因为: Frequency = d Θ / dt 频率= d Θ / dt 所以,当星座图的相位持续变化时,我们能够确定频率估计是错误的。 在这个特定的实例中,我们已经通过在系统中引入足够的噪声来仿真频率误差,从而得以干扰PLL ,甚至将噪声去除之后,PLL 仍然可能无法锁定正确的频率。 载波恢复步骤 解决这个载波恢复问题的方法有两个部分,它们可以粗略地分为以下两个部分:频率恢复和符号时序(相位)恢复。第一个部分需要频率估计以便于接收端精确地锁定至发射端频率,第二 个部分,符号时序恢复需要接收端精确地锁定发射端相位。符号时序恢复使得接收端通过精确

实时仿真系统介绍

ADPSS-LAB 电力电子、电力系统实时仿真方案 中国电力科学研究院 2012年10月 目录 1 系统综述- 0 - 2 系统组成- 0 - 3 电力电子、电力系统实时仿真存在的问题- 1 - 4 解决方法- 2 - 5 ADPSS-LAB实时仿真系统的功能- 7 -

电力电子系统实时仿真方案 1 系统综述 实时仿真是研究电力电子、电力系统复杂的工作过程、优化系统与运行的重要手段。电力电子、电力系统实时仿真经历了从第一代模拟分析系统,到第二代模拟/数字混合仿真系统,再到第三代数字实时仿真系统的发展过程。ADPSS-LAB正是第三代数字实时仿真系统的代表产品。 ADPSS-LAB是一种基于并行计算技术、采用模块化设计的电力电子、电力系统实时仿真系统。它既可以在普通PC机上进行离线仿真,也可通过并行计算机与实际的电力电子器件联接而进行实时在线仿真。与前两代仿真系统相比,ADPSS-LAB具有以下优势:1)既可以对电力电子、电力系统机电和电磁暂态分别进行实时仿真,同时也可以对机电和电磁暂态混合系统进行实时仿真。 2)仿真精度高;ADPSS-LAB在实时仿真过程中采用32位双精度浮点数运算,其仿真的精度与公认的离线分析软件MATLAB的仿真精度相当。 3)良好的升级和扩充性;ADPSS-LAB由于直接采用商用的基于PC Cluster的连接方式,当仿真的系统规模增大时,只需增加CPU数目和增大内存容量即可,从系统的升级和扩展灵活性等方面有很好的发展前景。 2 系统组成 软件部分:

实时操作系统:QNX 建模软件:MATLAB/simulink,SimPowerSystem 电力电子、电力系统实时仿真包 电力电子模型库 硬件部分: 并行处理系统(12-core INTEL CPU) I/O接口模块 信号调理模块 3 电力电子、电力系统实时仿真存在的问题 1)建模的问题 仿真系统能够提供友好的图形用户界面,丰富的电力电子、电力系统元件库且模型精度满足仿真要求,同时还要允许用户方便的添加自己的模型。 2)仿真的实时性问题 电力电子、电力系统往往在一个小范围内包含了十几个到几十个器件,相应的模型求解过程中包含了大量的矩阵计算(如:矩阵相乘,矩阵求逆等运算),如此大的计算量无法在给定的一个几十个微秒的仿真步长内由一个CPU结算出结果。因此,为了实现实时仿真的目标,必须将大的电力电子系统解耦成几个小的子系统,每个子系统分别运行在不同的CPU上,达到降低每个CPU的计算量,实现整个系统实时仿真的目的。 3)实时PWM信号的捕捉和产生问题

载波同步

载波同步 实验目的 1、掌握用科斯塔斯(Costas)环提取相干载波的原理与实现方法。 2、了解相干载波相位模糊现象的产生原因。 实验内容 1、观察科斯塔斯环提取相干载波的过程。 2、观察科斯塔斯环提取的相干载波,并做分析。 实验模块 1、通信原理0 号模块一块 2、通信原理3 号模块一块 3、通信原理7 号模块一块 4、示波器一台 实验原理 1、基本原理 同步是通信系统中一个重要的实际问题。当采用同步解调或相干检测时,接收端需要提供一个与发射端调制载波同频同相的相干载波。这个相干载波的获取方法就称为载波提取,或称为载波同步。 提取载波的方法一般分为两类:一类是在发送有用信号的同时,在适当的频率位置上,插入一个(或多个)称为导频的正弦波,接收端就由导频提取出载波,这类方法称为导频插入法;另一类就是不专门发送导频,而在接收端直接从发送信号中提取载波,这类方法称为直接法。下面就重点介绍直接法的两种方法。 1)平方变换法和平方环法 设调制信号为,中无直流分量,则抑制载波的双边带信号为 接收端将该信号进行平方变换,即经过一个平方律部件后就得到 (17-1) 由式(17-1)看出,虽然前面假设了中无直流分量,但中却有直流分量,而表示式的第二项中包含有2ωc频率的分量。若用一窄带滤波器将2ωc频率分量滤出,再进行二分频,就获得所需的载波。根据这种分析所得出的平方变换法

提取载波的方框图如图17-1所示。若调制信号=±1,该抑制载波的双边带信号就成为二相移相信号,这时 (17-2) 图17-1 平方变换提取载波 因而,用图17-1所示的方框图同样可以提取出载波。 由于提取载波的方框图中用了一个二分频电路,故提取出的载波存在180°的相位模糊问题。对移相信号而言,解决这个问题的常用方法是采用相对移相。 平方交换法提取载波方框图中的窄带滤波器若用锁相环代替,构成如图17-2所示的方框图,就称为平方环法提取载波。由于锁相环具有良好的跟踪、窄带滤波和记忆性能,平方环法比一般的平方变换法具有更好的性能。因此,平方环法提取载波应用较为广泛。 图17-2 平方环法提取载波 2)科斯塔斯环法 科斯塔斯环又称同相正交环,其原理框图如下: 图17-3 科斯塔斯环原理框图 在科斯塔斯环环路中,误差信号V7是由低通滤波器及两路相乘提供的。压控振荡器输出信号直接供给一路相乘器,供给另一路的则是压控振荡器输出经90o移相后的信号。两路相乘器的输出均包含有调制信号,两者相乘以后可以消除调制信号的影响,经环路滤波器得到仅与压控振荡器输出和理想载波之间相位差有关的控制电压,从而准确地对压控振荡器进行调整,恢复出原始的载波信号。 现在从理论上对科斯塔斯环的工作过程加以说明。设输入调制信号为,则(17-3) (17-4) 经低通滤波器后的输出分别为: 将v5和v6在相乘器中相乘,得, (17-5) (17-5)中θ是压控振荡器输出信号与输入信号载波之间的相位误差,当θ较小时, (17-6) (17-6)中的v7大小与相位误差θ成正比,它就相当于一个鉴相器的输出。用v7去调整压控振荡器输出信号的相位,最后使稳定相位误差减小到很小的数值。这样压控振荡器的输出就是所需提取的载波。 载波同步系统的主要性能指标是高效率和高精度。所谓高效率就是为了获得载波信号而尽量少消耗发送功率。用直接法提取载波时,发端不专门发送导频,因而效率高;而用插入导频法时,由于插入导频要消耗一部分功率,因而系统的效率降低。所谓高精度,就是提取出的载波应是相位尽量准确的相干载波,也就是相位误差应该尽量小。相位误差通常由稳态相差和随机相差组成。稳态相差主要是指载波信号通过同步信号提取电路一后,在稳态下所引起的相差;随机相差是由于随机噪声的影响而引起同步信号的相位误差。相位误差对双边带信号解调

自适应载波同步及其Matlab仿真

成都理工大学工程技术学院本科毕业论文 自适应载波同步及其Matlab仿真 作者姓名: 专业名称: 指导老师: 年月日

摘要 自适应滤波算法的研究是现在社会自适应信号处理中最为活跃的研究课题之一。找寻收敛速度快,计算简单,数值稳定性好的自适应滤波算法是研究人员不断努力追求的目标。本设计在论述自适应滤波基本原理的基础上,说明了几种当前几种典型的自适应滤波算法和应用。并对这几种典型自适应滤波算法的性能特点进行简单的比较,给出了算法性能的综合评价。 载波同步是无线通信接收机的主要功能之一,其对通信系统质量的提高至关重要。随着新算法涌现和芯片处理速度的提高,不同的解决方案不断的提出。自适应载波同步是一种依据自适应算法的同步方法,内容新颖。本课题在介绍自适应算法和载波同步问题的基础上,详细讨论了平方差分环路法和锁相环路法,具体包括代价函数、代价函数的导数、迭代公式和原理图等,并在论文的第三部分给出了这两种方法的Matlab仿真。仿真结果验证了这两种方法在跟踪载波相位方面是满足要求的,且收敛速度较快。 关键词:自适应滤波载波同步平方差分环路锁相环路法

Abstact The research of adaptive filtering algorithm is one of the most activity tasks, the goal that researchers want to pursue is to find an adaptive filtering algorithm that converge fast and compute simplely. Based on the basis adaptive filtering principle, this paper introduces several typical adaptive algorithms and applications, then compares those algorithm's characters and gives the orithm performance evaluation. Carrier synchronization is one of the main functions of Wireless communications receiver,it is essential for the improvement in the quality of the communication system. With the emergence of new algorithms and the speed improvement of chip processing, different solutions is proposed continuously. Adaptive carrier synchronization is a synchronization method based on adaptive algorithms, and its content is innovative. Based on the introducing of adaptive algorithm and carrier synchronization, this issue has a detailed discussion of the square difference method and the PLL loop method, including its cost function, cost function derivative, iterative formula and schematic, etc. And the third part of the paper gives two methods of Matlab simulation.Simulation results show the two methods with tracking the carrier phase is to meet the requirements, and convergence speedly. Keywords:adaptive filter, carrier synchronization, differential circle square , phase-locked loop method

载波同步提取试验概要

《通信原理》实验报告 实验十:载波同步提取试验 系别: 信息科学与工程学院 专业班级:通信1003 学生姓名:揭芳 学号: 20101182073 同组学生: 杨亦奥 成绩: 指导教师: 惠龙飞 (实验时间:2012 年12月28 日——2012 年12月28 日)

华中科技大学武昌分校

一、实验目的 1、 掌握用科斯塔斯(Co sta s)环提取相干载波的原理与实现方法。 2、 了解相干载波相位模糊现象的产生原因。 二、实验内容 1、 观察科斯塔斯环提取相干载波的过程。 2、 观察科斯塔斯环提取的相干载波,并做分析。 三、实验器材 1、 信 号 源 模 块 一块 2、 ③ 号 模 块 一块 3、 ⑦ 号 模 块 一块 4、 60M 双 踪 示 波 器 一台 四、实验原理 (一)基本原理 同步是通信系统中一个重要的实际问题。当采用同步解调或相干检测时,接收端需要提供一个与发射端调制载波同频同相的相干载波。这个相干载波的获取方法就称为载波提取,或称为载波同步。 提取载波的方法一般分为两类:一类是在发送有用信号的同时,在适当的频率位置上,插入一个(或多个)称为导频的正弦波,接收端就由导频提取出载波,这类方法称为导频插入法;另一类就是不专门发送导频,而在接收端直接从发送信号中提取载波,这类方法称为直接法。下面就重点介绍直接法的两种方法。 1、 平方变换法和平方环法 设调制信号为()m t ,()m t 中无直流分量,则抑制载波的双边带信号为

t t m t s c ωcos )()(= 接收端将该信号进行平方变换,即经过一个平方律部件后就得到 由式(17-1)看出,虽然前面假设了()m t 中无直流分量,但2()m t 中却有直流分量,而()e t 表示式的第二项中包含有2ωc 频率的分量。若用一窄带滤波器将2ωc 频率分量滤出,再进行二分频,就获得所需的载波。根据这种分析所得出的平方变换法提取载波的方框图如图17-1所示。若调制信号()m t =±1,该抑制载波的双边带信号就成为二相移相信号,这时 t t t m t e c c ωω2cos 2 1 21]cos )([)(2+= = (17-2) 图17-1 平方变换提取载波 因而,用图17-1所示的方框图同样可以提取出载波。 由于提取载波的方框图中用了一个二分频电路,故提取出的载波存在180°的相位模糊问题。对移相信号而言,解决这个问题的常用方法是采用相对移相。 平方交换法提取载波方框图中的2c f 窄带滤波器若用锁相环代替,构成如图17-2所示的方框图,就称为平方环法提取载波。由于锁相环具有良好的跟踪、窄带滤波和记忆性能,平方环法比一般的平方变换法具有更好的性能。因此,平方环法提取载波应用较为广泛。 图17-2 平方环法提取载波 2、 科斯塔斯环法 科斯塔斯环又称同相正交环,其原理框图如下:

控制系统实时仿真解决方案.docx

dSpace控制系统实时仿真解决方案 c 利用MATLAB与Dspace开发平台,控制系统仿真平台的开发测试流程步骤如下: 被控对象的理论分析及数学描述 这是离线仿真的第一步,用线性或非线性方程建立控制系统数学模型,该方程应能用MATLAB的m-file格式或Simulink方框图方式表示,以便于用 MATLAB/Simulink进行动态分析。当部分被控对象难于用理论方法描述时,可以结合MATLAB的系统辨识工具箱和Simulink参数估计模型库来辅助进行系统建模。控制系统建模 当被控对象的模型搭建完毕之后,可以用MATLAB的控制系统工具箱等工具分析被控对象的响应特性,然后根据这些响应特性为其设计控制器。离线仿真与优化 模型建立之后,可以通过离线仿真查看控制系统的时域频域性能指标,通过对离线仿真结果的分析来优化控制系统仿真平台的算法或被控对象的模型,使系统的输出特性尽可能的好。当这一步完成之后,就要将离线仿真过渡到实时仿真了。 用真实的硬件接口关系代替Simulink中的逻辑联接关系 由于实时仿真中需要与硬件通讯,所以需要在Simulink方框图中,从RTI库用拖放指令指定实时测试所需的I/O(A/D转换器,增量编码器接口等),并对I/O参数(如A/D电压范围等)进行设置。自动代码生成与下载 这是从离线仿真到实时仿真的关键,当用户用传统的方法进行开发的时候,从控制算法到代码实现需要手工编程,这一步会耗去很长时间,但当用户采用 MATLAB+dSPACE这一整体解决方案时,只需用鼠标选择RTW Build,就可以自动完成目标系统的实时C代码生成、编译、连接和下载。即使是复杂的大型控制系统该过程一般也只需几分钟左右。实验过程的全程自动化管理 用ControlDesk试验工具软件包与实时仿真系统进行交互操作,如调整参数,显示系统的状态,跟踪过程响应曲线等。通过实时测试可以确定系统的一些重要特性。与MATLAB结合进行参数优化 如果需要,利用MLIB/MTRACE从实时闭环系统获得数据,并将该数据回传给用于建模和设计的软件环境(如:MATLAB),由MATLAB根据一定的算法计算下一步控制参数并通过MLIB/MTRACE将参数送给实时系统,实现参数的自动寻优过程。循环

相位解缠算法研究

一、引言 合成孔径雷达干涉测量技术(synthetic aperture radar interferometry, InASR)将合成孔径雷达成像技术与干涉测量技术成功地进行了结合,利用传感器高度、雷达波长、波束视向及天线基线距之间的几何关系,可以精确的测量出图像上每一点的三维位置和变化信息。 合成孔径雷达干涉测量技术是正在发展中的极具潜力的微波遥感新技术,其诞生至今已近30年。起初它主要应用于生成数字高程模型(DEM)和制图,后来很快被扩展为差分干涉技术( differential InSAR , DInSAR)并应用于测量微小的地表形变,它已在研究地震形变、火山运动、冰川漂移、城市沉降以及山体滑坡等方面表现出极好的前景。特别,DInSAR具有高形变敏感度、高空间分辨率、几乎不受云雨天气制约和空中遥感等突出的技术优势,它是基于面观测的空间大地测量新技术,可补充已有的基于点观测的低空间分辨率大地测量技术如全球定位系统(GPS)、甚长基线干涉(VLBI)和精密水准等。尤其InSAR在地球动力学方面的研究最令人瞩目。 二维相位解缠是InSAR 数据处理流程中重要步骤之一,也是主要误差来源,无论是获取数字高程模型还是获取地表形变信息,其精确程度都高度依赖于有效的相位解缠。因此,本人在课程期间对相位解缠的相关文献进行了阅读。 二、InSAR基本原理 用两副雷达天线代替两个光源 S,2S,对地面发射相干信号, 1

将得到类似的条纹图。因为雷达信号与光线本质上都是电磁波,所以只要保证雷达天线载具运行轨道的稳定,那么两个信号到达地面上某一点处的路程差是确定的,只与该点在地面上的位置有关。在 InSAR 干涉测量中有两种模式,一种是在载具(卫星或飞机)上搭载一具天线,而载具两次通过不同轨道航线飞经目标地域上空,此种称之为单天线双航过模式;另一种在载具上搭载两副天线,只飞经目标地域上空一次,此种方式称之为双天线单航过模式。不论是哪种方式都可以用图 来模拟并作出几何解释。 在测量中两副天线或两次航过接收的数据可以各获得对地面同一区域的两幅包含幅值与相位信息的二维复数据图像,分别以1S ,2S 表示为 2 22224||exp()||exp()j r S S S π?λ== () 其中1||S 和2||S 表示幅值信息,1?和2?表示相位信息。将两幅图像 作共轭乘,可得 *12121212124()||||exp()||||exp( )j r r S S S S S S π??λ-?=?-=? () 124()j r r πλ-为两幅图像中相对应的像点的相位差,由路程差决定的,由余弦定理有 2222112cos()r r B Br αβ=+++ () 可得 222 211 arccos()2r r B Br βα--=- () 根据式()的结论,两路雷达波路程差与相位差成正比

第四章载波恢复技术的算法解析

第四章 载波恢复技术及其相关算法 4.1 载波恢复的基本原理 在数字传输系统中,接收端解调部分通常采用相干解调(同步解调)的方法,因为相干解调无论在误码率、检测门限还是在输出信噪比等方面较非相干解调都具有明显优势。相干解调要求在接收端必须产生一个与载波同频同相的相干载波。从接收信号中产生相干载波就称为载波恢复。 相干解调的优越性是以接收端拥有准确相位的参考载波为前提的,如果频率有误差,解调就不能正常工作,如果相位有误差,解调的性能就会下降。因为星座点数多的QAM(如64QAM,256QAM)对载波相位抖动非常敏感,所以对DVB-C 系统的QAM 调制方式来说,在接收端取得精确频率和相位的相关载波尤为重要。 在数字传输系统中,由于收发端的本振时钟不精确相等或者信道特性的快速变化使得信号偏离中心频谱,都会导致下变频后的基带信号中心频率偏离零点,从而产生一个变化的频偏,同时,信号的相位在传输中也会受到影响,引起信号的相位抖动。为了消除因此产生的载波频偏Δf 和相偏Δθ,在数字传输系统接收端的QAM 解调器中需要通过载波恢复(Carrier recovery)环路来计算出信号中载波频偏与相偏,并将载波频偏与相偏的值反馈回混频器来消除载波频偏与相偏。 本文论述采用特殊的锁相环来获得相干载波的方法,其基本思想是:对于经过了下变频、滤波器、定时恢复和均衡之后的信号,应用盲载波恢复,通过利用锁相环,提取出频偏并且跟踪相偏。 4.2 载波恢复的具体方法 以下介绍从抑制载波的己调信号中恢复相干载波的常用的方法:四次方环法、同相正交环法、逆调制环法、判决反馈环法。 4.2.1 四次方环 四次方环[6]的基本方法是将接收信号进行四次方运算,然后用选频回路选出4c f 分量,再进行四分频,取得频率为c f 的相干载波。具体的四次方环载波恢复框图如图4-1所示。 图4-1中接收到的射频信号与本地振荡器混频,在中频处理阶段进行滤波和自动增益控制后,升为四次幂,送入锁相环。锁相环的作用是提取出载波的4倍频分量,并滤除其它随机分量。因此它可以输出所需频率。然后载波频率乘以四,如图中×4方框所示。这一步可以通过求输入信号的四次幂实现。将接收信号通过一个四方律器件得到接收信号的四次幂,同时相位角也变成原来的四倍。然后将四方律器件输出的四倍载频除以四就可以恢复出载波了。

同步技术

同步技术 一、同步技术的定义: 同步技术即调整通信网中的各种信号使之协同工作的技术。诸信号协同工作是通信网正常传输信息的基础。 二、同步技术的分类: 按照同步的功能来分,同步可以分为载波同步、位同步(码元同步)、群同步(帧同步)和网同步(通信网中用)等四种。 (一)载波同步 1、定义 当采用同步解调(相干检测,它的基本功能就是完成频谱的线性搬移,但为了防止失真,同步检波电路中都必须输入与载波同步的解调载波。)时,接收端需要提供一个与接收信号载波同频同相的相干载波,而这个相干载波的获取就称为载波提取,或称为载波同步。 2-1 2、提取方法 载波同步一般有两类方法:一类是直接提取法(自同步法),一类是插入倒频法(外同步法)。 (1)直接提取法(自同步法) 定义: 是从接收到的有用信号中直接(或经变换)提取相干载波,而不需要另外传送载波或其它倒频信号。 基本原理: 有些信号(如DSB信号、2PSK信号等)虽然本身不包含载波分量,但却包含载波信息,对该信号进行某些非线性变换以后,就可以直接从中提取出载波分量来。 提取方法: 平方变换法和平方环法、同相正交环法(科斯塔斯环) ①平方变换法和平方环法

图2-2平方变换法提取载波 图2-2即为平方变换法提取载波,为了改善性能,可以在平方变换法大的基础上,把窄带滤波器用锁相环替代,构成如图2-3所示的方框图,这就是平方环法提取载波。 图2-3平方环法提取载波 由于锁相环具有良好的跟踪、窄带滤波性能,因此平方环法比一般的平方变换法具有更好的性能,因而得到广泛的应用。 ②同相正交环法(科斯塔斯环) 图2-4同相正交环法提取载波 同相正交环法(科斯塔斯环)是利用锁相环提取载波的另一种常用方法,由于加到上下两个相乘器的本地信号分别为压控振荡器的输出信号和它的正交信号,因此常称这种环路为同相正交环,有时也被称为科斯塔斯环(Costas)环。如图2-4所示。 (2)插入倒频法(外同步法) 定义: 是在发端发送信息码元的同时,再发送一个(或多个)包含载波信息的倒频信号,并且要求这个倒频信号不随传播的信息变换,在接收端根据倒频信号提取载波。即发端除了发送有用信号外,还在适当的位置上插入一个供接收端恢复相干载波之用的正弦波信号(这个信号通常称为导频信号)。

通信原理载波提取实验报告

实验项目三 数字锁相环法位同步观测 (1)观测“数字锁相环输入”和“输入跳变指示”,观测当“数字锁相环输入”没有跳变和有跳变时“输入跳变指示”的波形。 (2)观测“数字锁相环输入”和“鉴相输出”。观测相位超前滞后的情况。 (4)以信号源模块“CLK ”为触发,观测13号模块的“ BS2”。 实验二十 实验项目一 VCO 自由振荡观测 (1)示波器CH1接TH8,CH2接TH4 实验项目二 同步带测量

(1)示波器CH1接13号模块TH8模拟锁相环输入,CH2接TH4输出BS1,观察TH4输出处于锁定状态。将正弦波频率调小直到输出波形失锁,此时的频率大小f1为 400Hz ;将频率调大,直到TH4输出处于失锁状态,记下此时频率f2为。 实验二十一载波同步实验 实验项目载波同步 (1)本实验利用科斯塔斯环法提取BPSK调制信号的同步载波,对比观测信号源“256K”和13号模块的“SIN”,调节13号模块的压控偏置调节电位器,观测载波同步情况。

实验二十二帧同步实验 实验项目帧同步提取实验 (1)观测在没有误码的情况下“失步”,“捕获”,“同步”三个灯的变化情况经过多次实验反复观察,“失步”指示灯一直没有亮过,其余两个灯的顺序为捕捉指示灯先亮,之后熄灭,同步指示灯变亮。 (2)关闭7号模块电源。按住“误码插入”不放,打开7号模块电源。再观测“失步”,“捕获”,“同步”三个灯的变化情况。 经过多次实验反复观察,“失步”指示灯一直没有亮过,其余两个灯的顺序为捕捉指示灯先亮,之后熄灭,同步指示灯变亮。 (3)观察同步保护现象:如下图所示。 (4) 现误码时三个LED (5)观察假同步现象: 观察结果知, 分析原因:此时出现假同步状态,即时分复用单元将拨码开关S1的码值做为帧 头码,其他码元和原来的巴克码被当做了数据码元,从而在检查到01110010时 就开始按照8位为一个用户的数据,接着进行下面的数据采集。

基于自适应稀疏表示的压缩感知及相位恢复算法研究

基于自适应稀疏表示的压缩感知及相位恢复算法研究 高效地获取、处理及传输信息对于科技进步至关重要。作为信息的载体,图像在传统采集过程中通常需要以高采样频率采样才能够被完美重建。然而,较多的测量数据既增加了采样端的复杂性,又给数据的传输、处理与存储增加了压力。如何利用少量测量数据重建高质量图像是一大挑战。 为解决该问题,本文利用自适应稀疏表示技术研究从信息缺失严重的测量数据中重建高质量图像的算法,重点研究有效的压缩感知核磁共振成像(Compressed Sensing Magnetic Resonance Imaging,CSMRI)与相位恢复(Phase Retrieval,PR)算法。具体研究内容及创新性成果如下:首先,为解决现有CSMRI 算法在低采样率下重建质量低的问题,提出基于一阶逼近字典学习的CSMRI算法及融合局部稀疏性、即插即用先验的CSMRI算法。字典学习方法在图像重建中至关重要,本文对传统字典学习代价函数中的字典与系数的乘积项进行一阶逼近提出了能够有效捕获图像信息的一阶逼近字典学习方法。此外,利用该方法提出了有效的CSMRI算法。 根据图像与其去噪结果应尽可能接近的原理,构建了即插即用正则化模型。将该模型引入到基于一阶逼近字典学习的CSMRI中以利用多种先验知识进行图像重建,实验验证了算法的有效性。其次,为解决低过采样率下现有PR算法重建质量低的问题,提出了基于紧标架、自适应正交字典的PR算法。传统相位恢复的测量数据包含关于待重建图像较少的结构信息,为保证重建高质量图像需利用额外的先验信息进行重建。 为此,提出利用图像在TIHP(Translation Invariant Haar Pyramid)紧标架下的稀疏性进行相位恢复的算法。由于紧标架的非自适应性,上述算法在更低的过采样率下重建质量不高。为解决该问题,提出利用自适应字典进行相位恢复的算法。该算法将字典限制为正交结构以降低算法计算复杂度,通过傅里叶模值联合优化字典与图像,实验验证了算法的有效性。 再次,提出迁移正交稀疏变换学习算法,并利用该方法进行相位恢复。由于相位恢复的初始估计图像通常为随机的,初始迭代的估计图像包含大量噪声,将该估计图像的图像块作为训练样本不利于字典学习。为解决该问题,构造了稀疏变换正则项以衡量待学习稀疏变换与已知稀疏变换的相似性。提出迁移正交稀疏变

同步载波提取

实验九 同步载波提取实验 一、实验目的 1. 掌握用科斯塔斯(Costas )环提取相干载波的原理与实现方法。 2. 了解相干载波相位模糊现象的产生原因。 二、实验内容 1. 观察科斯塔斯环提取相干载波的过程。 2. 观察科斯塔斯环提取的相干载波,并做分析。 三、实验器材 1. 信号源模块 2. 同步信号提取模块 3. 数字调制模块 4. 20M 双踪示波器 一台 5. 频率计(选用) 一台 四、实验原理 当采用同步解调或相干检测时,接收端需要提供一个与发射端调制载波同频同相的相干载波。这个相干载波的获取就称为载波提取,或称为载波同步。提取载波的方法一般分为两类:一类是在发送有用信号的同时,在适当的频率位置上,插入一个(或多个)称作导频的正弦波,接收端就由导频提取出载波,这类方法称为插入导频法;另一类是不专门发送导频,而在接收端直接从发送信号中提取载波,这类方法称为直接法。下面就重点介绍直接法的两种方法。 1. 平方变换法和平方环法 设调制信号为()m t ,()m t 中无直流分量,则抑制载波的双边带信号为 t t m t s c ωcos )()(= 接收端将该信号进行平方变换,即经过一个平方律部件后就得到 t t m t m t t m t e c c ωω2cos )(212)(cos )()(222 2+== (14-1) 由式(14-1)看出,虽然前面假设了()m t 中无直流分量,但2()m t 中却有直流分量,而()e t 表示式的第二项中包含有2ωc 频率的分量。若用一窄带滤波器将2ωc 频率分量滤出,再进行二分频,就获得所需的载波。根据这种分析所得出的平方变换法提取载波的方框图如图14-1所示。若调制信号()m t =±1,该抑制载波的双边带信号就成为二相移相信号,这时 t t t m t e c c ωω2cos 2 121]cos )([)(2+== (14-2)

相位恢复算法在量子关联衍射成像中的应用研究

第27卷 第11期 2007年11月 光 学 学 报 ACT A OPT ICA SINICA V ol.27,No.11N ov ember ,2007 文章编号:0253 2239(2007)11 2075 7 相位恢复算法在量子关联衍射成像中的应用研究 * 刘永峰 张明辉 沈 夏 魏 青 韩申生 (中国科学院上海光学精密机械研究所,上海201800) 摘要: 随着研究工作的逐步深入,目前已经利用经典热光源实现了关联衍射成像,使得该技术有望在X 射线以及中子衍射成像等方面得到广泛应用。在实验利用非相干光得到物体无透镜傅里叶变换频谱的基础上,采用误差消除与输入输出恢复算法,并结合过采样理论,实现了实验所用物体透射率函数的恢复。分别得到了纯振幅物体的振幅分布函数与纯相位物体的相位分布函数。此外,还讨论了实验所得傅里叶变换频谱的噪声等因素对图像恢复结果的影响。 关键词: 量子光学;量子信息;量子关联衍射成像;相位恢复中图分类号:O 431.2;O 436 文献标识码:A *国家自然科学基金(60477007)和上海光科技特别项目基金(034119815)资助课题。 作者简介:刘永峰(1980-),男,吉林人,硕士研究生,主要从事非局域量子关联成像方面的研究。E mail:yfliu349@sio https://www.wendangku.net/doc/8217123627.html, 导师简介:魏 青(1969-),男,陕西人,副研究员,主要从事生物光子学方面的研究。E mail:qing w @https://www.wendangku.net/doc/8217123627.html, 收稿日期:2007 03 09;收到修改稿日期:2007 05 17 Application of Phase Retrieval Algorithm to Quantum Corre lated Diffraction Imaging Liu Yo ngfeng Zhang Minghui Shen Xia Wei Qing Han Shensheng (Sha ngha i Instit ute of Opt ics a nd Fin e Mecha nics ,the Chinese Academy of Scien ces ,S han gha i 201800)Abstract: With our research going deeply,quantum correlated diffraction imaging can be accomplished by use of c lassical thermal source now,which indicates its wide application in X ray and neutron diffrac tion imaging.The object transmission functions are suc cessfully retrieved from the lensless Fourier transform frequency spectrums,which are obta ined in experiment using incoherent https://www.wendangku.net/doc/8217123627.html,ing the error reduction algorithm and the input output a lgorithm integrated with over sam pling theory,the amplitude distribution function of amplitude only object and the phase distribution function of pure phase object are retrieved successfully.The influence of the noise of Fourier transform frequency spectrum in the experiment on the retrieval result is a lso discussed. Key wo rds: quantum optic s;quantum information;qua ntum c orrelated diffraction imaging;phase retrieval 1 引 言 在某些情况下,相位信息与振幅信息同样重要。对于相位信息,在频率较低的波段可以直接探测得到,但是在光波段或者波长更短的波段,因为频率高达1014 H z 以上,目前探测器的响应速度无法实现直接探测,只能借助光场的干涉或衍射强度分布来间接地恢复光场的相位分布。近年来,在光场干涉与衍射研究领域,量子成像作为一个新的物理现象,引起了学者们的关注并开展了理论和实验方面的工作,起初主要是基于非经典纠缠光束开展相关研究 的[1~3]。随着研究的不断深入,科学家们又基于统计光学理论,提出并验证了利用经典热光场同样可以实现非局域关联成像[4~8] ,引导该方面研究走入一个新领域,也就是基于经典热光场的强度关联成像,使量子成像技术向实用化方向迈出重要一步 [9~13] 。目前实验上已经用非相干光源实现了物 体的无透镜傅里叶变换[14,15] ,得到的是光场的衍射强度信息,相位信息可以用相位恢复方法来间接得到,本文结合已有的相位恢复算法来研究量子关联衍射成像中的相位恢复问题。

相干检测载波恢复算法的概述

相干检测载波恢复算法的概述 摘要:随着互联网流量的日益增长,部署更高数据速率和大容量的光传输系统已成为势在必行。然而,偏振模色散和信道内的非线性效应使信号质量明显变差,基于直接检测系统将不再满足高质量的接收性能要求。前瞻性的研究进展明确指出,与数字信号处理(DSP)技术的结合将使相干检测技术更加具有吸引力。在相干检测DSP算法中,载波恢复是必不可少的。对调相信号,载波与本振间的频率和相位偏移会使信号产生较大的相位失真,为了保证信息的可靠传输,对载波频率偏移和相位偏移估计方法的研究与改进具有重要意义。 关键词:偏振模色散;光传输;相干检测;DSP;载波恢复 1、前言 在当今的信息化、网络化时代,随着社会科技水平的进步和人们生活水平的提高,人们对通信业务的需求及通信质量的要求越来越高。第四代移动通信系统(4G)在全球范围内已经广泛应用,它是一种能够提供多种类型、高质量的多媒体业务,可以实现全球无缝隙覆盖,具有全球漫游能力,并且与固定网络相互兼容,用终端设备可以在任何时候、任何地点与任何人进行任何形式通信的移动通信系统。然而随着技术的不断发展和用户对新业务的需求的不断提升,更高速、更高质量和超大容量成为了通信领域发展所追求的主要目标。 目前,电信正以惊人的速度在发展,而光纤通信是电信中发展最快、最具有活力的部分之一。在当前的通信网络构架中,光通信系统,特别是光纤通信系统在容量、速率和传输距离方面表现出强大的优势,使其逐渐占据了通信舞台的主角地位。在20世纪80年代末期和90年代初期,相干系统曾经是重要的技术,但在20世纪90年代末期,由于光放大器的出现,对相干系统的研究出现了停滞。近年来,随着数字信号处理(Digital Signal Processing,DSP)技术的发展和低成本器件的出现,使得相干接收技术的研究又开始火热起来,这主要是因为相干系统可在高数据速率条件下降低对接收机的要求以及相干接收所具有的一些独特优势。在相干检测中对于瞬时相位信息的保留使得在电域中对色散进行自适应补偿成为可能。此外,相干系统的有利之处还在于,光域的所有信息都可以在电域获得,因此,可以避免使用辅助的光调制与干涉方法进行检测,而在直接检测系统中必须使用这种方法,于是光域的复杂度就被转移到了电域。正由于相干检测的各种优势,特别是具备补偿光传输中多种损伤的能力,相干光研究曾活跃于上世纪九十年代。然后,由于缺乏相应的高速数字信号处理芯片的支持,

载波同步的设计与实现

目录 摘要 (1) 一、设计要求 (2) 二.设计目的 (2) 三.设计原理 (2) 3.1二进制移相键控(2PSK)原理 (2) 3.2载波同步原理 (3) 3.2.1直接法(自同步法) (4) 3.2.2插入导频法 (6) 四.各模块及总体电路设计 (7) 4.1调制模块的设计 (7) 4.2调制模块的设计 (10) 4.3载波同步系统总电路图 (12) 五.仿真结果 (13) 六.心得体会 (15) 参考文献 (16)

摘要 载波同步又称载波恢复(carrier restoration),即在接收设备中产生一个和接 收信号的载波同频同相的本地振荡(local oscillation),供给解调器作相干解调用。当接收信号中包含离散的载频分量时,在接收端需要从信号中分离出信号载波作为本地相干载波;这样分离出的本地相干载波频率必然与接收信号载波频率相同,但为了使相位也相同,可能需要对分离出的载波相位作适当的调整。若接收信号中没有离散载波分量,例如在2PSK信号中(“1”和“0”以等概率出现时),则接收端 需要用较复杂的方法从信号中提取载波。因此,在这些接收设备中需要有载波同步电路,以提供相干解调所需要的相干载波;相干载波必须与接收信号的载波严格地同频同相。 电路设计特点:载波提取电路采用直接法,即直接从发送信号中提取载波,电路 连线简单,易实现,成本低。 关键字:载波同步,EWB仿真,2PSK信号

?? 发送概率为 1-P

-cosω 180°, 号 2PSK 当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信

相关文档