文档库 最新最全的文档下载
当前位置:文档库 › 2014-2015学年 高中数学 人教A版选修2-2 复数课后作业含答案

2014-2015学年 高中数学 人教A版选修2-2 复数课后作业含答案

2014-2015学年 高中数学 人教A版选修2-2    复数课后作业含答案
2014-2015学年 高中数学 人教A版选修2-2    复数课后作业含答案

§3.1 数系的扩充和复数的概念

3.1.1 数系的扩充和复数的概念

一、基础过关

1. “复数a +b i(a ,b ∈R )为纯虚数”是“a =0”的

( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件 2. 下列命题正确的是

( )

A .若a ∈R ,则(a +1)i 是纯虚数

B .若a ,b ∈R 且a >b ,则a +i>b +i

C .若(x 2-1)+(x 2+3x +2)i 是纯虚数,则实数x =±1

D .两个虚数不能比较大小

3. 以-5+2i 的虚部为实部,以5i +2i 2的实部为虚部的新复数是

( )

A .2-2i

B .-5+5i

C .2+i

D .5+5i 4. 若(x +y )i =x -1(x ,y ∈R ),则2x +

y 的值为

( )

A .1

2

B .2

C .0

D .1

5. 若复数z =(x 2

-1)+(x -1)i 为纯虚数,则实数x 的值为

( )

A .-1

B .0

C .1

D .-1或1

二、能力提升

6. 若sin 2θ-1+i(2cos θ+1)是纯虚数,则θ的值为

( )

A .2k π-π

4

(k ∈Z )

B .2k π+π4(k ∈Z )

C .2k π±π

4

(k ∈Z )

D .k 2π+π

4

(k ∈Z )

7.z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i ,且z 1=z 2,则实数m =______,n =______. 8. 给出下列几个命题:

①若x 是实数,则x 可能不是复数; ②若z 是虚数,则z 不是实数;

③一个复数为纯虚数的充要条件是这个复数的实部等于零; ④-1没有平方根. 则其中正确命题的个数为________.

9. 已知集合M ={1,2,(a 2

-3a -1)+(a 2

-5a -6)i},N ={-1,3},若M ∩N ={3},则实数a =________. 10.实数m 分别为何值时,复数z =2m 2

+m -3

m +3+(m 2-3m -18)i 是(1)实数;(2)虚数;(3)纯虚数.

11.已知(2x -y +1)+(y -2)i =0,求实数x ,y 的值.

12.设z 1=m 2+1+(m 2+m -2)i ,z 2=4m +2+(m 2-5m +4)i ,若z 1

三、探究与拓展

13.如果log 1

2(m +n )-(m 2-3m )i>-1,如何求自然数m ,n 的值?

3.1.2 复数的几何意义

一、基础过关

1. 复数z =3+i 3对应的点在复平面第几象限

( )

A .一

B .二

C .三

D .四

2. 当0

( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

3. 在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是 ( )

A .4+8i

B .8+2i

C .2+4i

D .4+i

4. 已知复数z =a +b i(a 、b ∈R ),当a =0时,复平面内的点z 的轨迹是

( )

A .实轴

B .虚轴

C .原点

D .原点和虚轴

5.已知复数z =a +3i 在复平面内对应的点位于第二象限,且|z |=2,则复数z 等于( )

A .-1+3i

B .1+3I

C .-1+3i 或1+3i

D .-2+3i

6.若复数(-6+k 2)-(k 2-4)i(k ∈R )所对应的点在第三象限,则k 的取值范围是________. 二、能力提升

7. 若θ∈(3π4,5π

4

),则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点在( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限 8. 复数z =icos θ,θ∈[0,2π)的几何表示是

( )

A .虚轴

B .虚轴除去原点

C .线段PQ ,点P ,Q 的坐标分别为(0,1),(0,-1)

D .C 中线段PQ ,但应除去原点

9.复数z =log 123+ilog 3 1

2

对应的点位于复平面内的第______象限.

10.若复数z 1=1-i ,z 2=3-5i ,则复平面上与z 1,z 2对应的点Z 1与Z 2的距离为________. 11.复数z =a 2-1+(a +1)i(a ∈R )是纯虚数,则|z |=______.

12.当实数m 为何值时,复数z =(m 2-8m +15)+(m 2+3m -28)i 在复平面内的对应点:

(1)位于第四象限; (2)位于x 轴负半轴上; (3)在上半平面(含实轴).

13.已知复数z 对应的向量为OZ →(O 为坐标原点),OZ →

与实轴正向的夹角为120°且复数z 的模为2,求复数z .

三、探究与拓展

14.(1)满足条件|z -i|=|3+4i|的复数z 在复平面上对应点的轨迹是

( )

A .一条直线

B .两条直线

C .圆

D .椭圆

(2)已知复数(x -2)+y i(x ,y ∈R )的模为3,则y

x

的最大值为________.

§3.2 复数代数形式的四则运算

3.2.1 复数代数形式的加减运算及其几何意义

一、基础过关

1. 若复数z 满足z +i -3=3-i ,则z 等于

( )

A .0

B .2i

C .6

D .6-2i 2. 复数i +i 2在复平面内表示的点在

( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

3. 复数z 1=3+i ,z 2=-1-i ,则z 1-z 2等于

( )

A .2

B .2+2i

C .4+2i

D .4-2i 4. 设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为

( )

A .1+i

B .2+I

C .3

D .-2-i 5. 已知|z |=3,且z +3i 是纯虚数,则z 等于

( )

A .-3i

B .3i

C .±3i

D .4i

6. 计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-2 008+2 009i)+(2 009-2 010i)+(-2 010+2

011i).

二、能力提升

7. 若复数z 1=-1,z 2=2+i 分别对应复平面上的点P ,Q ,则向量PQ →

对应的复数是____.

8. 如果一个复数与它的模的和为5+3i ,那么这个复数是________. 9. 若|z -2|=|z +2|,则|z -1|的最小值是________.

10.设m ∈R ,复数z 1=m 2+m

m +2+(m -15)i ,z 2=-2+m (m -3)i ,若z 1+z 2是虚数,求m 的取值范围.

11.复平面内有A ,B ,C 三点,点A 对应的复数是2+i ,向量BA →对应的复数是1+2i ,向量BC →

对应的复数是

3-i ,求C 点在复平面内的坐标.

12.已知ABCD 是复平面内的平行四边形,且A ,B ,C 三点对应的复数分别是1+3i ,-i,2+i ,求点D 对应

的复数.

三、探究与拓展

13.在复平面内A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i.

(1)求AB →,BC →,AC →

对应的复数; (2)判断△ABC 的形状; (3)求△ABC 的面积.

3.2.2 复数代数形式的乘除运算

一、基础过关 1. 复数-i +1

i

等于

( )

A .-2i

B .1

2

I C .0

D .2i 2. i 为虚数单位,1i +1i 3+1i 5+1

i

7等于

( )

A .0

B .2i

C .-2i

D .4i

3. 若a ,b ∈R ,i 为虚数单位,且(a +i)i =b +i ,则

( )

A .a =1,b =1

B .a =-1,b =1

C .a =-1,b =-1

D .a =1,b =-1

4. 在复平面内,复数i

1+i

+(1+3i)2对应的点位于

( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

5.设复数z 的共轭复数是z ,若复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于 ( )

A .3

4

B .43

C .-43

D .-34

6. 若z =1+2i

i

,则复数z 等于

( )

A .-2-i

B .-2+I

C .2-i

D .2+i

二、能力提升

7.设复数i 满足i(z +1)=-3+2i(i 为虚数单位),则z 的实部是________. 8.复数2i

-1+3i

的虚部是________.

9.已知z 是纯虚数,z +2

1-i 是实数,那么z=________.

10.计算:(1)2+2i (1-i )2+(21+i

)2 010

; (2)(4-i 5

)(6+2i 7

)+(7+i 11

)(4-3i).

11.已知复数z 1满足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,且z 1·z 2是实数,求z 2.

12.已知复数z 的共轭复数为z ,且z ·z -3i z =101-3i ,求z .

探究与拓展

13.已知1+i 是方程x 2

+bx +c =0的一个根(b 、c 为实数).

(1)求b ,c 的值;

(2)试说明1-i 也是方程的根吗?

习题课

一、基础过关

1. 复数1-2+i +1

1-2i

的虚部是

( )

A .1

5i

B .15

C .-15i

D .-15

2. 复数2+i

1-2i

的共轭复数是

( )

A .-35

i

B .3

5

I C .-i

D .i

3. 若(m 2-5m +4)+(m 2-2m )i>0,则实数m 的值为

( )

A .1

B .0或2

C .2

D .0

4. 设a ,b ∈R 且b ≠0,若复数(a +b i)3是实数,则

( )

A .b 2=3a 2

B .a 2=3b 2

C .b 2=9a 2

D .a 2=9b 2 5. 设i 是虚数单位,复数

1+a i

2-i

为纯虚数,则实数a 为

( )

A .2

B .-2

C .-12

D .1

2

6. 复平面内点A 、B 、C 对应的复数分别为i 、1、4+2i ,由A →B →C →D 按逆时针顺序作平行四边形ABCD ,

则|BD →

|等于

( )

A .5

B .13

C .15

D .17

二、能力提升

7.已知复数z =2-i

1-i ,其中i 是虚数单位,则|z |=________.

8.已知(a -i)2=2i ,那么实数a =________.

9.设复数z 满足条件|z |=1,那么|z +22+i|的最大值是________.

10.已知a ∈R ,则z =(a 2-2a +4)-(a 2-2a +2)i 所对应的点在第几象限?复数z 对应的点的轨迹是什么?

11.设复数z =(1+i )2+3(1-i )

2+i ,若z 2+a ·z +b =1+i ,求实数a ,b 的值.

12.在复平面内,O 是原点,向量OA →

对应的复数是2+i.

(1)如果点A 关于实轴的对称点为B ,求向量OB →

对应的复数; (2)如果(1)中点B 关于虚轴的对称点为C ,求点C 对应的复数.

三、探究与拓展

13.是否存在复数z ,使其满足z ·z +2i z =3+a i ?如果存在,求实数a 的取值范围;如果不存在,请说明

理由.

章末检测

一、选择题

1. i 是虚数单位,若集合S ={-1,0,1},则

( )

A .i ∈S

B .i 2∈S

C .i 3∈S

D .2i

∈S

2. z 1=(m 2

+m +1)+(m 2

+m -4)i ,m ∈R ,z 2=3-2i ,则“m =1”是“z 1=z 2”的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分又不必要条件 3. i 是虚数单位,复数3+i

1-i

等于

( )

A .1+2i

B .2+4i

C .-1-2i

D .2-i 4. 已知a 是实数,a -i

1+i

是纯虚数,则a 等于

( )

A .1

B .-1

C . 2

D .- 2 5. 若(x -i)i =y +2i ,x ,y ∈R ,则复数x +y i 等于

( )

A .-2+i

B .2+i

C .1-2i

D .1+2i 6. (1+i)20-(1-i)20的值是

( )

A .-1 024

B .1 024

C .0

D .1 024i

7. i 是虚数单位,若1+7i

2-i

=a +b i(a ,b ∈R ),则ab 的值是

( )

A .-15

B .3

C .-3

D .15

8. 若z 1=(x -2)+y i 与z 2=3x +i(x ,y ∈R )互为共轭复数,则z 1对应的点在

( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限 9. 已知f (n )=i n -i -

n (n ∈N *),则集合{f (n )}的元素个数是

( )

A .2

B .3

C .4

D .无数个

二、填空题

10.复平面内,若z =m 2(1+i)-m (4+i)-6i 所对应的点在第二象限,则实数m 的取值范围是________. 11.给出下面四个命题:

①0比-i 大;②两个复数互为共轭复数,当且仅当其和为实数;③x +y i =1+i 的充要条件为x =y =1;④如果让实数a 与a i 对应,那么实数集与纯虚数集一一对应.其中真命题的个数是________.

12.已知0

①若(2x -1)+i =y -(3-y )i ,其中x ∈R ,y ∈?C R ,则必有?

????

2x -1=y

1=-(3-y );

②2+i>1+i ; ③虚轴上的点表示的数都是纯虚数;

④若一个数是实数,则其虚部不存在; ⑤若z =1

i ,则z 3+1对应的点在复平面内的第一象限.

三、解答题

14.设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,当m 为何值时,

(1)z 是实数?(2)z 是纯虚数?

15.已知复数z 1=1-i ,z 1·z 2+z 1=2+2i ,求复数z 2.

16.计算:(1)(2+2i )4(1-3i )5

(2)(2-i)(-1+5i)(3-4i)+2i.

17.实数m 为何值时,复数z =(m 2+5m +6)+(m 2-2m -15)i 对应的点在:

(1)x 轴上方;

(2)直线x +y +5=0上.

18.已知复数z 满足|z |=2,z 2的虚部是2.

(1)求复数z ;

(2)设z ,z 2,z -z 2在复平面上的对应点分别为A ,B ,C ,求△ABC 的面积.

19.设z 1是虚数,z 2=z 1+1

z 1

是实数,且-1≤z 2≤1.

(1)求|z 1|的值以及z 1的实部的取值范围; (2)若ω=1-z 1

1+z 1

,求证:ω为纯虚数.

复数参考答案

第一节

1.A 2.D 3.A 4.D 5.A 6.B 7.2 ±2 8.1 9.-1

10.解 (1)要使所给复数为实数,必使复数的虚部为0.

故若使z 为实数,则?

????

m 2

-3m -18=0

m +3≠0,

解得m =6.所以当m =6时,z 为实数.

(2)要使所给复数为虚数,必使复数的虚部不为0. 故若使z 为虚数,则m 2-3m -18≠0,且m +3≠0, 所以当m ≠6且m ≠-3时,z 为虚数.

(3)要使所给复数为纯虚数,必使复数的实部为0,虚部不为0. 故若使z 为纯虚数,则 ????

?

2m 2

+m -3=0m +3≠0m 2-3m -18≠0

解得m =-3

2

或m =1.

所以当m =-3

2或m =1时,z 为纯虚数.

11.解 ∵(2x -y +1)+(y -2)i =0,

∴?????

2x -y +1=0,

y -2=0.解得??

???

x =1

2,y =2.

所以实数x ,y 的值分别为1

2,2.

12.解 由于z 1

∴z 1∈R 且z 2∈R ,

当z 1∈R 时,m 2+m -2=0, m =1或m =-2.

当z 2∈R 时,m 2

-5m +4=0, m =1或m =4,

∴当m =1时,z 1=2,z 2=6,满足z 1

13.解 因为log 12(m +n )-(m 2-3m )i>-1,所以log 1

2

(m +n )-(m 2-3m )i 是实数,从而有

????

?

m 2-3m =0, ①log 12

(m +n )>-1, ② 由①得m =0或m =3,

当m =0时,代入②得n <2,又m +n >0,所以n =1; 当m =3时,代入②得n <-1,与n 是自然数矛盾, 综上可得m =0,n =1.

第二节

1.D 2.D 3.C 4.B 5.A 6.2

12.解 (1)要使点位于第四象限,须?

????

m 2

-8m +15>0

m 2+3m -28<0,

∴?

????

m <3或m >5-7

?

???? m 2-8m +15<0m 2+3m -28=0,∴?????

3

(3)要使点位于上半平面(含实轴),须m 2+3m -28≥0, 解得m ≥4或m ≤-7.

13.解 根据题意可画图形如图所示:

设点Z 的坐标为(a ,b ), ∵|OZ →

|=|z |=2,∠xOZ =120°, ∴a =-1,b =3, 即点Z 的坐标为(-1,3), ∴z =-1+3i. 14.(1)C

(2) 3

第三节

1.D 2.B 3.C 4.D 5.B

高中数学新教材中的数学文化

高中数学新教材中的数学文化 摘要:随着新课程改革的推进,对高中数学教学不断提出新的要求。不仅要摒弃传统的教学形式,创新教学内容、教学方法,更要重视新教材中数学文化的渗透,关注学生知识的学习积累,注重对学生学习兴趣的培养。本文立足于新教材中数学文化的体现,致力于探究如何使学生更好的在学习过程中感受数学文化,更好的提高数学教学效果。 关键词:高中数学新教材数学文化 引言 数学文化作为一个抽象的概念,主要包含数学的思想、语言、方法、特点及形成与发展的过程等,即从文化的视角分析数学。除此之外,数学文化还涉及数学史、数学教育以及和其他学科的交叉等。本文将对数学文化内容展开分析,促进学生对数学文化的理解,更好的学习数学知识。 一、数学文化在教学中发挥的作用 数学是具有独特文化的学科,是人类文明的重要组成部分,同时也是促进人类社会不断进步的重要指引。数学作为一种精神,与我们的社会环境、日常生

活密切相关[1]。其符号语言简单,思维方式独特,理性思维严谨,概括又抽象,不仅应用于教学中、生活中,更能促进人类思维品质的形成。 数学既是一门学科,又是一种文化,数学教育就是要把这种文化传承下去。从高中新教材可以看出,数学文化在数学教学中应发挥作用,使学生在学习过程体会数学文化的精髓所在。因此,老师在对学生进行教学时,既要注重数学知识的讲授,更要对学生进行数学文化的渗透。 二、教材对数学文化的诠释 数学文化对学生影响深远,它不仅能激发学生的学习兴趣和求知欲,培养学生理性思维,使学生形成独立观察、解决问题的能力,增强学生的实践能力,更重要的是,有助于学生价值观的形成和人格品性的提高。[2] 新教材课程标准明确指出,高中数学老师应将教学模块和数学文化结合起来,并给学生提供相关模块进行参考。新课标也要求教师在教学中渗透数学文化价值及美学价值。因此,老师在教学过程中,可将数学知识与数学文化相结合,从文化的角度引导学生,使学生在接受数学知识的同时,又能站在文化的角度感悟数学。

(完整版)人教A版高中数学教材目录(全)

必修1 第一章集合与函数概念 1.1 集合 1.2 函数及其表示 1.3 函数的基本性质 第二章基本初等函数(Ⅰ)2.1 指数函数 2.2 对数函数 2.3 幂函数 第三章函数的应用 3.1 函数与方程 3.2 函数模型及其应用 必修2 第一章空间几何体 1.1 空间几何体的结构 1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积 第二章点、直线、平面之间的位置关系 2.1 空间点、直线、平面之间的位置关系 2.2 直线、平面平行的判定及其性质 2.3 直线、平面垂直的判定及其性质 第三章直线与方程 3.1 直线的倾斜角与斜率 3.2 直线的方程 3.3 直线的交点坐标与距离公式 必修3 第一章算法初步 1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例 阅读与思考割圆术 第二章统计 2.1 随机抽样 阅读与思考一个著名的案 例 阅读与思考广告中数据的 可靠性 阅读与思考如何得到敏感 性问题的诚实反应 2.2 用样本估计总体 阅读与思考生产过程中的 质量控制图 2.3 变量间的相关关系 阅读与思考相关关系的强 与弱 第三章概率 3.1 随机事件的概率 阅读与思考天气变化的认 识过程 3.2 古典概型 3.3 几何概型 必修4 第一章三角函数 1.1 任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图象与性质 1.5 函数y=Asin(ωx+ψ) 1.6 三角函数模型的简单应 用 第二章平面向量 2.1 平面向量的实际背景及 基本概念 2.2 平面向量的线性运算 2.3 平面向量的基本定理及 坐标表示 2.4 平面向量的数量积 2.5 平面向量应用举例 第三章三角恒等变换 3.1 两角和与差的正弦、余 弦和正切公式 3.2 简单的三角恒等变换 必修5 第一章解三角形 1.1正弦定理和余弦定理 1.2应用举例 1.3实习作业 第二章数列 2.1数列的概念与简单表示法 2.2等差数列 2.3等差数列的前n项和 2.4等比数列 2.5等比数列的前n项和 第三章不等式 3.1不等关系与不等式 3.2一元二次不等式及其解法 3.3二元一次不等式(组)与简 单的线性规划问题 3.3.1二元一次不等式(组)与平 面区域 3.3.2简单的线性规划问题 3.4基本不等式 选修1-1 第一章常用逻辑用 语 1.1命题及其关系 1.2充分条件与必要条件 1.3简单的逻辑联结词 1.4全称量词与存在量词 第二章圆锥曲线与 方程 2.1椭圆 2.2双曲线 2.3抛物线 第三章导数及其应 用 3.1变化率与导数 3.2导数的计算

人教版高中数学教材最新目录 (1)

人教版普通高中课程标准实验教科书数学 必修一 第一章集合与函数概念 1.1集合 1.2函数及其表示 1.3函数的基本性质 第二章基本初等函数(Ⅰ) 2.1指数函数 2.2对数函数 2.3幂函数 第三章函数的应用 3.1函数与方程 3.2函数模型及其应用 必修二 第一章空间几何体 1.1空间几何体的结构 1.2空间几何体的三视图和直观图 1.3空间几何体的表面积与体积 第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系 2.2直线、平面平行的判定及其性质 2.3直线、平面垂直的判定及其性质 第三章直线与方程 3.1直线的倾斜角与斜率 3.2直线的方程 3.3直线的交点坐标与距离公式 必修三: 第一章算法初步 1.1算法与程序框图 1.2基本算法语句 1.3算法案例 第二章统计 2.1随机抽样 阅读与思考一个著名的案例 阅读与思考广告中数据的可靠性 阅读与思考如何得到敏感性问题的诚实反应 2.2用样本估计总体 阅读与思考生产过程中的质量控制图 2.3变量间的相关关系 阅读与思考相关关系的强与弱 第三章概率 3.1随机事件的概率 阅读与思考天气变化的认识过程3.2古典概型 3.3几何概型 阅读与思考概率与密码 必修四: 第一章三角函数 1.1任意角和弧度制 1.2任意角的三角函数 1.3三角函数的诱导公式 1.4三角函数的图象与性质 1.5函数y=Asin(ωx+ψ) 1.6三角函数模型的简单应用 第二章平面向量 2.1平面向量的实际背景及基本概念 2.2平面向量的线性运算 2.3平面向量的基本定理及坐标表示 2.4平面向量的数量积 2.5平面向量应用举例 第三章三角恒等变换

人教版高中数学选修2-1优秀全套教案

高中数学人教版选修2-1全套教案 第一章常用逻辑用语 日期: 1.1.1命题 (一)教学目标 1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式; 2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力; 3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 (二)教学重点与难点 重点:命题的概念、命题的构成 难点:分清命题的条件、结论和判断命题的真假 教具准备:与教材内容相关的资料。 教学设想:通过学生的参与,激发学生学习数学的兴趣。 教学时间 (三)教学过程 学生探究过程: 1.复习回顾 初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析 下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线a∥b,则直线a与直线b没有公共点. (2)2+4=7. (3)垂直于同一条直线的两个平面平行. (4)若x2=1,则x=1. (5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断 学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。 教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。 4.抽象、归纳 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句. 在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

《数学文化赏析》mooc答案(最新整理)

第一章 一、多选题(共100.00 分) 1.以下关于数学的描述,正确的有(A B)。 A.数学是研究现实世界的空间形式与数量关系的科学。 B.数学是研究模式与秩序的科学 C.数学研究事物的物质属性 D.数学只是研究数的科学 2.以下表述中正确的有(A B C)。 A.数与形是数学科学的两大柱石; B.数与形是万物共性和本质; C.数与形是一个事物的两个侧面,二者有密切联系; D.数与形是不同的事物,也没有关系。 3.下列运动或变换中,属于拓扑变换的有(A C)。 A.橡皮筋拉伸; B.电风扇旋转; C.纸张折叠; D.投影。 4.以下各选项属于数学的特点的有(A C D)。 A.概念的抽象性; B.公式的简洁性; C.推理的严密性; D.结论的确定性。 5.以下选项中,属于数学关注的内容的部分有(A B C D)。 A.一种对象的内在性质; B.不同对象的联系; C.多种对象的共性; D.一组对象的变化规律。 6.数学中概念或定义的形成主要是(A B C)的结果。 A.分类; B.抓本质; C.抓共性; D.推理。 7.按照结构数学的观点,以下对象属于代数结构的有(A C)。 A.加法运算; B.比较大小; C.乘方运算; D.数轴。 8.以下关于公理系统的描述中,正确的有(A B D)。 A.公理之间应该相容; B.公理之间应该独立; C.公理需要证明; D.公理是数学理论正确性的前提。 9.以下推理形式中,属于合情推理的有(A B D)。 A.归纳;

B.类比; C.演绎; D.联想。 10.以下关于归纳推理的叙述中,正确的是(A B D)。 A.归纳推理是从个体认识群体的推理; B.归纳推理是从特殊到一般的推理; C.归纳推理是从一个个体认识另一个个体的推理; D.归纳推理不能保证结论的正确性。 11.以下关于类比推理的叙述中,正确的是(A C D )。 A.类比推理是发散性思维; B.类比推理是从一般到特殊的推理; C.类比推理是从一个个体认识另一个个体的推理; D.类比推理不能保证结论的正确性。 12.以下关于演绎推理的叙述中,正确的是(A B C D)。 A.演绎推理是收敛性思维; B.演绎推理可以从少数已知事实出发,导出一个内容丰富的知识体系; C.演绎推理能够保证数学命题的正确性,使数学立于不败之地; D.演绎推理可以使人类的认识范围从有限走向无限。 第二章 一、多选题(共100.00 分) 1.以下选项中属于数学功能的有(A B C D ) A.实用 B.教育 C.语言 D.文化 2.以下哪些现象说明数学具有语言功能?A B A.用方程描述社会现象 B.用符号表示数和运算 C.逻辑推理 D.五线谱 3.数学被广泛地应用于人类社会的各个领域,两条最根本原因包括(A C) A.数学的对象是万物之本 B.数学概念的抽象性 C.数学方法与结论的可靠性 D.数学结论的确定性 4.与自然语言相比,数学语言具有以下优点(A C D ) A.不会产生歧义 B.表达生动 C.表达简洁、清晰 D.内涵丰富 5.把数学看做一种文化,原因在于(A B C ) A.数学是人类创造并传承下来的智力成就

浅谈数学文化与高中数学教学 -

【标题】浅谈数学文化与高中数学教学 【作者】谭弦 【关键词】数学文化数学文化与教学素质教育 【指导老师】周均 【专业】数学与应用数学 【正文】 1. 引言 数学不仅是一门科学,更是一个内容十分丰富的文化体系,因为数学中蕴涵了大量的哲学、美学、文学等,因此数学更是一个由其内在力量和外部力量共同作用而处于不断发展和进化的文化系统。高中数学是数学科学的基础知识,也是一个联系紧密、结构严谨的数学文化系统。在新数学课程标准和数学教学改革的要求下,中学生除了学会数学基础知识和基本技能外,还应当受到良好的数学文化教育,使之具有一定的数学素养。因此,研究数学文化与高中数学教学具有重要的意义,有助于完善数学文化的理论研究,促进数学文化的发展,更重要的是,把对数学文化的研究和高中数学教学想结合,能够促进高中数学教学的改革,提高高中学生的数学学习兴趣。 2. 数学文化的内涵 2.1.数学文化的概念 数学文化是指人类在社会历史过程中所创造的精神财富。数学文化可以看成是指人类在历史的数学活动过程中所创造的数学财富的总和,包括数学的知识体系、数学的思想、方法、观念等。高中数学新课程标准,把认识数学文化的作用,提高学生的文化素养和创新意识作为一个重要的培养目标,尽管上世纪90年代以来,许多中外学者将数学文化作为一种文化来研究,然而对数学文化的认识在理论和实践上的讨论还不是很完善。 数学文化是人类文化的重要组成部分。一方面数学文化的产生与发展是在一定的文化背景中实现的,那一定的文化背景制约着数学文化的发展;另一方面吗,数学文化的发展又反过来影响整个文明进程,数学文化不仅自身属于人类社会的一种文化现象,而且数学文化尚拥有广泛的超越数学文化自身意义的因素以及这些因素对人类文化(进步)的巨大影响。数学文化是人类社会进步的产物,也是推动社会发展的动力。从远古人类的结绳计数到数码符号的出现,从数字的应用到数量符号运算符号的产生,从各种数量关系的研究到数学语言、文字语言、符号语言、图式语言的诞生,从解决问题的不同策略,到数学思想和方法的确立,从珠算的发明到计算机的产生,清晰地表明,数学文化与人们的生活息息相关,与人类的文明同步发展。 2.2数学的文化价值 数学是一种文化,数学教育是数学文化的教育。《普通高中数学课程标准(实验)》将体现数学的文化价值作为一个基本理念,提出了对数学文化的学习要求。这充分表明数学文化已经从一种理念走进了中学课堂,渗透到数学课的实际教学中。课

【校本教材】高中数学校本课程---数学文化

【高中数学校本课程】 数学文化 目录 总体规划…………………………………………………………课程实施…………………………………………………………第一节有趣的数学谜语………………………………………第二节鸡兔同笼问题…………………………………………第三节九宫图的应用…………………………………………第四节大衍求一术……………………………………………第五节让梨游戏………………………………………………第六节幻方与魔阵……………………………………………第七节数学中的简单逻辑推理问题…………………………第八节欺骗眼睛的几何问题…………………………………第九节抽屉原理的简单应用…………………………………第十节帕斯卡三角形与道路问题…………………………第十一节数独………………………………………………

第二部分课程实施 实施对象:高二学生 实施时间:校本选修课2 实施步骤: 分四步:1)自行研读,思考 2)合作探究、推理 3)老师指导、解答 4)创新运用、提高 实施计划: 拟在高二实施,共需18课时。高二年级每周2课时。 课时安排: 第一节有趣的数学谜语………………………………………2课时 第二节鸡兔同笼问题…………………………………………1课时 第三节九宫图的应用…………………………………………1课时 第四节大衍求一术……………………………………………2课时 第五节让梨游戏………………………………………………1课时 第六节幻方与魔阵……………………………………………2课时 第七节数学中的简单逻辑推理问题…………………………1课时 第八节欺骗眼睛的几何问题…………………………………2课时 第九节抽屉原理的简单应用…………………………………2课时 第十节帕斯卡三角形与道路问题……………………………1课时 第十一节数独………………………………………………2课时 体会与反思………………………………………………………1课时 评价与考核 本课程采用考核与考试相结合的评价方式。 作业:结合课本知识及相关内容,以作业形式,考查学生的解决问题的能力,以了解学

人教版高中数学选修1-1知识点总结

高中数学选修1-1知识点总结 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ?,则q ?” 逆否命题:“若q ?,则p ?” 4、四种命题的真假性之间的关系: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 利用集合间的包含关系: 例如:若B A ?,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件; 6、逻辑联结词:⑴且(and) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ?. 7、⑴全称量词——“所有的”、“任意一个”等,用“ 全称命题p :)(,x p M x ∈?; 全称命题p 的否定?p :)(,x p M x ?∈?。 ⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示;

特称命题p :)(,x p M x ∈?; 特称命题p 的否定?p :)(,x p M x ?∈?; 第二章 圆锥曲线 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于 12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:

谈谈数学文化与高中数学教学

【标题】谈谈数学文化与高中数学教学 【作者】袁媛 【关键词】数学文化高中数学教学数学人文素养 【指导老师】杨红 【专业】数学与应用数学 【正文】 引言 现在学科间呈现出交叉、渗透与综合,使得人文教育与科学教育再度出现融合的发展趋势,人文教育日益受到教育者的关注,世界各国围绕21世纪公民的科学素养的要求,已经意识到数学人文价值的客观存在.数学作为人类文化的重要组成部分,它的文化价值已经受到数学界的普遍重视.高中数学教育目的不仅在于使学生掌握数学理论知识,而且使他们具有一定的数学思维能力,善于运用所学的知识分析和解决各种实际问题,具有一定的数学文化素养.而培养数学人文素养是一个动态的过程,它是不仅靠记忆、讲解、推导、演练、答卷等传统的教学手段就能凑效的,因为上述教学手段基本都是围绕知识的理解和掌握展开的,是以书本知识为素材,以形式逻辑推理为思维工具的.要培养具有数学人文素养的人才就需要新的手段.笔者认为,把数学文化运用于高中数学教学,将二者融合在一起,则是一个值得探索的,很有希望的方向.实际上,从19世纪以来已经有不少数学家和数学教育家从不同角度进行过这方面的探索[1].如F.Klein的《19世纪数学史讲义》,G.Polya的《数学的发现》,《数学的猜想》等著作中运用了学许多数学哲学和数学史的成果,20世纪的60年代以来关于“新数学”的教育功过是非的讨论,也是在数学哲学和数学背景上进行的.本文将对数学文化与高中数学教学作一定的探究. 1认识数学文化 数学作为一种文化现象,早已是人们的常识.数学文化是人类的基本文化活动之一,与人类整体文化血肉相连.那么数学文化到底是什么呢?现目前对于数学文化还没有确切的定义,但从系统的观点来看,数学文化可表述为:“以数学科学体系为核心,以数学的思想、精神、知识、方法、技术、理论所辐射的相关文化领域为有机组成部分的一个具有强大精神与物质功能的动态系统.”[2] 这样的定义比较全面地揭示了数学文化的本质特点.下面笔者将仅从数学美、数学精神以及数学史这3个层面来认识数学文化. 1. 1数学是很美的 有人曾把优秀的数学文化比作美丽动人的皇后,得心应手的仆人,聪明伶俐的宠物.数学就真的那么美吗?答案是肯定的.举例可证.

数学文化与高考数学

高考数学文化专题 一、数学名著中的立几题,例如:2015年全国1卷文6理6题; 6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下 问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?” 其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一), 米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各 为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出 堆放的米约有() (A)14斛(B)22斛(C)36斛(D)66斛 二、数学名著中的数列题,例如:2011年湖北卷文9理13题; 13.《九章算术》“竹九节”问题:现有1根9节的竹子,自上而下各节的容积成等差数列,上面四节的容积共3升,下面3节的容积共4升,则第5节的容积为升。 三、数学名著中的算法题,例如:2015年全国2卷文8理8题; (8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。执行该程序框图,若输入a,b分别为14,18,则输出的a= A.0 B.2 C.4 D.14 四、数学名著中的统计题,例如:2015年湖北卷文2理2题 2.(5分)(2015?湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为() A.134石B.169石C.338石D.1365石

五、杨辉三角,例如:2004年上海春季卷11题; 11.如图,在由二项式系数所构成的杨辉三角形中,第 _____行中从左至右第14与第15个数的比为3:2.六、祖暅原理,例如:2013年上海卷理13题; 13.在xOy 平面上,将两个半圆弧22 (1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭 图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几 何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为 2418y ππ-+,试利用祖暅原理、一个平放的圆柱和一个长 方体,得出Ω的体积值为__________ 七、形数,例如:2009年湖北卷文10理10题; 10.古希腊人常用小石子在沙滩上摆成各种形状来研究数。比如: 他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。下列数中既是三角形数又是正方形数的是 A.289 B.1024 C.1225 D.1378 八、斐波那契数列,例如:2009年福建卷理15题 15.五位同学围成一圈依序循环报数,规定: ①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同 学所报出的数之和; ②若报出的数为3的倍数,则报该数的同学需拍手一次 第0行1第1行 11第2行 121第3行 1331第4行 14641第5行1 5101051………………

人教a版高中数学教材目录全)

必修 1 第一章集合与函数概念 1.1 集合 1.2 函数及其表示 1.3 函数的基本性质 第二章基本初等函数(Ⅰ)2.1 指数函数 2.2 对数函数 2.3 幂函数 第三章函数的应用 3.1 函数与方程 3.2 函数模型及其应用 必修2 第一章空间几何体 1.1 空间几何体的结构 1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积 第二章点、直线、平面之间的位置关系 2.1 空间点、直线、平面之间的位置关系 2.2 直线、平面平行的判定及其性质 2.3 直线、平面垂直的判定及其性质 第三章直线与方程 3.1 直线的倾斜角与斜率 3.2 直线的方程 3.3 直线的交点坐标与距离公式 必修3 第一章算法初步 1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例 阅读与思考割圆术 第二章统计 2.1 随机抽样 阅读与思考一个著名的案 例 阅读与思考广告中数据的 可靠性 阅读与思考如何得到敏感 性问题的诚实反应 2.2 用样本估计总体 阅读与思考生产过程中的 质量控制图 2.3 变量间的相关关系 阅读与思考相关关系的强 与弱 第三章概率 3.1 随机事件的概率 阅读与思考天气变化的认 识过程 3.2 古典概型 3.3 几何概型 必修4 第一章三角函数 1.1 任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图象与性质 1.5 函数y=Asin(ωx+ψ) 1.6 三角函数模型的简单应 用 第二章平面向量 2.1 平面向量的实际背景及 基本概念 2.2 平面向量的线性运算 2.3 平面向量的基本定理及 坐标表示 2.4 平面向量的数量积 2.5 平面向量应用举例 第三章三角恒等变换 3.1 两角和与差的正弦、余 弦和正切公式 3.2 简单的三角恒等变换 必修5 第一章解三角形 1.1正弦定理和余弦定理 1.2应用举例 1.3实习作业 第二章数列 2.1数列的概念与简单表示法 2.2等差数列 2.3等差数列的前n项和 2.4等比数列 2.5等比数列的前n项和 第三章不等式 3.1不等关系与不等式 3.2一元二次不等式及其解法 3.3二元一次不等式(组)与简 单的线性规划问题 3.3.1二元一次不等式(组)与平 面区域 3.3.2简单的线性规划问题 3.4基本不等式 选修1-1 第一章常用逻辑用 语 1.1命题及其关系 1.2充分条件与必要条件 1.3简单的逻辑联结词 1.4全称量词与存在量词 第二章圆锥曲线与 方程 2.1椭圆 2.2双曲线

高中数学选修1-2课后习题答案

高中数学选修1-2课后习题答案

高中数学选修1-2课后习题答案 第Ⅰ卷选择题共50分 一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一选项是符合题目要求的) 参考公式 1.在画两个变量的散点图时,下面哪个叙述是正确的( ) A 预报变量在x轴上,解释变量在y轴上 B 解释变量在x轴上,预报变量在y轴上 C 可以选择两个变量中任意一个变量在x轴上 D 可以选择两个变量中任意一个变量在y轴上 2.数列2,5,11,20,,47, x…中的x等于() A 28 B 32 C 33 D 27

3.复数2 5 -i 的共轭复数是( ) A i +2 B i -2 C -i -2 D 2 - i 4.下面框图属于( ) A 流程图 B 结构图 C 程序框图 D 工序流程图 5.设,,a b c 大于0,则3个数:1a b +,1b c +,1 c a +的值( ) A 都大于2 B 至少有一个不大于2 C 都小于2 D 至少有一个不小于2 6.当132<

处理处理 得病32 101 133 不得病61 213 274 合计93 314 407 根据以上数据,则( ) A 种子经过处理跟是否生病有关 B 种子经过处理跟是否生病无关 C 种子是否经过处理决定是否生病 D 以上都是错误的 8.变量x与y具有线性相关关系,当x取值16,14,12,8 时,通过观测得到y的值分别为11,9,8,5,若在实际问题中,y的预报最大取值是10,则x的最大取值不能超过( ) A 16 B 17 C 15 D 12 9.根据右边程序框图,当输入10 时,输出的是() A 12 B 19 C 14.1 D -30

最新专题7.1 与数学文化相关的数学考题(解析版)

一、方法综述: 关注学生数学文化的意识的养成,努力推进数学文化的教育,已经成为当今数学教师与改革的一个重要特征,在新课改的数学命题中,数学文化已经得到足够的重视,但并没由得到应有的落实,造成数学文化教学的缺失的根本原因在于教师自身数学文化素养的缺乏,令人欣喜的是在近几年的高考试题中已经开始有意识的进行尝试和引导,在众多的经典试题中,湖北卷的数学文化题更超凡脱俗和出类拔萃,因此,我们特别策划了此专题,将数学文化与数学知识相结合,选取典型样题深度解读,希望能够给予广大师生的复习备考以专业的帮助与指导. 二、解答策略: 类型一、取材数学游戏 游戏可以让数学更加好玩,在游戏中运用数学知识,或蕴含着数学原理的智力游戏可笼统地称为数学游戏,把数学游戏改编为高考试题,既不失数学型,又能增加了考题的趣味性,充分体现了素质教育与大众数学的理念。 例1、五位同学围成一圈依次循环报数,规定: ①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和; ②若报出的数是3的倍数,则报该数的同学需拍手一次。 已知甲同学第一个报数,当五位同学依次循环报到第100个数时,甲同学拍手的总次数为。 探究提高:以数学游戏为素材的命制高考题目,创造了既宽松又竞争的环境,拉近了考生与数学的心理距离,但要注意游戏素材的选择应与考生的实际生活密切相关,便于考生更好地理解游戏。例如:2012年高考湖北卷第13题“回文数”,考查排列、组合和归纳推理等知识。本题以此为背景,以简单的游戏为分析计算对象,考查学生的阅读理解能力和合情推理能力。 举一反三:回文数是指从左到右与从右到左读都一样的正整数。如22,,11,3443,94249等。显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999。则 (Ⅰ)4位回文数有______个; (Ⅱ)2n+1(n∈N+)位回文数有______个。

(完整word版)福建省厦门市高中数学教材人教A版目录(详细版)

考试范围: 文科: 必考内容:必修①②③④⑤+选修1-1,1-2 选考内容:无选考内容 理科: 必考内容:必修①②③④⑤+选修2-1,2-2,2-3 选考内容(三选二):选修4-2,4-4,4-5 文、理科必考内容: 数学①必修 第一章集合与函数概念 1.1 集合 1.1.1 集合的含义与表示 1.1.2 集合间的基本关系 1.1.3 集合的基本运算 1.2 函数及其表示 1.2.1 函数的概念 1.2.2 函数的表示法 1.3 函数的基本性质 1.3.1 单调性与最大(小)值 1.3.2 奇偶性 第二章基本初等函数(I) 2.1 指数函数 2.1.1 指数与指数幂的运算 2.1.2 指数函数及其性质 2.2 对数函数 2.2.1 对数与对数运算 2.2.2 对数函数及其性质 2.3 幂函数 第三章函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点 3.1.2 用二分法求方程的近似解 3.2 函数模型及其应用 3.2.1 几类不同增长的函数模型 3.2.2 函数模型的应用实例 数学②必修 第一章空间几何体 1.1 空间几何体的结构 1.1.1 柱、锥、台、球的结构特征 1.1.2 简单组合体的结构特征 1.2 空间几何体的三视图和直观图

1.2.1 空间几何体的三视图 1.2.2 空间几何体的直观图 1.2.3 平行投影与中心投影 1.3 空间几何体的表面积与体积 1.3.1 柱体、锥体、台体的表面积与体积 1.3.2 球的体积和表面积 第二章点、直线、平面之间的位置关系 2.1 空间点、直线、平面之间的位置关系 2.1.1 平面 2.1.2 空间中直线与直线之间的位置关系 2.1.3 空间中直线与平面之间的位置关系 2.1.4 平面与平面之间的位置关系 2.2 直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定 2.2.2 平面与平面平行的判定 2.2.3 直线与平面平行的性质 2.2.4 平面与平面平行的性质 2.3 直线、平面垂直的判定及其性质 2.3.1 直线与平面垂直的判定 2.3.2 平面与平面垂直的判定 2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质 第三章直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 3.1.2 两条直线平行与垂直的判定 3.2 直线的方程 3.2.1 直线的点斜式方程 3.2.2 直线的两点式方程 3.2.3 直线的一般式方程 3.3 直线的交点坐标与距离公式 3.3.1 两条直线的交点坐标 3.3.2 两点间的距离 3.3.3 点到直线的距离 3.3.4 两条平行直线间的距离 第四章圆与方程 4.1 圆的方程 4.1.1 圆的标准方程 4.1.2 圆的一般方程 4.2 直线、圆的位置关系 4.2.1 直线与圆的位置关系 4.2.2 圆与圆的位置关系 4.2.3 直线与圆的方程的应用 4.3 空间直角坐标系

人教版高中数学选修教案全集

人教版高中数学选修2-2教案全集 第一章导数及其应用 §1.1.1变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率

我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么3 43)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为 )/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率 是多少? 1 212) ()(V V V r V r -- 问题2 高台跳水 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态? 思考计算:5.00≤≤t 和21≤≤t 的平均速度v 在5.00≤≤t 这段时间里,)/(05.405.0) 0()5.0(s m h h v =--= ; 在21≤≤t 这段时间里,)/(2.812) 1()2(s m h h v -=--= 探究:计算运动员在49 65 0≤≤t 这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗? ⑵你认为用平均速度描述运动员的运动状态有什么问题吗?

人教版高中数学选修教案全套

§1.1平面直角坐标系与伸缩变换 一、三维目标 1、知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 2、能力与与方法:体会坐标系的作用 3、情感态度与价值观:通过观察、探索、发现的创造性过程, 培养创新意识。 二、学习重点难点 1、教学重点:体会直角坐标系的作用 2、教学难点:能够建立适当的直角坐标系,解决数学问题 三、学法指导:自主、合作、探究 四、知识链接 问题1:如何刻画一个几何图形的位置? 问题2:如何研究曲线与方程间的关系? 五、学习过程 一.平面直角坐标系的建立 某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚了4s。已知各观测点到中心的距离是1020m,试确定

巨响发生的位置(假定声音传播的速度是340m/s,各观测点均在同一平面上) 问题1: 思考1:问题1:用什么方法描述发生的位置? 思考2:怎样建立直角坐标系才有利于我们解决问题? 问题2:还可以怎样描述点P的位置? B例1.已知△ABC的三边a,b,c满足b2+c2=5a2,BE,CF分别为边AC,CF上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系。 探究:你能建立不同的直角坐标系解决这个问题吗?比较不同的直角坐标系下解决问题的过程,建立直角坐标系应注意什么问题?

小结:选择适当坐标系的一些规则: 如果图形有对称中心,可以选对称中心为坐标原点 如果图形有对称轴,可以选对称轴为坐标轴 使图形上的特殊点尽可能多地在坐标轴上 二.平面直角坐标系中的伸缩变换 思考1:怎样由正弦曲线y=sinx 得到曲线y=sin2x? 坐标压缩变换: 设P(x,y)是平面直角坐标系中任意一点,保持纵坐标不变,将横 坐标x 缩为原来 1/2,得到点P’(x’,y’).坐标对应关系为: ?????==y y x x ''21通常把上式叫做平面直角坐标系中的一个压缩变换。 思考2:怎样由正弦曲线y=sinx 得到曲线y=3sinx?写出其坐标变换。 设P(x,y)是平面直角坐标系中任意一点,保持横坐标x 不变,将纵坐标y 伸长为原来 3倍,得到点P’(x’,y’).坐标对应关系为: ???==y y x x 3' '通常把上式叫做平面直角坐标系中的一个伸长变换。

2019全国各地高三最新数学文化题

2019届全国各地高三最新数学文化题 1.我国古代著名的思想家庄子在《庄子·天下篇》中说:“一尺之棰,日取其半,万世不竭.”用现代语言叙述为:一尺长的木棒,每日取其一半,永远也取不完. 这样,每日剩下的部分都是前一日的一半. 如果把“一尺之棰”看成单位“1”,那么剩下的部分所成的数列的通项公式为( ) A.12n a n = B. 1 2n a n = C. 12n n a ?? = ??? D. 2n n a = 解:C . 2.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式为:弧田面积=1/2(弦?矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之 间存在误差.现有圆心角为3 2π ,弦长等于4米的弧田.按照上述方法计算出弧田的面积约为( ) A. 6平方米 B. C. 12平方米 D. 15平方米 3.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比 赛,则田忌马获胜的概率为( )A .13 B .14 C .15 D .1 6 解:A . 4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( ) A .24里 B .12里 C .6里 D .3里 解:C . 5.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( ) A .55 B .52 C .39 D .26 解:B .

人教版高二数学选修2-1知识点总结

人教版高二数学选修2-1知识点 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ?,则p ?”. 6、四种命题的真假性: 原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假 四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题. 用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题. 对一个命题p 全盘否定,得到一个新命题,记作p ?. 若p 是真命题,则p ?必是假命题;若p 是假命题,则p ?必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“?”表示. 含有全称量词的命题称为全称命题. 全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ?∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“?”表示. 含有存在量词的命题称为特称命题. 特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ?∈M ,()p x ”. 10、全称命题p :x ?∈M ,()p x ,它的否定p ?:x ?∈M ,()p x ?.全称命题的否定是特称命题. 11、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质:

相关文档
相关文档 最新文档