文档库 最新最全的文档下载
当前位置:文档库 › Newton切线法

Newton切线法

Newton切线法

Newton切线法

#include

#include

using namespace std;

double fun(double t)

{

return (t*t*t-2*t+1);

}

double dfun(double t)

{

return (3*t*t-2);

}

void NewtonIterative(double(*pfun)(double t),double (*pdfun)(double t)) {

int maxflag=1000,k=1;

double t0=1,err=0.01,t;

do

{

t0=t;

t=t0-pfun(t0)/pdfun(t0);

k++;

}while(fabs(t-t0)>err&&k

if(k>=maxflag)

cout<

数值分析实验报告记录

数值分析实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

数值分析实验报告 (第二章) 实验题目: 分别用二分法、牛顿迭代法、割线法、史蒂芬森迭代法求方程 的根,观察不同初始值下的收敛性,并给出结论。 问题分析: 题目有以下几点要求: 1.不同的迭代法计算根,并比较收敛性。 2.选定不同的初始值,比较收敛性。 实验原理: 各个迭代法简述 二分法:取有根区间的重点,确定新的有根区间的区间长度仅为区间长度的一版。对压缩了的有根区间重复以上过程,又得到新的有根区间,其区间长度为的一半,如此反复,……,可得一系列有根区间,区间收敛到一个点即为根。 牛顿迭代法:不动点迭代法的一种特例,具有局部二次收敛的特性。迭代格式为 割线法:是牛顿法的改进,具有超线性收敛的特性,收敛阶为1.618. 迭代格式为 史蒂芬森迭代法:采用不动点迭代进行预估校正。至少是平方收敛的。迭代格式为 这里可采用牛顿迭代法的迭代函数。 实验内容:

1.写出该问题的函数代码如下: function py= f(x) syms k; y=(k^2+1)*(k-1)^5; yy=diff(y,k); py(1)=subs(y,k,x); py(2)=subs(yy,k,x); end 2.分别写出各个迭代法的迭代函数代码如下: 二分法: function y=dichotomie(a,b,e) i=2; m(1)=a; while abs(a-b)>e t=(a+b)/2; s1=f(a); s2=f(b); s3=f(t); if s1(1)*s3(1)<=0 b=t; else a=t; end m(i)=t; i=i+1; end y=[t,i+1,m]; end 牛顿迭代法: function y=NewtonIterative(x,e) i=2; en=2*e;m(1)=x; while abs(en)>=e s=f(x); t=x-s(1)/s(2); en=t-x; x=t; m(i)=t; i=i+1; end y=[x,i+1,m]; end 牛顿割线法: function y=Secant(x1,x2,e) i=3; m(1)=x1,m(2)=x2; while abs(x2-x1)>=e s1=f(x1); s2=f(x2); t=x2-(x2-x1)*s2(1)/(s2(1)-s1( 1)); x1=x2; x2=t; m(i)=t; i=i+1; end

拉格朗日插值、牛顿插值的matlab代码

实验五多项式插值逼近 信息与计算科学金融崔振威201002034031 一、实验目的: 拉格朗日插值和牛顿插值的数值实现 二、实验内容:p171.1、p178.1、龙格现象数值实现 三、实验要求: 1、根据所给题目构造相应的插值多项式, 2、编程实现两类插值多项式的计算 3、试分析多项式插值造成龙格现象的原因 主程序 1、拉格朗日 function [c,l]=lagran(x,y) %c为多项式函数输出的系数 %l为矩阵的系数多项式 %x为横坐标上的坐标向量 %y为纵坐标上的坐标向量 w=length(x); n=w-1; l=zeros(w,w); for k=1:n+1 v=1; for j=1:n+1 if k~=j v=conv(v,poly(x(j)))/(x(k)-x(j)) %对多项式做卷积运算end end l(k,:)=v; end c=y*l; 牛顿插值多项式主程序 function [p2,z]=newTon(x,y,t) %输入参数中x,y为元素个数相等的向量 %t为插入的定点 %p2为所求得的牛顿插值多项式 %z为利用多项式所得的t的函数值。 n=length(x); chaS(1)=y(1); for i=2:n x1=x;y1=y; x1(i+1:n)=[];

y1(i+1:n)=[]; n1=length(x1); s1=0; for j=1:n1 t1=1; for k=1:n1 if k==j %如果相等则跳出循环 continue; else t1=t1*(x1(j)-x1(k)); end end s1=s1+y1(j)/t1; end chaS(i)=s1; end b(1,:)=[zeros(1,n-1) chaS(1)]; cl=cell(1,n-1); %cell定义了一个矩阵 for i=2:n u1=1; for j=1:i-1 u1=conv(u1,[1 -x(j)]); %conv()用于多项式乘法、矩阵乘法 cl{i-1}=u1; end cl{i-1}=chaS(i)*cl{i-1}; b(i,:)=[zeros(1,n-i),cl{i-1}]; end p2=b(1,:); for j=2:n p2=p2+b(j,:); end if length(t)==1 rm=0; for i=1:n rm=rm+p2(i)*t^(n-i); end z=rm; else k1=length(t); rm=zeros(1,k1); for j=1:k1 for i=1:n rm(j)=rm(j)+p2(i)*t(j)^(n-i); end

最优化方法之修正牛顿法matlab源码(含黄金分割法寻找步长)

revisenewton.m syms x1 x2 x3 xx; % f = x1*x1 +x2*x2 -x1*x2 -10*x1 -4*x2 + 60 ; % f = x1^2 + 2*x2^2 - 2*x1 *x2 -4*x1 ; f = 100 * (x1^2 - x2^2) + (x1 -1 )^2 ; hessen = jacobian(jacobian(f , [x1,x2]),[x1,x2]) ; gradd = jacobian(f , [x1,x2]) ; X0 = [0,0]' ; B = gradd' ; x1 = X0(1); x2 = X0(2); A = eval(gradd) ; % while sqrt( A(1)^2 + A(2)^2) >0.1 i=0; while norm(A) >0.1 i = i+1 ; fprintf('the number of iterations is: %d\n', i) if i>10 break; end B1 = inv(hessen)* B ; B2= eval(B1); % X1 = X0 - B2 % X0 = X1 ; f1= x1 + xx * B2(1); f2= x2 + xx* B2(2); % ff = norm(BB) ? syms x1 x2 ; fT=[subs(gradd(1),x1,f1),subs(gradd(2),x2,f2)]; ff = sqrt((fT(1))^2+(fT(2))^2); MinData = GoldData(ff,0,1,0.01); x1 = X0(1); x2 = X0(2); x1 = x1 + MinData * B2(1) x2 = x2 + MinData * B2(2) A = eval(gradd) End GoldData.m function MiniData = GoldData( f,x0,h0,eps) syms xx;

牛顿插值法试验报告

. 牛顿插值法一、实验目的:学会牛顿插值法,并应用算法于实际问题。 x?x)f(二、实验内容:给定函数,已知: 4832401.2)?.?1449138f(2.f.f(20)?1.414214(2.1) 549193.)?1f(2.4516575(f2.3)?1. 三、实验要求:以此作为函数2.15插值多项式在处的值,用牛顿插值法求4 次Newton( 1)2.15?N(2.15)。在MATLAB中用内部函数ezplot绘制出的近似值4次Newton插值多项式的函数图形。 (2)在MATLAB中用内部函数ezplot可直接绘制出以上函数的图形,并与作出的4次Newton插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor编辑器,输入Newton插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C); 0 / 3 . %%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到:

修正Newton法求解函数

修正Newton法 一.题目要求 用修正Newton法求解minf(X)=4(x1+1)^2+2(x2-1)^2+x1+x2+10,初始点X0=[0,0]T,ε=0.01。 二.关于修正Newton法的流程图 三.运行代码

epsinon=0.0001; k=1; syms x1;syms x2; x=[x1 x2]; gradient=jacobian(f,x); ja=jacobian(gradient,x); x1=0;x2=0;x=[x1 x2]; ja=eval(ja); tiduzhi=eval(gradient); while(norm(tiduzhi)>epsinon) p(:,:,k)=-ja^(-1)*tiduzhi'; xx(:,:,k)=x'; syms tt; mm(:,:,k)= xx(:,:,k)+tt*p(:,:,k); x1=mm(1,1,k); x2=mm(2,1,k); g=eval(f(x1,x2)); xiao=fff(0,g); for tt=0:0.01:10 if fff(tt,g)

数值分析实验报告-插值、三次样条(教育教学)

实验报告:牛顿差值多项式&三次样条 问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数2 1()25f x x 作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章相关内容。 实验内容: (1)牛顿插值多项式 1.1 当n=10时: 在Matlab 下编写代码完成计算和画图。结果如下: 代码: clear all clc x1=-1:0.2:1; y1=1./(1+25.*x1.^2); n=length(x1); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p ; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i);

end syms P P=sum(p); P10=vpa(expand(P),5); x0=-1:0.001:1; y0=subs(P,x,x0); y2=subs(1/(1+25*x^2),x,x0); plot(x0,y0,x0,y2) grid on xlabel('x') ylabel('y') P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0202e-1 4*x^3-16.855*x^2-6.6594e-16*x+1.0 并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。 Fig.1 牛顿插值多项式(n=10)函数和原函数图形 从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。 1.2 当n=20时: 对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0 同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

牛顿切线法和二分法

.功能 本程序采用牛顿法,求实系数高次代数方程 ()…0(≠0)() 地在初始值附近地一个根. .使用说明 ()函数语句 () 调用文件. ()参数说明 元素地一维实数组,输入参数,按升幂存放方程系数. 整变量,输入参数,方程阶数. 实变量,输入参数,初始迭代值. 整变量,输入参数,允许地最大迭代次数. 实变量,输入参数,控制根地精度. .方法简介 解非线性议程()地牛顿法是把非线性方程线性化地一种近似方法.把()在点附近展开成泰勒级数 ()()(-)ˊ()(-) … 取其线性部分,作为非线性方程()地近似方程,则有 ()ˊ()(-) 设ˊ()≠则其解为 -()ˊ() 再把()在附近展开成泰勒级数,也取其线性部分作()地近似方程.若()≠,则得 -()ˊ() 这样,得到牛顿法地一个迭代序列 -()ˊ() .程序 () (); ; ; (()>*()) ; ()()(())(()); ()(); (>)(ˊ ˊ); ; (); 程序中调用地和文件如下: ()方程一阶导数地函数 ;

()*()*^(); () ; ()*(1)*?(); .程序附注 ()程序中调用和文件.是待求根地实数代数方程地函数是方程一阶导数地函数.由使用者自己编写. ()牛顿迭代法地收敛速度:如果()在零点附近存在连续地二阶微商,ξ是()地一个重零点,且初始值充分接近于ξ,那么牛顿迭代是收敛地,其收敛速度是二阶地,即平方收敛速度. .例题 用牛顿法求下面方程地根 () .运行结果 >>[] ; >>; >>; >>; >>; >>() 百度知道给地结果 实验方程:*.^*() 原函数 ()*.^*(); 导函数 ()**(); 原函数在[ ]上地图像(有根范围) (,[ ]) 牛顿切线法 [](); (('牛顿切线法\在附近地根:\迭代次数:'))个人收集整理勿做商业用途 二分法[](); (('二分法\在[]上地根:\迭代次数:'))个人收集整理勿做商业用途

matlab牛顿插值法例题与程序

题目一:多项式插值 某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。 二、数学原理 假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式: )() )(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -??-+??+-++=αααα (1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =) ((i=0,1,2……n )确定。 根据均差的定义,把x 看成[a,b]上的一点,可得 f(x)= f (0x )+f[10x x ,](0x -x ) f[x, 0x ]= f[10x x ,]+f[x,10x x ,] (1x -x ) …… f[x, 0x ,…x 1-n ]= f[x, 0x ,…x n ]+ f[x, 0x ,…x n ](x-x n ) 综合以上式子,把后一式代入前一式,可得到: f(x)= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n )+ f[x, 0x ,…x n ,x ]) (x 1n +ω= N n (x )+) (x n R 其中

N n (x )= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n ) (2) )(x n R = f(x)- N n (x )= f[x, 0x , (x) n ,x ]) (x 1n +ω (3) ) (x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。一般有 f k =α[k 10x x x ??,] (k=0,1,2,……,n ) (4) 把(4)代入(1)得到满足插值条件N )() (i i n x f x =(i=0,1,2,……n )的n 次Newton 插值多项式 N n (x )=f (0x )+f[10x x ,](1x -x )+f[210x x x ,,](1x -x )(2x -x )+……+f[n 10x x x ??,](1x -x )(2x -x )…(1-n x -x ). 其中插值余项为: ) ()! () ()()()(x 1n f x N -x f x R 1n 1 n n +++==ωξ ξ介于k 10x x x ??,之间。 三、程序设计 function [y,A,C,L]=newdscg(X,Y,x,M) % y 为对应x 的值,A 为差商表,C 为多项式系数,L 为多项式 % X 为给定节点,Y 为节点值,x 为待求节点 n=length(X); m=length(x); % n 为X 的长度 for t=1:m

matlab(迭代法-牛顿插值)Word版

实验报告内容: 一:不动点迭代法解方程 二:牛顿插值法的MATLAB实现 完成日期:2012年6月21日星期四 数学实验报告一 日期:2012-6-21

所以,确定初值为x0=1 二:不断迭代 算法: 第一步:将f(x0)赋值给x1 第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步 编写计算机程序: clear f=inline('0.5*sin(x)+0.4'); x0=1; x1=f(x0); k=1; while abs(x1-x0)>=1.0e-6 x0=x1; x1=f(x0); k=k+1; fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1) end 显示结果如下: k=2,x0=0.820735492,x1=0.765823700 k=3,x0=0.765823700,x1=0.746565483 k=4,x0=0.746565483,x1=0.739560873

k=6,x0=0.736981783,x1=0.736027993 k=7,x0=0.736027993,x1=0.735674699 k=8,x0=0.735674699,x1=0.735543758 k=9,x0=0.735543758,x1=0.735495216 k=10,x0=0.735495216,x1=0.735477220 k=11,x0=0.735477220,x1=0.735470548 k=12,x0=0.735470548,x1=0.735468074 k=13,x0=0.735468074,x1=0.735467157 >>。。。 以下是程序运行截图:

牛顿插值MATLAB算法

MATLAB程序设计期中作业 ——编程实现牛顿插值 成员:刘川(P091712797)签名_____ 汤意(P091712817)签名_____ 王功贺(P091712799)签名_____ 班级:2009信息与计算科学 学院:数学与计算机科学学院 日期:2012年05月02日

牛顿插值的算法描述及程序实现 一:问题说明 在我们的实际应用中,通常需要解决这样的问题,通过一些已知的点及其对应的值,去估算另外一些点的值,这些数据之间近似服从一定的规律,于是,这就引入了插值法的思想。 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。 二:算法分析 newton 插值多项式的表达式如下: 010011()()()()()n n n N x c c x x c x x x x x x -=+-+???+--???- 其中每一项的系数c i 的表达式如下: 12011010 [,,,][,,,] [,,,]i i i i i f x x x f x x x c f x x x x x -???-???=???= - 即为f (x)在点01,,,i x x x ???处的i 阶差商,([]()i i f x f x =,1,2,,i n = ),由差商01[,,,]i f x x x ???的性质可知: () 010 1 [,,,]()i i i j j k j k k j f x x x f x x x ==≠???=-∑∏ 牛顿插值的程序实现方法: 第一步:计算[][][][]001012012,,,,,,,n f x f x x f x x x f x x x x 、、、 、。 第二步:计算牛顿插值多项式中01[,,,]i f x x x ???011()()()i x x x x x x ---???-,1,2,,i n = ,得到n 个多项式。

修正牛顿法

《数值优化》实验报告 实验[2] [修正牛顿法] 专业学号姓名日期 1 实验目的 练习matlab程序设计,深刻理解修正牛顿法,通过计算机计算迭代计算近似解 2 实验内容 利用程序求解无约束优化问题 f(x)=100(x1^2-x2^2)^2+(x1-1)^2在R^2上的最小值 3 算法设计 Function[x,val,k]=revisenm(fun,gfun,hess,x0) 功能:用牛顿修正法求解无约束问题:min f() 输入:x0是初始点,fun gfun hess分别是求目标函数值梯度hesse矩阵函数输入:x val 分别是近似最优点和最优值,k是迭代次数 4 程序代码

(fun,x0)+sigma*rho^m*g'*d) mk=m;break; end; m=m+1; end; x0=x0+rho^mk*d; val=feval (fun,x0); g0=g; d0=d; k=k+1; end; x=x0; val=feval (fun,x) function f=fun(x) f=100*(x(1)*x(1)-x(2)*x(2))^2+(x(1)-1)^2; end; function g=gfun(x) g=[400*x(1)*(x(1)^2-x(2))+2*(x(1)-1),-200*(x(1)^2-x(2))]'; end; 5 运行结果 有未知错误,暂时没有运行出正确结果

6 结果分析 选初始值x0=[-1.2 1] 没有运行出正确结果。程序可以运行,但是没有正确结果,程序存在bug 修正牛顿法避免了牛顿法的缺陷,使得在每一个迭代点处都保证f下降

matlab_牛顿插值法_三次样条插值法

(){} 2 1 ()(11),5,10,20: 1252 1()1,(0,1,2,,)()2,(0,1,2,,)() ()2 35,20:1100 (i i i i n n k k k Newton f x x n x f x x i i n f x n x y i n Newton N x S x n x k y f x = -≤≤=+=-+====-+ = 题目:插值多项式和三次样条插值多项式。已知对作、计算函数在点处的值;、求插值数据点 的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max ()n k n k n k n k n k n k k k N x S x k E N y N x E S y S x ==-=- 和; 、计算,; 解释你所得到的结果。 算法组织: 本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式 )(x N n 和三次样条插值多项式()n S x 。如此,则第三、四问则迎刃而解。计算两 种插值多项式的算法如下: 一、求Newton 插值多项式)(x N n ,算法组织如下: Newton 插值多项式的表达式如下: )())(()()(110010--???--+???+-+=n n n x x x x x x c x x c c x N 其中每一项的系数c i 的表达式如下: 1102110) ,,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -???-???= ???=- 根据i c 以上公式,计算的步骤如下: ?? ??? ?? ?????+??????? ???????????----) ,,,,(1) ,,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:

数值分析课程实验报告-拉格朗日和牛顿插值法

《数值分析》课程实验报告 用拉格朗日和牛顿插值法求解函数值 算法名称用拉格朗日和牛顿插值法求函数值 学科专业xxxxx 作者姓名xxxx 作者学号xxxxx 作者班级xxxxxx xxx大学 二〇一五年十二月

《数值分析》课程实验报告

得到的近似值为。 拉格朗日插值模型简单,结构紧凑,是经典的插值法。但是由于拉格朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新计算。且当增大插值阶数时容易出现龙格现象。 2.牛顿插值法 在命令窗口输入: x=[ ]; y=[ ]; xt=; [yt,N]=NewtInterp(x,y,xt) z=::2; yz=subs(N,'t',z); figure; plot(z,sqrt(z),'--r',z,yz,'-b') hold on plot(x,y,'marker','+') hold on plot(xt,yt,'marker','o') h=legend('$\sqrt{x}$','牛顿','$(x_k,y_k)$','$x=$'); set(h,'Interpreter','latex') xlabel('x') ylabel('y') 得到结果及图像如下: yt = N = - *t^4 + *t^3 - *t^2 + *t +

得到√的近似值为,插值函数为 N =- *t^4 + *t^3 - *t^2 + *t + , 其计算精度是相当高的。 Lagrange插值法和Newton插值法解决实际问题中关于只提供复杂的离散数据的函数求值问题,通过将所考察的函数简单化,构造关于离散数据实际函数f(x)的近似函数P(x),从而可以计算未知点出的函数值,是插值法的基本思路。 实际上Lagrange插值法和Newton插值法是同一种方法的两种变形,其构造拟合函数的思路是相同的,而实验中两个实际问题用两种算法计算出结果是相同的。

matlab计算拉格朗日牛顿及分段线性插值的程序

《工程常用算法》综合实践作业二 完成日期: 2013年 4月 14 日 班级 学号 姓名 主要工作说明 自评成绩 0718 2010071826 崔洪亮 算式与程序的编写 18 0718 2010071815 侯闰上 流程图的编辑,程序的审查 0718 2010071809 赵化川 报告的整理汇总 一.作业题目:三次样条插值与分段插值 已知飞机下轮廓线数据如下: x 3 5 7 9 11 12 13 14 15 y 0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 飞机下轮廓线形状大致如下图所示: 要求分别用拉格朗日插值法、Newton 插值法、分段线性插值法和三次样条插值法计算x 每改变0.5时y 的值,即x 取 0.5, 1, 1.5, … , 14.5 时对应的y 值。比较采用不同方法的计算工作量、计算结果和优缺点。 二.程序流程图及图形 1.拉格朗日插值法 开始 x,y,x0 Length (x)==l Ength (y)? n=length (x) i=1:n,l=1。 j=1:i-1&j=i+1:n l=l.*(x0-x(j)/x(i)-x(j) f=f+l*y(i) 结束 否 是 机翼 下轮廓线

2.牛顿插值法 开始 x,y,xi Length(x)==l ength(y)? n=length(x)Y=zeros (n),Y (:1)=y,f=0 a=1:n-1,b=1:n-a,Y(b,a+1)=(Y (b+1,a)-Y(b,a))/(x (b+a)-x(b)) i=1:n,z=1 结束 j=1:i-1,z=z.*(xi-x(j)) f=f+Y(1,i)*z 否 是 3.分段线性插值法 开始 x ,y ,x0 length (x )==length(y)? k=1:n-1 x(k)<=x0&x0《=x(k+1) temp=x(k)-x(k+1) f=(x0-x(k+1))/temp*y(k)+(x0-x(k))/(-temp)*y(k+1) 结束 否否 是 是 三.matlab 程序及简要的注释(m 文件) 1.拉格朗日插值法 2.牛顿插值法 function f=newdun(x,y,xi) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量 function f=lang(x,y,x0) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量

牛顿插值法的MATLAB综合程序

6.3.5 牛顿插值法的MATLAB 综合程序 求牛顿插值多项式、差商、插值及其误差估计的MATLAB 主程序 function [y,R,A,C,L]=newdscg(X,Y,x,M) n=length(X); m=length(x); for t=1:m z=x(t); A=zeros(n,n);A(:,1)=Y'; s=0.0; p=1.0; q1=1.0; c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end q1=abs(q1*(z-X(j-1)));c1=c1*j; end C=A(n,n);q1=abs(q1*(z-X(n))); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); end R=M*q1/c1;L(k,:)=poly2sym(C); 例6.3.6 给出节点数据00.27)00.4(=-f ,00.1)00.0(=f ,00.2)00.1(=f ,00.17)00.2(=f ,作三阶牛顿插值多项式,计算)345.2(-f ,并估计其误差. 解 首先将名为newdscg.m 的程序保存为M 文件,然后在MATLAB 工作窗口输入程序 >> syms M,X=[-4,0,1,2]; Y =[27,1,2,17]; x=-2.345; [y,R,A,C,P]=newdscg(X,Y,x,M) 运行后输出插值y )345.2(-≈f 及其误差限公式R ,三阶牛顿插值多项式P 及其系数向量C ,差商的矩阵A 如下 y = 22.3211 R = 65133/562949953421312*M (即R =2.3503*M ) A= 27.0000 0 0 0 1.0000 -6.5000 0 0 2.0000 1.0000 1.5000 0 17.0000 15.0000 7.0000 0.9167 C = 0.9167 4.2500 -4.1667 1.0000 P = 11/12*x^3+17/4*x^2-25/6*x+1

相关文档