文档库 最新最全的文档下载
当前位置:文档库 › HUF76419P3中文资料

HUF76419P3中文资料

HUF76419P3, HUF76419S3S

27A, 60V , 0.040 Ohm, N-Channel, Logic Level UltraFET? Power MOSFET Packaging

Symbol

Features

?Ultra Low On-Resistance

-r DS(ON) = 0.035?, V GS = 10V -r DS(ON) = 0.040?, V GS = 5V

?Simulation Models

-Temperature Compensated PSPICE? and SABER? Electrical Models

-Spice and SABER Thermal Impedance Models https://www.wendangku.net/doc/8f17225904.html, ?Peak Current vs Pulse Width Curve ?UIS Rating Curve

?Switching Time vs R GS Curves

Ordering Information

Absolute Maximum Ratings

T C = 25o C, Unless Otherwise Specified

Product reliability information can be found at https://www.wendangku.net/doc/8f17225904.html,/products/discrete/reliability/index.html

For severe environments, see our Automotive HUFA series.

All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

JEDEC TO-220AB

JEDEC TO-263AB

DRAIN (FLANGE)

DRAIN SOURCE

GATE

HUF76419P3GATE SOURCE

DRAIN (FLANGE)

HUF76419S3S

D

G

S

PART NUMBER

PACKAGE BRAND

HUF76419P3TO-220AB 76419P HUF76419S3S

TO-263AB

76419S

NOTE:When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76419S3S T.

HUF76419P3, HUF76419S3S

UNITS Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V DSS 60V Drain to Gate Voltage (R GS = 20k ?) (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V DGR 60V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V GS ±16V Drain Current

Continuous (T C = 25o C, V GS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I D Continuous (T C = 25o C, V GS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I D Continuous (T C = 100o C, V GS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I D Continuous (T C = 100o C, V GS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I D Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I DM 27291918Figure 4A A A A

Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Figures 6, 17, 18

Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P D Derate Above 25o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750.5W W/o C

Operating and Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T J , T STG -55 to 175o C Maximum T emperature for Soldering

Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T L Package Body for 10s, See T echbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T pkg 300260

o C o C

NOTES:

1.T J = 25o C to 150o C.

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Data Sheet

December 2001

元器件交易网https://www.wendangku.net/doc/8f17225904.html,

Electrical Specifications T C = 25o C, Unless Otherwise Specified

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS OFF STATE SPECIFICATIONS

Drain to Source Breakdown Voltage BV DSS I D = 250μA, V GS = 0V (Figure 12)60--V

I D = 250μA, V GS = 0V , T C = -40o C (Figure 12)55--V Zero Gate Voltage Drain Current I DSS V DS = 55V, V GS = 0V--1μA

V DS = 50V, V GS = 0V, T C = 150o C--250μA Gate to Source Leakage Current I GSS V GS = ±16V--±100nA ON STATE SPECIFICATIONS

Gate to Source Threshold Voltage V GS(TH)V GS = V DS, I D = 250μA (Figure 11)1-3V Drain to Source On Resistance r DS(ON)I D = 29A, V GS = 10V (Figures 9, 10)-0.0290.035?

I D = 19A, V GS = 5V (Figure 9)-0.0330.040?

I D = 18A, V GS = 4.5V (Figure 9)-0.0350.044?THERMAL SPECIFICATIONS

Thermal Resistance Junction to Case RθJC TO-220 and TO-263-- 2.0o C/W Thermal Resistance Junction to

Ambient

RθJA--62o C/W SWITCHING SPECIFICATIONS (V GS = 4.5V)

Turn-On Time t ON V DD = 30V, I D = 18A

V GS= 4.5V, R GS = 12?

(Figures 15, 21, 22)--245ns

Turn-On Delay Time t d(ON)-12-ns Rise Time t r-150-ns Turn-Off Delay Time t d(OFF)-27-ns Fall Time t f-55-ns Turn-Off Time t OFF--125ns SWITCHING SPECIFICATIONS (V GS = 10V)

Turn-On Time t ON V DD = 30V, I D = 29A

V GS= 10V,

R GS = 12?

(Figures 16, 21, 22)--110ns

Turn-On Delay Time t d(ON)- 6.7-ns Rise Time t r-66-ns Turn-Off Delay Time t d(OFF)-45-ns Fall Time t f-76 -ns Turn-Off Time t OFF--185ns GATE CHARGE SPECIFICATIONS

Total Gate Charge Q g(TOT)V GS = 0V to 10V V DD = 30V,

I D = 19A,

I g(REF) = 1.0mA

(Figures 14, 19, 20)-2228nC

Gate Charge at 5V Q g(5)V GS = 0V to 5V-1316nC Threshold Gate Charge Q g(TH)V GS = 0V to 1V-0.9 1.1nC Gate to Source Gate Charge Q gs- 2.7-nC Gate to Drain "Miller" Charge Q gd-6-nC CAPACITANCE SPECIFICATIONS

Input Capacitance C ISS V DS = 25V, V GS = 0V,

f = 1MHz

(Figure 13)-900-pF

Output Capacitance C OSS-250-pF Reverse Transfer Capacitance C RSS-45-pF

Source to Drain Diode Specifications

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Source to Drain Diode Voltage V SD I SD = 19A-- 1.25V

I SD = 10A-- 1.0V Reverse Recovery Time t rr I SD = 19A, dI SD/dt = 100A/μs--78ns Reverse Recovered Charge Q RR I SD = 19A, dI SD/dt = 100A/μs--230nC

Typical Performance Curves

FIGURE 1.NORMALIZED POWER DISSIPATION vs CASE

TEMPERATURE FIGURE 2.MAXIMUM CONTINUOUS DRAIN CURRENT vs

CASE TEMPERATURE

FIGURE 3.NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

FIGURE 4.PEAK CURRENT CAPABILITY

T C , CASE TEMPERATURE (o C)

P O W E R D I S S I P A T I O N M U L T I P L I E R

00

25

50

75

100

175

0.20.40.60.81.01.2125

150

10

20

30

25

50

75

100

125

150

175

I D , D R A I N C U R R E N T (A )

T C , CASE TEMPERATURE (o C)

V GS = 10V

V GS = 4.5V

0.1

1

10-5

10-4

10-3

10-2

10-1

100

101

0.01

2t, RECTANGULAR PULSE DURATION (s)

Z θJ C , N O R M A L I Z E D

SINGLE PULSE

NOTES:

DUTY FACTOR: D = t 1/t 2

PEAK T J = P DM x Z θJC x R θJC + T C

P DM

t 1t 2

DUTY CYCLE - DESCENDING ORDER 0.50.20.10.050.01

0.02T H E R M A L I M P E D A N C E

100

500

10-4

10-310-2

10-1100101

10-510

I D M , P E A K C U R R E N T (A )

t, PULSE WIDTH (s)

TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION

T C = 25o C

I = I 25

175 - T C 150

FOR TEMPERATURES

ABOVE 25o C DERATE PEAK CURRENT AS FOLLOWS:

V GS = 5V

V GS = 10V

FIGURE 5.FORWARD BIAS SAFE OPERATING AREA

NOTE:Refer to Fairchild Application Notes AN9321 and AN9322.

FIGURE 6.UNCLAMPED INDUCTIVE SWITCHING

CAPABILITY

FIGURE 7.TRANSFER CHARACTERISTICS FIGURE 8.SATURATION CHARACTERISTICS

FIGURE 9.DRAIN TO SOURCE ON RESISTANCE vs GATE

VOLTAGE AND DRAIN CURRENT FIGURE 10.NORMALIZED DRAIN TO SOURCE ON

RESISTANCE vs JUNCTION TEMPERATURE

10

1001

10

100

200

1

200

100μs

10ms 1ms V DS , DRAIN TO SOURCE VOLTAGE (V)

I D , D R A I N C U R R E N T (A )

LIMITED BY r DS(ON)AREA MAY BE

OPERATION IN THIS T J = MAX RATED T C = 25o C

SINGLE PULSE 10

60

0.001

0.01

0.1

1

10

1

I A S , A V A L A N C H E C U R R E N T (A )

t AV , TIME IN AVALANCHE (ms)

STARTING T J = 25o C

STARTING T J = 150o C

t AV = (L)(I AS )/(1.3*RATED BV DSS - V DD )If R = 0

If R ≠ 0

t AV = (L/R)ln[(I AS *R)/(1.3*RATED BV DSS - V DD ) +1]

1020304050601

2

3

4

5

0I D , D R A I N C U R R E N T (A )

V GS , GATE TO SOURCE VOLTAGE (V)PULSE DURATION = 80μs DUTY CYCLE = 0.5% MAX V DD = 15V

T J = 175o C

T J = 25o C

T J = -55o C

10

2030

405060

1

2

3

4

0I D , D R A I N C U R R E N T (A )

V DS , DRAIN TO SOURCE VOLTAGE (V)

V GS = 3V

V GS = 3.5V

V GS = 5V

V GS = 10V

V GS = 4V

PULSE DURATION = 80μs DUTY CYCLE = 0.5% MAX

T C = 25o C

30

40

50

2

4

6

8

10

20

I D = 10A V GS , GATE TO SOURCE VOLTAGE (V)

I D = 29A

r D S (O N ), D R A I N T O S O U R C E O N R E S I S T A N C E (m ?)

I D = 19A

PULSE DURATION = 80μs DUTY CYCLE = 0.5% MAX T C = 25o C

1.0

1.5

2.0

2.5

-80

-40

40

80

120

160

200

0.5

N O R M A L I Z E D D R A I N T O S O U R C E T J , JUNCTION TEMPERATURE (o C)

O N R E S I S T A N C E

V GS = 10V, I D = 29A

PULSE DURATION = 80μs DUTY CYCLE = 0.5% MAX

FIGURE 11.NORMALIZED GATE THRESHOLD VOLTAGE vs

JUNCTION TEMPERATURE

FIGURE 12.NORMALIZED DRAIN TO SOURCE BREAKDOWN

VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 13.CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE:Refer to Fairchild Application Notes AN7254 and AN7260.

FIGURE 14.GATE CHARGE WAVEFORMS FOR CONSTANT

GATE CURRENT

FIGURE 15.SWITCHING TIME vs GATE RESISTANCE FIGURE 16.SWITCHING TIME vs GATE RESISTANCE

0.6

0.8

1.0

1.2

-80

-40

40

80

120

160

200

0.4N O R M A L I Z E D G A T E T J , JUNCTION TEMPERATURE (o C)

V GS = V DS , I D = 250μA

T H R E S H O L D V O L T A G E

1.0

1.1

1.2

-80

-40

40

80

120

160

200

0.9T J , JUNCTION TEMPERATURE (o C)

N O R M A L I Z E D D R A I N T O S O U R C E B R E A K D O W N V O L T A G E

I D = 250μA

100

10000.1

1

10

20001060

C , C A P A C I T A N C E (p F )

V DS , DRAIN TO SOURCE VOLTAGE (V)

V GS = 0V , f = 1MHz C ISS = C GS + C GD C OSS ? C DS + C GD

C RSS = C GD

2

4

6

8

10

5

10

15

20

25

V G S , G A T E T O S O U R C E V O L T A G E (V )

V DD = 30V Q g , GATE CHARGE (nC)

I D = 29A I D = 19A WAVEFORMS IN

DESCENDING ORDER:I D = 10A

50

100

150

200250

10

20

30

40

50

S W I T C H I N G T I M E (n s )

R GS , GATE TO SOURCE RESISTANCE (?)

V GS = 4.5V, V DD = 30V, I D = 18A

t r

t f

t d(ON)

t d(OFF)

50

100

150

10

20

30

40

50

0S W I T C H I N G T I M E (n s )

R GS , GATE TO SOURCE RESISTANCE (?)

V GS = 10V, V DD = 30V, I D = 29A

t d(OFF)

t r

t d(ON)

t f

Test Circuits and Waveforms

FIGURE 17.UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18.UNCLAMPED ENERGY WAVEFORMS

FIGURE 19.GATE CHARGE TEST CIRCUIT FIGURE 20.GATE CHARGE WAVEFORMS

FIGURE 21.SWITCHING TIME TEST CIRCUIT FIGURE 22.SWITCHING TIME WAVEFORM

t P

V GS

0.01?

L

I AS

+

-V DS

V DD R G

DUT

VARY t P TO OBTAIN REQUIRED PEAK I AS

0V

BV 0

R L

V GS

+

-V DS

V DD

DUT

I g(REF)

V

I g(REF)0

V GS

R L

R GS

DUT

+

-V DD V DS V GS

t ON t d(ON)

t r

90%

10%

V DS

90%

10%

t f

t d(OFF)

t OFF 90%

50%

50%

10%

PULSE WIDTH

V GS 0

.SUBCKT HUF76419 2 1 3 ;

rev 21 June 1999

CA 12 8 1.1e-9CB 15 14 1.1e-9CIN 6 8 8.5e-10

DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD

EBREAK 11 7 17 18 69.6EDS 14 8 5 8 1EGS 13 8 6 8 1ESG 6 10 6 8 1

EVTHRES 6 21 19 8 1EVTEMP 20 6 18 22 1

IT 8 17 1

LDRAIN 2 5 1e-9LGATE 1 9 4.4e-9LSOURCE 3 7 4.5e-9

MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1RDRAIN 50 16 RDRAINMOD 1.5e-2RGATE 9 20 3.1RLDRAIN 2 5 10RLGATE 1 9 44RLSOURCE 3 7 45

RSLC1 5 51 RSLCMOD 1e-6RSLC2 5 50 1e3

RSOURCE 8 7 RSOURCEMOD 9e-3RVTHRES 22 8 RVTHRESMOD 1RVTEMP 18 19 RVTEMPMOD 1S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 22 19 DC 1

ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*70),3.5))}

.MODEL DBODYMOD D (IS = 1.3e-12RS = 7.5e-3TRS1 = 1e-4TRS2 = 3e-6CJO = 1.07e-9TT = 4.9e-8 N = 1.03 M = 0.5).MODEL DBREAKMOD D (RS = 3.5e-1TRS1 = 1e-4TRS2 = 0)

.MODEL DPLCAPMOD D (CJO = 7.5e-10IS = 1e-30N = 10 M = 0.85)

.MODEL MMEDMOD NMOS (VTO = 2.0 KP = 4 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.1).MODEL MSTROMOD NMOS (VTO = 2.34 KP = 43 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)

.MODEL MWEAKMOD NMOS (VTO = 1.74 KP = 0.13 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 31 RS = 0.1).MODEL RBREAKMOD RES (TC1 = 1.2e-3TC2 = -5e-7).MODEL RDRAINMOD RES (TC1 = 9e-3TC2 = 2e-5).MODEL RSLCMOD RES (TC1 = 3.5e-3 TC2 = 7e-6).MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)

.MODEL RVTHRESMOD RES (TC1 = -1.8e-3 TC2 = -5.8e-6).MODEL RVTEMPMOD RES (TC1 = -1.7e-3TC2 = 1e-6).MODEL S1AMOD VSWITCH (RON = 1e-5ROFF = 0.1VON = -4.5VOFF= -2.8).MODEL S1BMOD VSWITCH (RON = 1e-5ROFF = 0.1VON = -2.8VOFF= -4.5).MODEL S2AMOD VSWITCH (RON = 1e-5ROFF = 0.1VON = -0.5VOFF= 0.5).MODEL S2BMOD VSWITCH (RON = 1e-5ROFF = 0.1

VON = 0.5VOFF= -0.5)

.ENDS

NOTE:For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options ; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

1822+-6

8

+

-551

+

-

198

+-1718

68

58

+-

RBREAK

RVTEMP

VBAT

RVTHRES

IT

17

181922

121315

S1A S1B

S2A S2B

CA

CB EGS

EDS

148138

1413MWEAK

EBREAK DBODY

RSOURCE

SOURCE

117

3

LSOURCE

RLSOURCE

CIN

RDRAIN EVTHRES 16

21

8

MMED

MSTRO

DRAIN 2

LDRAIN

RLDRAIN

DBREAK

DPLCAP

ESLC RSLC110

5

51

50

RSLC2

1

GATE RGATE EVTEMP

9ESG

LGATE

RLGATE

20

+-

+

-+

-

6

REV 21 June 1999

template huf76419 n2,n1,n3electrical n2,n1,n3{

var i iscl

d..model dbodymod = (is = 1.3e-12, cjo = 1.07e-9, tt = 4.9e-8, n=1.03, m = 0.5)d..model dbreakmod = ()

d..model dplcapmod = (cjo = 7.5e-10, is = 1e-30, m = 0.85, n = 10)m..model mmedmod = (type=_n, vto = 2.0, kp = 4, is = 1e-30, tox = 1)m..model mstrongmod = (type=_n, vto = 2.34, kp = 43, is = 1e-30, tox = 1)m..model mweakmod = (type=_n, vto = 1.74, kp = 0.13, is = 1e-30, tox = 1)sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.5, voff = -2.8)sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.8, voff = -4.5)sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.5)sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -0.5)c.ca n12 n8 = 1.1e-9c.cb n15 n14 = 1.1e-9c.cin n6 n8 = 8.5e-10

d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1

l.ldrain n2 n5 = 1e-9l.lgate n1 n9 = 4.4e-9l.lsource n3 n7 = 4.5e-9

m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u

res.rbreak n17 n18 = 1, tc1 = 1.2e-3, tc2 = -5e-7res.rdbody n71 n5 = 7.5e-3, tc1 = 1e-4, tc2 = 3e-6res.rdbreak n72 n5 = 3.5e-1, tc1 = 1e-4, tc2 = 0res.rdrain n50 n16 = 1.5e-2, tc1 = 9e-3, tc2 = 2e-5res.rgate n9 n20 = 3.1res.rldrain n2 n5 = 10res.rlgate n1 n9 = 44res.rlsource n3 n7 = 45

res.rslc1 n5 n51 = 1e-6, tc1 = 3.5e-3, tc2 = 7e-6res.rslc2 n5 n50 = 1e3

res.rsource n8 n7 = 9e-3, tc1 = 1e-3, tc2 = 1e-6res.rvtemp n18 n19 = 1, tc1 = -1.7e-3, tc2 = 1e-6res.rvthres n22 n8 = 1, tc1 = -1.8e-3, tc2 = -5.8e-6spe.ebreak n11 n7 n17 n18 = 69.6spe.eds n14 n8 n5 n8 = 1spe.egs n13 n8 n6 n8 = 1spe.esg n6 n10 n6 n8 = 1

spe.evtemp n20 n6 n18 n22 = 1spe.evthres n6 n21 n19 n8 = 1

sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1

equations {

i (n51->n50) +=iscl

iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/70))** 3.5))}}

1822+-68

+

-198

+-1718

6858

+-

RBREAK

RVTEMP

VBAT

RVTHRES IT

17

181922

12

1315

S1A

S1B

S2A S2B

CA

CB EGS

EDS

148

1381413MWEAK

EBREAK

DBODY

RSOURCE

SOURCE

11

7

3

LSOURCE RLSOURCE CIN

RDRAIN EVTHRES 16

21

8

MMED

MSTRO

DRAIN 2

LDRAIN

RLDRAIN

DBREAK

DPLCAP ISCL

RSLC110

5

51

50RSLC2

1

GATE RGATE EVTEMP

9ESG

LGATE

RLGATE

20

+-

+-+-

6

RDBODY

RDBREAK

72

71

SPICE Thermal Model REV 21 June 1999

HUF76419T

CTHERM1 th 6 1.1e-3

CTHERM2 6 5 2.5e-3

CTHERM3 5 4 3.6e-3

CTHERM4 4 3 8.2e-3

CTHERM5 3 2 2.6e-2

CTHERM6 2 tl 3.5e-1

RTHERM1 th 6 6.8e-3

RTHERM2 6 5 8.4e-2

RTHERM3 5 4 3.9e-1

RTHERM4 4 3 4.2e-1

RTHERM5 3 2 5.0e-1

RTHERM6 2 tl 2.0e-1

SABER Thermal Model SABER thermal model HUF76419T template thermal_model th tl thermal_c th, tl

{

ctherm.ctherm1 th 6 = 1.1e-3 ctherm.ctherm2 6 5 = 2.5e-3 ctherm.ctherm3 5 4 = 3.6e-3 ctherm.ctherm4 4 3 = 8.2e-3 ctherm.ctherm5 3 2 = 2.6e-2 ctherm.ctherm6 2 tl = 3.5e-1 rtherm.rtherm1 th 6 = 6.8e-3 rtherm.rtherm2 6 5 = 8.4e-2 rtherm.rtherm3 5 4 = 3.9e-1 rtherm.rtherm4 4 3 = 4.2e-1 rtherm.rtherm5 3 2 = 5.0e-1 rtherm.rtherm6 2 tl = 2.0e-1 }

RTHERM4

RTHERM6

RTHERM5

RTHERM3

RTHERM2

RTHERM1

CTHERM4

CTHERM6

CTHERM5

CTHERM3

CTHERM2

CTHERM1

tl

2

3

4

5

6

th JUNCTION

CASE

相关文档