文档库 最新最全的文档下载
当前位置:文档库 › 稀土超磁致伸缩材料介绍及应用

稀土超磁致伸缩材料介绍及应用

稀土超磁致伸缩材料介绍及应用
稀土超磁致伸缩材料介绍及应用

稀土超磁致伸缩材料

在居里点温度以下时,铁磁材料和亚铁磁材料由于磁化状态的改变,其长度

和体积会发生微小的变化,这种现象称之为磁致伸缩效应,长度的变化是1842年由焦耳发现致伸缩材料是近期发展起来的一种新型稀土功能材料。它具有电磁能与机

械能或声能相互转换功能。“稀土超磁致伸缩材料”是当今世界最新型的磁致缩

功能材料,是一种高效的Tb-Dy-Fe 合金。它在低磁场驱动下产生的应变值高达1500—2000ppm,是传统的磁致伸缩材料如压电陶瓷的5—8 倍、镍基材料的

40—50 倍,因此被称之为“超磁致伸缩材料”。

“稀土超磁致伸缩材料”产生的应力大、能量密度高,可瞬间响应,并且具

有可靠性高、居里温度高等优点,而且还是一种环保型材料;其所具有的卓越的

电磁能与机械能或声能转换性能,是传统的磁致伸缩材料所无法比拟的。

“稀土超磁致伸缩材料”可广泛应用于众多行业的科学研究与生产制造领

域,从军工、航空、海洋船舶、石油地质,到汽车、电子、光学仪器、机械制造,

再到办公设备、家用电器、医疗器械与食品工业,无处没有它大显身手的机会。

在国防、航空航天和高技术领域:如声纳与水声对抗换能器、线性马达、微位移

驱动(如飞机机翼和机器人的自动调控系统)、噪声与振动控制系统、海洋勘探

与水下通讯、超声技术(医疗、化工、制药、焊接等)、燃油喷射系统等领域,

有广阔的应用前景。

“稀土超磁致伸缩材料”对生产技术与生产工艺的要求极高,目前只有少数

几个国家的个别企业能够生产。

由三个组元组成(Tbl -xDyx)Fey(X=0.27~0.40,Y=1.90~2.0)

在较低磁场下具有很高磁致伸缩应变λ的合金,如Tbo0.3Dy0.7Fe1.95 首先

于20 世纪70 年代初由美国海军表面武器实验室的A.C.Clark 博士等人发明,

当即他们申请了美国专利。美国海军表面武器实验室于1987 年将该专利技术转

让给美国阿依华州A mes 市的前沿技术公司创建了专门生产稀土超磁致伸缩材

料的 E trema INC 分公司。随后美国的G ibson 和Verhoeven 等人对

Tbo0.3Dy0.7Fe1.95 合金晶体取向棒材(包括管材,片材等)的制造设备、

技术与工艺做了大量的研究,发明了一种连续生产取向(Tb-Dy-Fe)磁致伸缩

材料的方法,并申请了专利。北京科技大学经系统的研究优化了成分,采用与美

国专利完全不同的成分、设备和技术来制造<110>轴向取向的Tb-Dy(R’)

-Fe(M)超磁致伸缩材料。共申请了两项发明专利,其中第一项专利名称为稀

土超磁致伸缩材料,专利号为:Z L93106941.6,1993 年 6 月生效,有效期20 年;第二项发明专利名称为:稀土超磁致伸缩材料及制造工艺,专利号为:Z

L98101191.8,2001 年5 月2 日生效,有限期20 年。

美国G ibson 和Verhoeven 等人的专利和北京科技大学周寿增等人的专利

是目前世界上对稀土超磁致伸缩材料具有独立知识产权的专利。

稀土超磁致伸缩材料由三个组元组成(Tbl-xDyx)Fey(X=0.27~0.40,Y=1.90~2.0)在较低磁场下具有很高磁致伸缩应变λ的合金,如

Tbo0.3Dy0.7Fe1.95 首先于20 世纪70 年代初由美国海军表面武器实验室的A.C.Clark 博士等人发明。随后美国的G ibson 和Verhoeven 等人对

Tbo0.3Dy0.7Fe1.95 合金晶体取向棒材(包括管材,片材等)的制造设备,

技术与工艺做了大量的研究,发明了一种连续生产取向(Tb-Dy-Fe)磁致伸缩

材料的方法。

该材料在军、民两用高技术领域有广阔的应用前景,专家预计到2010 年的

销售额可以达到18 亿美元。

1.磁致伸缩现象(或效应):铁磁性物质在外磁场作用下,其尺寸伸长(或缩短),去掉外磁场后,其又恢复原来的长度。磁致伸缩效应可用磁致伸

缩系数(或应变)λ来描述,λ=(lH—lo)/lo,1o 为原来的长度,1

H 为物质在外磁场作用下伸长(或缩短)后的长度。

2.磁致伸缩材料主要有三大类:即①是磁致伸缩的金属与合金,如镍和金煤(Ni)基合金(Ni,Ni-Co 合金,Ni-Co-Cr 合金)和铁基合金(如F e— Ni 合金,Fe-Al 合金,Fe-Co-V 合金等);②是铁氧体磁致伸

缩材料,如N i-Co 和Ni-Co-Cu 铁氧体材料等。前两种称为传统磁致

伸缩材料,其λ值(在20—80ppm 之间)过小,它们没有得到推广应用,

后来人们发现了电致伸缩材料,如(Pb,Zr,Ti)C03 材料,(简称为

P ZT 或称压电陶瓷材料),其电致伸缩系数比金属与合金的大约

200~400ppm,它很快得到广泛应用;③近期发展了稀土金属间化合物磁致

伸缩材料,称为稀土超磁致伸缩材料。

3.稀土超磁致伸缩材料:以(Tb,Dy)Fe2 化合物为基体的合

金Tb0.3Dy0.7Fe1.95 材料(Tb -Dy-Fe 材料)的λ达到1500~2000ppm,比磁致伸缩的金属与合金和铁氧体磁致伸缩材料的λ大1~2 个数量级,因

此称为稀土超磁致伸缩材料。

磁致伸缩现象

大家知道物质有热胀冷缩的现象。除了加热外,磁场和电场也会导致物体尺

寸的伸长或缩短。铁磁性物质在外磁场作用下,其尺寸伸长(或缩短),去掉外

磁场后,其又恢复原来的长度,这种现象称为磁致伸缩现象(或效应)。另外有

些物质(多数是金属氧化物)在电场作用下,其尺寸也伸长(或缩短),去掉外

磁场后又恢复其原来的尺寸,这种现象称为电致伸缩现象。磁致伸缩效应可用磁

致伸缩系数(或应变)λ来描述,λ=(lH—lo)/lo,lo 为原来的长度,1 H

为物质在外磁场作用下伸长(或缩短)后的长度。一般铁磁性物质的λ很小,约

百万分之一,通常用p pm 代表。例如金属镍(Ni)的λ约40ppm。

自从发现物质的磁致伸缩效应后,人们就一直想利用这一物理效应来制造

有用的功能器件与设备。为此人们研究和发展了一系列磁致伸缩材料,主要有三

大类:即:磁致伸缩的金属与合金,如镍和金煤(Ni)基合金(Ni,Ni-Co 合

金,Ni-Co-Cr 合金)和铁基合金(如F e-Ni 合金,Fe-Al 合金,Fe-Co

-V 合金等)和铁氧体磁致伸缩材料,如N i-Co 和Ni-Co-Cu 铁氧体材料等。

这两种称为传统磁致伸缩材料,其λ值(在20—80ppm 之间)过小,它们没有得

到推广应用,后来人们发现了电致伸缩材料,如(Pb,Zr,Ti)C03 材料,(简

称为P ZT 或称压电陶瓷材料),其电致伸缩系数比金属与合金的大约

200~400ppm,它很快得到广泛应用;第三大类是近期发展的稀土金属间化合物磁

致伸缩材料,例如以(Tb,Dy)Fe2 化合物为基体的合金Tbo0.3Dy0.7Fe1.95

材料(下面简称T b-Dy— Fe 材料)的λ达到1500~2000ppm,比前两类材料的λ大1~2 个数量级,因此称为稀土超磁致伸缩材料。

特点

和传统超磁致伸缩材料及压电陶瓷材料(PZT)相比,稀土超磁致伸缩材料

是佼佼者,它具有下列优点:磁致伸缩应变λ比纯N i 大50 倍,比PZT 材料大

5—25 倍,比纯N i 和Ni-Co 合金高400~800 倍,比PZT 材料高14~30 倍;磁

致伸缩应变时产生的推力很大,直径约 l0mm 的Tb-Dy-Fe 的棒材,磁致伸缩时产生约200 公斤的推力:能量转换效率(用机电耦合系数K33 表示)高达70%,而Ni 基合金仅有16%,PZT 材料仅有40~60%;其弹性模量随磁场而变化,可调控;响应时间(由施加磁场到产生相应的应变λ所需的时间称响应时间)仅百万分之一秒,比人的思维还快;频率特性好,可在低频率(几十至1000 赫兹)下工作,工作频带宽;稳定性好,可靠性高,其磁致伸缩性能不随时间而变化,无疲劳,无过热失效问题。

技术上的应用

由于磁致伸缩材料在磁场作用下,其长度发生变化,可发生位移而做功或

在交变磁场作用可发生反复伸张与缩短,从而产生振动或声波,这种材料可将电磁能(或电磁信息)转换成机械能或声能(或机械位移信息或声信息),相反也可以将机械能(或机械位移与信息)。转换成电磁能(或电磁信息),它是重要的能量与信息转换功能材料。它在声纳的水声换能器技术,电声换能器技术、海洋探测与开发技术、微位移驱动、减振与防振、减噪与防噪系统、智能机翼、机器人、自动化技术、燃油喷射技术、阀门、泵、波动采油等高技术领域有广泛的应用前景。

海洋占地球面积的70%,海洋是人类生命的源泉,但是人类对海洋的大部分还缺乏了解。21 世纪是海洋世纪,人类的生活、科学实验和资源的获及将逐

渐的从山陆地转移到海洋。而舰艇水下移动通讯、海水温度、海流、海底地形地貌的探测就需要声纳系统。声纳是一个庞大的系统,它包括声发射系统,反射声

的接收系统,将回声信息转变成电信息与图像,以及图像识别系统等。其中声发射系统中的水声发射换能器及其材料是关键技术之一。过去声纳的水声发射换能器主要用压电陶瓷材料(PZT)来制造。这种材料制造的水声换能器的频率高

(20kHz 以上),同时发射功率小,体积大,笨重。另外随舰艇隐身技术的发展,现代舰艇可吸收频率在3.0kHz 以上的声波,起到隐身的作用。各工业发达国家都正在大力发展低频(频率为几十至2000 赫兹),大功率(声源级约220dB)的声纳用或水声对抗用发射水声换能器,并已用于装备海军。低频可打破敌方舰艇的隐身技术,大功率可探测更远距离的目标,同时体积小,重量轻,可提高舰艇的作战能力。低频大功率是声纳用和水声对抗用发射水声换能器今后的发展方向。而制造低频大功率水声发射换能器的关键材料是稀土超磁致伸缩材料。发展稀土超磁致伸缩材料对发展声纳技术、水声对抗技术、海洋开发与探测技术将起

到关键性作用。日本已用稀土超磁致伸缩材料来制造海洋声学断层分析系统O

AT (Ocean Acoustic Topography)和海洋气候声学温度测量系统 A TOC (The Acoustic Thermometry of Ocean climate)的水声发射换能器,其信号可发射

到1000km 的范围,可用于测量海水温度和海流的分布图。

稀土超磁致伸缩材料在声频和超声技术方面也有广阔的应用前景。例如用

该材料可制造超大功率超声换能器。过去的超声换能器主要是用压电陶瓷(PZT)

材料来制造。它仅能制造小功率(≤2.0kW)的超声波换能器,国外已用稀土超

磁致伸缩材料来制造出超大功率(6—25kW)的超声波换能器。超大功率超声波

技术可产生低功率超声技术所不能产生的新物理效应和新的用途,如它可使废旧轮胎脱硫再生,可使农作物大幅度增产,可加速化工过程的化学反应。有重大的经济、社会和环保效益;用该材料制造的电声换能器,可用于波动采油,可提高油井的产油量达20%~100%,可促进石油工业的发展;用该材料制造的薄型(平板型)喇叭,振动力大,音质好,高保真,可使楼板、墙体、桌面、玻璃窗振动

和发音,可作水下音乐、水下芭蕾伴舞的喇叭等。

此外,用该材料可制造反噪声与噪声控制,反振动与振动控制系统。将一

个咖啡杯人力反噪声控制器安装在与引擎推进器相连接的部件内,使它与噪声传感器联接,可使运载工具的噪声降低到使旅客感到舒服的程度(≤20dB)以下。

反振动与减振器应用到运载工具,如汽车等,可使汽车振动减少到令人舒服的程度。用稀土超磁致伸缩材料制造的微位移驱动器,可用于机器人、自动控制、超精密机械加工、红外线、电子束、激光束扫描控制、照相机快门、线性电机、智能机翼、燃油喷射系统、微型泵、阀门、传感器等等。

专家认为,稀土超磁致伸缩材料的应用可诱发一系列的新技术,新设备,

新工艺。它是可提高一个国家竞争力的材料,是21 世纪战略性功能材料。

稀土超磁致伸缩材料是下一世纪最有应用前景的稀土功能材料之一,是高

新技术的物质基础。它的用途还在开发之中,其应用前景和市场十分广阔。

17种稀土元素名称及用途

17种稀土元素名称及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。 镨的广泛应用: (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

铽镝铁合金稀土超磁致伸缩材料(GMM)

铽镝铁合金稀土致伸缩材料(GMM) 铽镝铁合金是一种新型的稀土超磁致伸缩材料(GMM),因其诸多优良特性,在各行各业的新产品开发中具有广阔的应用前景,必将带来深远的影响力。 铽镝铁合金具有一系列优良的性能:磁致伸缩系数大大,比纯Ni大50倍,比PZT材料大5-25倍。磁致伸缩时产生的推力很大,直径约10mm的铽镝铁棒材,磁致伸缩时产生约200公斤的推力;能量密度高,其能量密度比Ni基合金大400~800倍,比PZT大14~30倍;能量转换效率(用机电祸合系数表示)高达70%,而Ni基合金仅有16%。PZT材料仅有0-60%;其曲线线性好,弹性模量随磁场而变化,可调控;响应速度快,达到10-6秒;频率特性好,可在低频率(几十至1000赫兹)下工作,工作频带宽;可在低场(几十至几百奥斯特)下工作;工作电压低,可在几伏至100伏电压下工作,可用电池驱动,而PZT的电极化电压在2kV/mm 以上,有电击穿危险;稳定性好,可靠性高,其磁致伸缩性能不随时间而变化,无疲劳,无过热失效问题。另外,与PZT陶瓷相比,超磁致伸缩材料在低场大功率传感器上也具有不可替代的地位。超磁致伸缩材料在声纳的水声换能器技术,电声换能器技术、海洋探测与开发技术、微位移驱动、减振与防振、减噪与防噪系统、智能机翼、机器人、自动化技术、燃油喷射技术、阀门、泵、波动采油等高技术领域有广泛的应用前景。 类似牌号:Terfenol-D,GMM,TbDyFe 目前铽镝铁合金在国内应用仍处于起步阶段,今有少数单位具有生产能力。A-ONE是目前国内可以供应铽镝铁合金产品最全的生产厂家之一。 苏州埃文特种合金可提供铽镝铁合金产品规格: 圆柱形,直径4~50mm,长度≤200mm 长方体:长宽2~35mm,高2~100mm 圆环:外径8~50mm,壁厚2~4mm,长度2~100mm 圆片:直径4~50mm,最小厚度1mm 方片(矩形片):最薄1mm 层叠片:直径10~50mm,长5~100mm,最小层叠厚度2mm 粉末:协商供应 品牌:A-ONE 供货能力:有长期稳定的批量生产能力,月产量可达80~120kg。 部分规格有库存现货。没有MOQ,只要有需求就可以供货。 铽镝铁合金作为一种新型的稀土超磁致伸缩材料,其室温下的磁致伸缩应变量(磁致伸缩系数)之大是以往任何场致伸缩材料所无法比拟的。它比传统的镍钴(Ni-Co)等磁致伸缩合金的应变量大几十倍,是电致伸缩材料的五倍以上。可高效地实现电能转换成机械能,传输出巨大的能量。在10-5~10-6秒的极短时间内,精密、稳定地形成与磁场静、动态特性相匹配的无滞后型响应。其响应稳定,速度敏捷,使铽镝铁合金作为驱动元件的机械系统反应滞后时间显着降低,这也是铽镝铁合金元件在交变磁场中快速产生伸缩应变响应的重要特性,从而使它在工业的科技开发中作为执行元件、控制元件、敏感元件得到了越来越广泛的应用 稀土超磁致伸缩材料在声学领域的应用成果之一,是平板扬声器技术。平板扬声器(Flat panel technology)具有优异的频响特性和音质,可以产生360度的声场,几乎穿越任何平面,开辟了设计各种新型扬声器的可能性。 把稀土超磁致伸缩材料元件用于微位移机构,可以快速、精确、稳定地控制复杂的位移运动。

磁致伸缩材料的设计和应用

磁致伸缩材料的设计和 应用 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

磁致伸缩材料的设计和应用 Olabi A Grunwald (都柏林城市大学机械制造自动化学院) 摘要:磁致伸缩效应是指材料在外加磁场条件下的变形。磁畴的旋转被认为是磁致伸缩效应改变长度的原因。磁畴旋转以及重新定位导致了材料结构的内部应变。结构内的应变导致了材料沿磁场方向的伸展(由于正向磁致伸缩效应)。在此伸展过程中,总体积基本保持不变,材料横截面积减小。总体积的改变很小,在正常运行条件下可以被忽略。增强磁场可以使越来越多的磁畴在磁场方向更为强烈和准确的重新定位。所有磁畴都沿磁场方向排列整齐即达到饱和状态。 本文将展示磁致伸缩效应的研究方法现状和其应用,诸如:大型作动器响应、标准Terfenol-D 作动器、基于Terfenol-D的直线马达(蜗杆驱动)、用于声纳换能器的Terfenol-D、用于无线旋转马达的Terfenol-D、基于Terfenol-D的电动液压作动器、无线型直线微型马达、磁致伸缩薄膜的应用、基于磁致伸缩效应的无接触扭矩传感器和其他应用。研究表明,磁致伸缩材料具有许多优良的特性,从而可以被用于许多先进设备。 关键词:磁致伸缩效应;作动器;传感器;Terfenol-D 1.前言 磁致伸缩效应是指材料在外加磁场条件下的变形。磁致伸缩效应于19世纪(1842年)被英国物理学家詹姆斯.焦耳发现。他观察到,一类铁磁类材料,如:铁,在磁场中会改变长度。焦耳事实上观察到的是具有负向磁致伸缩效应的材料,但从那时起,具有正向磁致伸缩效应的材料也被发现了。对于两类材料来说,磁致伸缩现象的原因是相似的。小磁畴的旋转被认为是磁致伸缩效应改变长度的原因。磁畴旋转以及重新定位导致了材料结构的内部应变。结构内的应变导致了材料沿磁场方向的伸展(由于正向磁致伸缩效应)。在此伸展过程中,总体积基本保持不变,材料横截面积减小。总体积的改变很小,在正常运行条件下可以被忽略。增强磁场

稀土材料的应用简介

稀土矿的应用简介 一、稀土矿的简介 1、稀土的发现史 从1794年发现元素钇,到1945年在铀的裂变物质中获得钷,前后经过151年的时间,人们才将元素周期表中第三副族的钪、钇、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥17个性质相近的元素全部找到,把它们列为一个家族,取名稀土元素。我国稀土品种全,17种元素除钷尚未发现天然矿物,其余16种稀土元素均已发现矿物、矿石。2、资源储量分布 我国稀土矿产主要集中在内蒙古白云鄂博铁-铌、稀土矿区,其稀土储量占全国稀土总储量的90%以上,是我国轻稀土主要生产基地。即轻稀土主要分布在北方地区,重稀土则主要分布在南方地区,尤其是在南岭地区分布可观的离子吸附型中稀土、重稀土矿,易采、易提取,已成为我国重要的中、重稀土生产基地。此外,在南方地区还有风化壳型和海滨沉积型砂矿,有的富含磷钇矿(重稀土矿物原料);在赣南一些脉钨矿床(如西华山、荡坪等)伴生磷钇矿、硅铍钇矿、钇萤石、氟碳钙钇矿、褐钇铌矿等重稀土矿物,在钨矿选冶过程中可综合回收,综合利用。 二、稀土的用途 稀土(RE)常被冠以“工业味精”的美誉。稀土元素因其具有独特的电子结构而表现出特殊的光、电、磁学等物理化学性质。无论是稀土金属还是其化合物都有良好的应用价值。1、传统领域中的稀土材料 (1)稀土在农轻工中的应用 稀土元素作为微量元素用于农业有2个优点:一是作为植物的生长、生理调节剂;二是稀土属低毒、非致癌物质,合理使用对人畜无害、环境无污染。如添加稀土元素的硝酸盐化合物作为微量元素化肥施用于农作物可起到生物化学酶或辅助酶的生物功效,具有增产效果。 纺织业中:铈组元素(Eu以前的镧系元素)的氯化物或醋酸盐可提高纺织品的耐水性,并使织物具有防腐、防蛀、防酸等性能。某些稀土化合物还可以作为皮革的着色剂或媒染剂,La、Ce、Nd的一些化合物可用作油漆的干燥剂,增强油漆的耐腐蚀性。 (2)稀土在冶炼工业中的应用 稀土元素对O、S和某些非金属具有强亲和力,利用这一特点,将稀土用于炼钢中能净化钢液,能起到脱S和脱O的作用,其原理是加入钢中的稀土能结合钢中可能生成的MnS、Al2O3和硅铝酸夹杂物中的O和S形成化合物。 钢的脱硫:在钢中添加混合稀土金属的目的之一是控制硫夹杂物的含量和形状。炼钢通常要添加锰,锰与硫结合形成硫化物夹杂物,这种夹杂物在轧钢时会变形。而添加混合稀土金属则能产生稀土的硫化物、硫氧化物,它们在轧钢时形状保持不变,使钢的性能得到改善。 稀土球墨铸铁:混合稀土金属以稀土硅铁合金或硅镁钛合金的形式加入铁不中促进石墨的球化,从而提高铸铁的可锻强度。产品称球墨铸铁。 打火石:混合稀土金属制造打火石,这是75%的混合稀土金属和25%的铁制成的一种合金。 有色金属合金中:稀土金属有色金属合金中也获得广泛应用。例如有一种稀土镁合金(含有Mg、Zn、Zr、La、Ce)可用于制造喷气式发动机的传动装置,直升飞机的变速箱,飞机的着陆轮和座舱罩。在镁合金中添加稀土金属优点是可提高其高温抗蠕变性,改善铸造性能和室温可焊性。有一种铝锆钇合金用作电线,其特点是输出功率高、耐热、耐振动和耐腐蚀。(3)稀土在炼油业中的应用 目前,世界上90%的炼油裂化装置都使用含稀土的催化剂,其中稀土分子筛型石油裂化

铽镝铁(TbDyFe)合金稀土超磁致伸缩材料Terfenol-D介绍

铽镝铁(TbDyFe)合金稀土超磁致伸缩材料Terfenol-D介绍

铽镝铁(TbDyFe)合金稀土超磁致伸缩材料 Terfenol-D介绍 天津华安旭阳国际贸易有限公司孙庆仑 铽镝铁(TbDyFe)合金是一种新型的稀土超磁致伸缩材料,其室温下的磁致伸缩应变量(磁致伸缩系数)之大是以往任何场致伸缩材料所无法比拟的。它比传统的镍钴(Ni-Co)等磁致伸缩合金的应变量大几十倍,是电致伸缩材料的五倍以上。可高效地实现电能转换成机械能,传输出巨大的能量。在10-5~10-6秒的极短时间内,精密、稳定地形成与磁场静、动态特性相匹配的无滞后型响应。其响应稳定,速度敏捷,使铽镝铁合金作为驱动元件的机械系统反应滞后时间显著降低,这也是铽镝铁合金元件在交变磁场中快速产生伸缩应变响应的重要特性,从而使它在工业的科技开发中作为执行元件、控制元件、敏感元件得到了越来越广泛的应用 稀土超磁致伸缩材料在声学领域的应用成果之一,是平板扬声器技术。平板扬声器(Flat panel technology)具有优异的频响特性和音质,可以产生360度的声场,几乎穿越任何平面,开辟了设计各种新型扬声器的可能性。

把稀土超磁致伸缩材料元件用于微位移机构,可以快速、精确、稳定地控制复杂的位移运动。在机器人准确的关节控制;机床部件的精密位移控制;成型加工机床的伺服刀架控制;机构传动误差和刀具磨损的补偿控制;电力分配系统中开关、继电器的强力触头控制;激光镜、望远镜、电子显微镜的精细聚焦等控制中,可显著地优化结构、改善性能、提高效率、降低损耗。 在用稀土超磁致伸缩材料驱动的线性马达、伺服阀、强力液压泵、精密输液泵(医用)、高速阀门、燃油喷射系统(汽车发动机)等装置中进行随机控制,有效地提高自动化程度,简化液压控制系统,达到高效节能,安全可靠。 利用铽镝铁合金元件的即时响应特性,可有效地控制机械系统的振动,达到消振、降噪之目的。反之,利用稀土超磁致伸缩材料元件的可控特性,改善振动工艺过程(抛光、振动切削),提高产品质量和生产效率。 以上为部分稀土超磁致伸缩材料应用的实例,但决不是应用的顶点。稀土超磁致伸缩材料的更多应用正在开发中,相信它在各行各业的新

稀土发光材料的研究和应用.

稀土发光材料的研究和应用 摘要:介绍了稀土发光材料的发光特性与发光机理。综述了我国在稀土发光材料的化学合成方法。总结了稀土发光材料的应用。最后对我国存在问题和发展前景进行了叙述。关键字:稀土发光材料;发光特性;发光机理;合成;应用;问题和展望。 Abstract:Introduces the luminescence properties of rare earth luminescent material and luminescence mechanism. Rare-earth luminescence materials in China, the paper summarized the chemical synthesis method. The application of rare earth luminescence materials is summarized. Finally, the existing problems and development prospect of the narrative in our country. Keywords:Rare earth luminescent material; Luminescence properties; Light-emitting mechanism; Synthesis; Application; Problems and its prospect. 化学元素周期表中镧系元素———镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素称为稀土元素。稀土化合物包含至少一种稀土元素的化合物。它是一种重要的战略资源,特别是高新技术工业的重要原料,如军事装备方面一些精确打击武器、一些汽车零部件和高科技产品,都依赖用稀土金属制造的组件。据了解,中国是唯一能有效提供全部17种稀土金属的国家,且储量远远超过世界其他国家的总和,是名副其实的“稀土大国”。由于稀土元素的离子具有特别的电子层结构和丰富的能级数量,使它成为了一个巨大的发光材料宝库。在人类开发的各种发光材料中,稀土元素发挥着重要作用,稀土发光几乎覆盖了整个固体发光的范畴。稀土发光材料具有发光谱带窄,色纯度高,色彩鲜艳;光吸收能力强,转换效率高;发射波长分布区域宽;荧光寿命从纳秒跨越到毫秒达6个数量级;物理和化学性质稳定,耐高温,可承受大功率电子束、高能辐射和强紫外光的作用等。目前稀土材料已广泛用于照明、显示、信息、显像、医学放射学图像和辐射场的探测等领域,并形成很大的工业生产和消费市场规模;同时也正在向着其他新型技术领域扩展,成为人类生活中不可缺少的重要组成部分。本文将介绍掺稀土离子发光材料的发光机理、节能灯、白光LED用荧光粉、PDP显示用荧光粉,以及对在上转换发光、生物荧光标记和下转换提升太阳能效率等方面的应用前景进行总结和展望。

稀土永磁材料与应用

稀土永磁材料与应用 一、稀土永磁材料 稀土永磁材料是将钐、钕混合稀土金属与过渡金属(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经磁场充磁后制得的一种磁性材料。 稀土永磁分钐钴(SmCo)永磁体和钕铁硼(NdFeB)系永磁体,其中SmCo磁体的磁能积在15~30MGOe之间,NdFeB系永磁体的磁能积在27~50MGOe之间,被称为“永磁王”,是目前磁性最高的永磁材料。钐钴永磁体,尽管其磁性能优异,但含有储量稀少的稀土金属钐和稀缺、昂贵的战略金属钴,因此,它的发展受到了很大限制。我国稀土永磁行业的发展始于60年代末,当时的主导产品是钐-钴永磁,目前钐-钴永磁体世界销售量为630吨,我国为90.5吨(包括SmCo磁粉),主要用于军工技术。 随着计算机、通讯等产业的发展,稀土永磁特别是NdFeB永磁产业得到了飞速发展。 稀土永磁材料是现在已知的综合性能最高的一种永磁材料,它比十九世纪使用的磁钢的磁性能高100多倍,比铁氧体、铝镍钴性能优越得多,比昂贵的铂钴合金的磁性能还高一倍。由于稀土永磁材料的使用,不仅促进了永磁器件向小型化发展,提高了产品的性能,而且促使某些特殊器件的产生,所以稀土永磁材料一出现,立即引起各国的极大重视,发展极为迅速。我国研制生产的各种稀土永磁材料的性能已接

近或达到国际先进水平。 现在稀土永磁材料已成为电子技术通讯中的重要材料,用在人造卫星,雷达等方面的行波管、环行器中以及微型电机、微型录音机、航空仪器、电子手表、地震仪和其它一些电子仪器上。目前稀土永磁应用已渗透到汽车、家用电器、电子仪表、核磁共振成像仪、音响设备、微特电机、移动电话等方面。在医疗方面,运用稀土永磁材料进行“磁穴疗法”,使得疗效大为提高,从而促进了“磁穴疗法”的迅速推广。在应用稀土的各个领域中,稀土永磁材料是发展速度最快的一个。它不仅给稀土产业的发展带来巨大的推动力,也对许多相关产业产生相当深远的影响。 二、稀土永磁材料分类 1.稀土钴永磁材料,包括稀土钴(1-5型)永磁材料SmCo5和稀土钴(2-17型)永磁材料Sm2Co17两大类。 2.稀土钕永磁材料,NdFeB永磁材料。 3.稀土铁氮(RE-Fe-N系)或稀土铁碳(RE-Fe-C系)永磁材料。 三、稀土永磁材料制备工艺分类 1.粉末冶金烧结工艺制备的烧结磁体; 2.还原扩散制粉或氢碎处理粉末及粉末冶金烧结工艺制备的烧结磁体; 3.快速凝固制粉或氢碎制粉(HDDR),粉末模压粘结工艺制备的粘结磁体; 4.快速凝固制粉或氢碎(HDDR)粉末的注射工艺制备的注射磁

稀土发光材料的研究现状与应用(综述)

稀土发光材料的研究现状与应用 材化092 班…指导老师:…. (陕西科技大学材料科学与工程学院陕西西安710021) 摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。稀土元素在我国的储量丰富,约占全世界的40%。本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。 关键词稀土,发光材料, 应用 Current Research and Applications of rare earth luminescent materials Abstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials, 1 / 8

稀土超磁致伸缩材料应用及展望

电磁场与电磁场结课论文 稀土超磁致伸缩材料应用及展望 学院:计算机学院 专业:通信工程 学号:152210704121 姓名:李越洋 2017.11.30—2017.12.2

稀土超磁致伸缩材料应用及展望 李越洋 (江苏科技大学,计算机学院,通信工程,152210704121) 摘要:以Tb-Dy-Fe合金系为主,对稀土超磁致伸缩材料的基本性能作了简要的介绍,并与其他磁、电致伸缩材料进行了对比。重点介绍了影响该系合金性能的主要因素和该类合金具体应用,并叙述了超磁致伸缩材料研究的最新进展及进一步研究的方向。 关键词:超磁致伸缩材料;稀土;应用;合金 Application and Prospect of Rare Earth Magnetostrictive Material LEE Yue-Yang (College of Computer Science,Telecommunication Engineering,152210704121,Jiangsu University Of Science And Technology) Abstract: The basic properties of rare earth giant magnetostrictive materials are mainly introduced by Tb-Dy-Fe alloy system, and compared with other magnetic and electrostrictive materials. The main factors influencing the properties of the alloys and the preparation methods of the alloys are introduced emphatically,and the latest research progress and further research direction of the giant magnetostrictive materials are described. Key words: Giant magnetostrictive material; Rare earth; Application; Alloy 1 引言 自从70年代美国海军防卫研究所的A.E.Clark博士发现了具有超磁致伸缩特性的某种稀土铁合金(Tb0.3 Dy0.7Fe2 后被命名为Terfenol-D ) 的居里温度高达600—700K以后,大大地激发了人们对这种材料的研究和应用。特别是近10年来,相继召开3次稀土超磁致伸缩材料的基础研究和应用开发的国际会议。目前,稀土超磁致伸缩材料的生产和应用被普遍认为将是新的经济生长点。[1] 磁致伸缩现象是在150多年前发现的(Joule JP Philosophical Magazine,1847,30,p.76)。从那时起,既有基础科学的研究,又有诸如声音发生器,磁声变压器,光电系统执行器,无损控制和远程检测和测距等领域的应用。微加工等现代技术和稀土类散装材料,磁性薄膜等材料的近期发展为磁致伸缩的研究和应用提供了新的机遇。因此,发现巨磁致伸缩使得能够特别地生成超声波并且扩展非破坏性控制技术的使用;低温技术的发展给强迫磁致伸缩带来了新的认识,即与磁化反转和热活化过程有关的不可逆分量,这些过程涉及磁畴壁和磁通线的位移,即磁和超导器件的稳定性,以及到稀土磁体中的巨磁致伸缩(高达10 -2)。作为磁各向异性的应变导数的磁致伸缩的新兴领域与此有关磁记录行业,特别是记录密度超过20 Gbits/in2。随着器件的物理尺寸减小,表面积与体积之比增加,并且表面各向异性(磁致伸缩)效应可能在最终开关速度或本底噪声方面变得显着。最近在高温超导体中发现了磁场诱导的巨磁致伸缩。磁致伸缩应变可能限制这一重要材料组的技术应用。 2 超磁致伸缩材料 超磁致伸缩材料GMM(Giant Magnetostrictive Materials)为稀土元素铽Tb(Terbium)、

超磁致伸缩材料的应用现状

专题综述 文章编号:100320794(2006)0520725203 超磁致伸缩材料的应用现状 方紫剑,王传礼 (安徽理工大学,安徽淮南232001) 摘要:稀土超磁致伸缩材料作为一种新型功能材料具有应变大、响应速度快等优点。介绍了超磁致伸缩材料(G M M)及基本特性,且较全面地论述了超磁致伸缩材料2类执行器在各领域(特别是在液压元件和微型马达)中的应用及研究现状。 关键词:超磁致伸缩材料;液压元件;微型马达 中图号:TP39文献标识码:A Applications of G iant Magnetostrictive Material FANG Zi-jian,WANG Chu an-li (Anhui University of Science and T echnology,Huainan232001,China) Abstract:The giant magnetostrictive material(G M M)has the advantages of high strain and fast response.The giant magnetostrictive material and its basic characteristics are presented.The current researches on applica2 tions of tw o kinds of G MA in various fields(particularly in the field of hydraulic com ponents and micro-m o2 tors)are com prehensively introduced. K ey w ords:giant magnetostrictive material;hydraulic com ponent;micro-m otor 1 超磁致伸缩材料(G M M)的性能特点 G M M与压电材料(PZT)和传统磁致伸缩材料Ni、C o等相比,具有独特的性能:(1)在室温下的磁致伸缩应变大,是Ni的40~50倍,是PZT的5~8倍;(2)能量密度高,是Ni的400~500倍,是PZT的10~25倍;(3)响应速度快,一般在几十毫秒以下,甚至达到微秒级;(4)输出力大,负载能力强,可达到220~800N;(5)其磁极耦合系数大,电磁能机械能的转换效率高,一般可达72%;(6)居里点温度高,工作性能稳定。此外,声速低,约是Ni的1Π3,PZT的1Π2。鉴于G M M的上述优良特性,这种材料在许多领域中已引起人们的广泛重视。 2 物理效应与应用形式 2.1 超磁致伸缩材料的物理效应 (1)Joule效应 磁性体被外加磁场磁化时,其长度发生变化的现象,可用来制作磁致伸缩转换器。 (2)Villari效应 由于形状变化,致使其磁化强度发生变化的现象,可用于制作磁致伸缩传感器。 (3)ΔE效应 随磁场变化,杨氏模量也发生变化的现象,可用于声延迟线。 (4)Viedemann效应 在磁性体上施加适当的磁场,当有电流通过时磁性体发生扭曲变形的现象,可用于制作扭转马达等。 (5)AntiViedemann效应 当磁致伸缩材料沿轴向发生周向扭曲,同时沿轴向施加磁场,则沿周向出现交变磁化的现象,可用于扭转传感器。 (6)Jum p效应 当超磁致伸缩材料外加预应力时,磁致伸缩呈跃变式变化,磁导率也发生变化。 以上效应是超磁致伸缩材料的应用研究基础,利用这些效应可做成各种器件。 2.2 超磁致伸缩材料在工程中应用的2种形式 按照是否采用基片可将超磁致伸缩执行器 (G MA,G iant Magnetostrictive Actuator)分为2类: (1)直动型 直动型超磁致伸缩执行器一般使用超磁致伸缩棒(例如T erfenol-D),当作用在其上的磁场变化时产生形变,从而推动负载运动。 (2)薄膜型 这类执行器一般是采用在非磁性基片(通常是用一些半导体材料如Si制成)的上、下表面采用闪蒸、离子束溅射、电离镀膜、直流溅射、射频磁控溅射等方法分别镀上具有正(如:TbFe)、负(如:SmFe)磁致伸缩特性的薄膜制成,当在长度方向外加磁场时,产生正磁致伸缩的上表面薄膜伸长,而产生负磁致伸缩的下表面薄膜缩短,从而带动基片发生偏转。 3 两种G MA的应用现状 基于超磁致伸缩材料的微位移执行器具有大位移、强力、响应快、可靠性高、漂移量小、驱动电压低等优点,因而在液压元件、微型马达、声纳换能器等工程领域均显示出良好的应用前景。2种形式的G M M在工程中都有广泛的应用,本文着重介绍了2种形式的G M M在液压元件和微型马达中的应用。 3.1 直动型G MA的应用现状 目前,直动型超磁致伸缩执行器较多应用于微型泵、各种阀门、微型马达、声纳等产品中。 (1)微型泵 瑞典ABB公司用T erfenol-D为驱动元件设计了微型泵;日本用T erfenol-D制成了微型隔膜泵;英国SanT echnology公司的DariuszA.Bushko和James. H.G oldie用T erfenol-D棒制成了微型高压隔膜泵,其结构如图1,结合水力和电控装置,可实现强力、大行程的水力驱动,既可线性输出又可旋转输出,体积小且易于控制,其工作原理通过线圈驱动G M M 第27卷第5期2006年 5月 煤 矿 机 械 C oal Mine Machinery V ol127N o15 M ay.2006

稀土发光材料的发光机理及其应用

万方数据

万方数据

万方数据

万方数据

万方数据

稀土发光材料的发光机理及其应用 作者:谢国亚, 张友, XIE Guoya, ZHANG You 作者单位:谢国亚,XIE Guoya(重庆邮电大学移通学院,重庆,401520), 张友,ZHANG You(重庆邮电大学数理学院,重庆,400065) 刊名: 压电与声光 英文刊名:Piezoelectrics & Acoustooptics 年,卷(期):2012,34(1) 被引用次数:2次 参考文献(19条) 1.周贤菊;赵亮;罗斌过渡金属敏化稀土化合物近红外发光性能研究进展[期刊论文]-重庆邮电大学学报(自然科学版) 2007(06) 2.段昌奎;王广川稀土光谱参量的第一性原理研究[期刊论文]-重庆邮电大学学报(自然科学版) 2011(01) 3.周世杰;张喜燕;姜峰轻稀土掺杂对TbFeCo材料磁光性能的影响[期刊论文]-重庆工学院学报 2004(05) 4.CARNALL W T;GOODMAN G;RAJNAK K A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 1989(07) 5.LIU Guokui;BERNARD J Spectroscopic properties of rare earths in optical materials 2005 6.DUAN Changkui;TANNER P A What use are crystal field parameters? A chemist's viewpoint[外文期刊] 2010(19) 7.蒋大鹏;赵成久;侯凤勤白光发光二极管的制备技术及主要特性[期刊论文]-发光学报 2003(04) 8.黄京根节能灯用稀土三基色荧光粉 1990(05) 9.VERSTEGEN J M P J A survey of a group of phosphors,based on hexagonal aluminate and gallate host lattices 1974(12) 10.PAN Yuexiao;WU Mingmei;SU Qiang Tailored photoluminescence of YAG:Ce phosphor through various methods 2004(05) 11.KIM J S;JEON P E;CHOI J C Warm-whitelight emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphor[外文期刊] 2004(15) 12.苏锵;梁宏斌;王静稀土发光材料的进展与新兴技术产业[期刊论文]-稀土信息 2010(09) 13.SIVAKUMAR S;BOYER J C;BOVERO E Upconversion of 980 nm light into white light from SolGel derived thin film made with new combinations of LaF3:Ln3+ nanoparticles[外文期刊] 2009(16) 14.WANG Jiwei;TANNER P A Upconversion for white light generation by a single compound[外文期刊] 2010(03) 15.QUIRINO W G;LEGNANI C;CREMONA M White OLED using β-diketones rare earth binuclear complex as emitting layer[外文期刊] 2006(1/2) 16.BUNZLI J C G;PIGUET C Taking advantage of luminescent lanthanide ions 2005 17.WANG Leyu;LI Yadong Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals[外文期刊] 2007(04) 18.LINDA A;BRYAN V E;MICHAEL F Downcoversion for solar cell in YF3:Pr3+,Yb3+ 2010(05) 19.TENG Yu;ZHOU Jiajia;LIU Jianrong Efficient broadband near-infrared quantum cutting for solar cells 2010(09) 引证文献(2条) 1.杨志平.梁晓双.赵引红.侯春彩.王灿.董宏岩橙红色荧光粉Ca3Y2(Si3O9)2:Eu3+的制备及发光性能[期刊论文]-硅酸盐学报 2013(12) 2.严回.孙晓刚.王栋.吕萍.郑长征C24H16N7O9Sm 的晶体合成、结构与性质研究[期刊论文]-江苏师范大学学报(自然科学版) 2013(3) 本文链接:https://www.wendangku.net/doc/8017610670.html,/Periodical_ydysg201201028.aspx

电致、磁致伸缩材料功能及应用

二谈电致、磁致伸缩材料功能及应用 一、电致伸缩材料 在外电场作用下电介质所产生的与场强二次方成正比的应变,称为电致伸缩。这种效应是由电场中电介质的极化所引起,并可以发生在所有的电介质中。其特征是应变的正负与外电场方向无关。在压电体中(见压电性),外电场还可以引起另一种类型的应变;其大小与场强成比例,当外场反向时应变正负亦反号。后者是压电效应的逆效应,不是电致伸缩。外电场所引起的压电体的总应变为逆压电效应与电致伸缩效应之和。对于非压电体,外电场只引起电致伸缩应变。电介质在电场作用下发生弹性形变的现象。是压电效应的逆效应。因电介质分子在电场中发生极化,沿电场方向排列的分子相互吸引而引起。当场强大小发生周期性变化时,能引起材料沿电场方向发生振动。若在电介质材料(如钛酸钡等)两端所加交变电压的频率与材料的固有频率相同时,材料将发生共振。 (1)电致伸缩效应与压电效应 电致伸缩效应也是一种基本的机—电耦合效应,但是对它的实研究开展得较迟,因为电致伸缩是个二次效应,通常由其产生的形变非常小,给实验带来了困难,因此人们对它不太熟悉。 众所周知,电介质晶体在外电场作用下应变与电场的一般关系式 =?+??式中,第一项表示逆压电效应;d为压电系为: S d E M E E 数,第二项表示电致伸缩效应;M为电极伸缩系数,它是由电场诱导极化而引起的形变与电场平方成正比。逆压电效应仅在无对称中心晶

体中才有;而电致伸缩效应则为所有电介质晶体都有,不过一般说来它是很微弱的。压电单晶如石英、罗息盐等它们的压电系数比电致伸缩系数大几个数量级,结果在低于IMV/m的电场作用下只看到第一项的作用,即表现为压电效应。 在一般铁电陶瓷中,电致伸缩系数比压电系数大,在没有极化前虽然单个晶粒具有自发极化但它们总体不表现净的压电性。在极化过程中净的极化强度被冻结(即剩余极化)并产生一个很强的内电场,如BaTIO。陶瓷净的剩余极化产生一个27MV/m的内电场,这样高的内电场起了电致伸缩效应的偏压作用,因此极化后陶瓷在弱外电场作用下产生宏观线性压电效应。一般铁电陶瓷的电场与应变曲线呈蝴蝶形而不表现出电致伸缩效应的二次方曲线。如图1所示。 但是,只要有这样一些铁电陶瓷室温刚好高于它的居里点,不具有自发极化、没有压电性,介电常数又很高在外电场作用下能被强烈地感应极化伴随产生相当大的形变,就有可能表现出纯的大电致伸缩效应呈现出抛物线形的电场—应变曲线。

稀土发光

关于稀土发光材料的认识(孙三大) 绪论 稀土元素由于具有未充满的4f电子壳层和4f电子被外层的5s,5p电子屏蔽的特性,使稀土元素具有极复杂的类线性光谱。吸收光谱使稀土离子大多有色,发射光谱使许多稀土化合物产生荧光和激光。镧系原子的组态为1S22S22P63S23P63d104S24P64d105S25P6(4f n6S2或4f n-15d6S2),其中n=1-15,La,Ce,Gd,Lu为4f n-15d6S2(镧系稀土元素电子层结构的特点是电子在外数第三层的4f轨道上填充,4f轨道的角量子数l=3,磁量子数m可取0、±1、±2、±3等7个值,故4f亚层具有7个轨道。根据Pauli不相容原理,在同一原子中不存在4个量子数完全相同的两个电子,即一个原子轨道上只能容纳自旋相反的两个电子,4f 亚层只能容纳14个电子,从La到Lu,4f电子依次从0增加到14),其余的元素4f n6S2[1-3]。 大部分无机固体致发光材料遵守斯托克斯定律,即发射光的光谱能量低于激发光的光谱能量,这样发光的现象叫做下转换发光。对于下转换发光由外界光源直接作用于稀土离子。1)使稀土离子中的电子由基态跃迁到激发态,完成高能级电子的排布,如图(1)所示,2)由某基团或离子等吸收高能光子后通过非福射他豫将能量传递给较低能级的稀土离子,使稀土离子中的电子由基态跃迁到激发态,如图(2)所示;另外,在1966年,在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。这一小部分光致发光材料违背了斯托克斯定律,即上转换发光,它通过吸收低光子能量的长波福射转换为高光子能量的短波福射。稀土离子可以通过激发态吸收或能量传递过程被激发至高能级而发射上转换发光,如图(3)所示。 Gound state (1)(2)(3) 图中所示(1)和(2)为下转换发光过程,图(3)为上转换发光过程。 稀土上转换/下转换发光材料在众多领域具有巨大的应用价值,对其进行理论和实验的深入

稀土元素镧及其应用(精)

稀土元素镧及其应用 在稀土元素家族中,锢无疑是个非常重要的成员。论地位和名气,他居于稀土家族主体“镧系元素”之首,作为15个元素的代表占据了化学元素周期表主表中的一个空格,并以他的名字来命名这个元素族系。论地壳中丰度为32ppm,占稀土总丰度的14.1%,仅次于铈和钕,居第三位。从发现年代看,他也仅排在钇和铈之后,是第三个被发现的稀土元素。 1839年,那位曾经发现铈的瑞典化学家伯采利乌斯(J.J.Berzelius),有一个瑞典学生名叫莫桑德(Car1 Mosander),在研究“铈土”时,分离并发现其中还隐藏着一种新元素,于是莫桑德便借用希腊语中“隐藏”一词把这种元素取名为”镧”。从此,镧便登上了被人类认识和利用的历史舞台。 镧之所以被较早发现,与他在元素周期表中的位置,也就是原子结构和性质密切相关。他居镧系元素之首,4f轨道上电子数为0,与其他元素发生化学反应时呈正三价。钪和钇虽然与他同在IIIB族,但不在一个周期,性质悬殊。与他紧邻的铈又能呈稳定正四价状态,也造成较大的化学性质差异,易于分离。而他与错钕等其他稀土元素之间又有铈相隔,因此镧比较容易同其他稀土分离并提纯。 稀土元素作为典型的金属元素,其金属活泼性仅次于碱金属和碱土金属。在17个稀土元素当中,按金属的活泼次序排列,由钪、钇到镧递增,又由镧到镥递减,属镧最为活泼。因此作为金属热还原工艺的还原剂,他可以用来还原制备其他稀土金属,而还原制备金属镧,则只能采用比他更为活泼的碱金属和碱土金属,通常采用金属钙作还原剂。 活跃的化学活性和丰富的储量,使镧广泛应用于冶金、石油、玻璃、陶瓷、农业、纺织和皮革等传统工业领域。尽管生产镧并不困难,但为了降低成本,在充分发挥镧及稀土共性的前提下,经常以混合轻稀土或富镧稀土的产品形式使用。 稀土作为金属材料的净化和变质剂,通常以混合稀土金属或中间合金的形态来使用。而镧作为最活泼的一员,在去除氧、硫、磷等非金属杂质和铅、锡等低熔点金属杂质,以及细化晶粒等方面自然会发挥首当其冲的作用。只是他经常和铈错钕等轻稀土弟兄们一起协同作战。当然,也能同其他金属协同作战,如在铅中加入富镧稀土金属(0.01‰~0.2‰)和铁(0.005‰~ 0.1‰),可明显提高抗折拉性能,使铅板机械强度提高上百倍。不仅改善了铅板防辐射性能,还扩大了合金基材的应用范围。以银-氧化镧复合镀层取代纯银作为电接触材料,可节约用银70%~90%,有很大经济效益。 20世纪80年代,石泊裂化催化剂曾经是稀土最大应用领域,因为稀土用作Y 型沸石催化剂,以镧的催化活性最强。在美国一直采用富镧稀土作为石油裂化催化

相关文档