文档库 最新最全的文档下载
当前位置:文档库 › 基于扩展卡尔曼滤波器的超紧耦合GPS/INS组合导航系统设计

基于扩展卡尔曼滤波器的超紧耦合GPS/INS组合导航系统设计

基于扩展卡尔曼滤波器的超紧耦合GPS/INS组合导航系统设计
基于扩展卡尔曼滤波器的超紧耦合GPS/INS组合导航系统设计

扩展卡尔曼滤波matlab程序

文件一 % THIS PROGRAM IS FOR IMPLEMENTATION OF DISCRETE TIME PROCESS EXTENDED KALMAN FILTER % FOR GAUSSIAN AND LINEAR STOCHASTIC DIFFERENCE EQUATION. % By (R.C.R.C.R),SPLABS,MPL. % (17 JULY 2005). % Help by Aarthi Nadarajan is acknowledged. % (drawback of EKF is when nonlinearity is high, we can extend the % approximation taking additional terms in Taylor's series). clc; close all; clear all; Xint_v = [1; 0; 0; 0; 0]; wk = [1 0 0 0 0]; vk = [1 0 0 0 0]; for ii = 1:1:length(Xint_v) Ap(ii) = Xint_v(ii)*2; W(ii) = 0; H(ii) = ‐sin(Xint_v(ii)); V(ii) = 0; Wk(ii) = 0; end Uk = randn(1,200); Qu = cov(Uk); Vk = randn(1,200); Qv = cov(Vk); C = [1 0 0 0 0]; n = 100; [YY XX] = EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V); for it = 1:1:length(XX) MSE(it) = YY(it) ‐ XX(it); end tt = 1:1:length(XX); figure(1); subplot(211); plot(XX); title('ORIGINAL SIGNAL'); subplot(212); plot(YY); title('ESTIMATED SIGNAL'); figure(2); plot(tt,XX,tt,YY); title('Combined plot'); legend('original','estimated'); figure(3); plot(MSE.^2); title('Mean square error'); 子文件::function [YY,XX] = EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V); Ap(2,:) = 0; for ii = 1:1:length(Ap)‐1 Ap(ii+1,ii) = 1;

联合卡尔曼滤波器在数据融合中的应用_胡宏灿

文章编号:1008-8652(2005)01-001-004 联合卡尔曼滤波器在数据融合中的应用 胡宏灿1,2 郭 立1 朱俊株1 (1.中国科学技术大学 合肥 230026; 2.海军大连舰艇学院 大连 116018) 【摘要】 介绍多传感器数据融合中联合卡尔曼滤波器的设计步骤,并将此方法用于舰船组合导航系统,计算机仿真和理论分析表明,该滤波器可以做到全局最优,其结构遵循信息分配原则,提高了系统的数值稳定性和容错性,减小了数据传输的工作量与计算量,便于计算机实现,能够满足组合导航系统需要。 关键词:组合导航系统;数据融合;联合卡尔曼滤波 中图分类号:T P391.7 文献标识码:A The Application of Federal Kalman Filter in Data Fusion System Hu Ho ng can1,2 Guo Li1 Zhu Junzhu1 (1.University of Science and T echnology of China H ef ei230026; 2.Dalian N av al Vessels A cademy Dalian116018) Abstract:A new design o f Kalman filter based on data fusion is presented in the paper.Fistly,the fr ame Kalman filter is intr oduced.T hen,the algo rithm is given.T he simulatio n results show that the metho d is useful in integr ated navigation sy stem because it can impr ove accur acy and r eliability,and it has hig h fault-tolerant ability. Keywords:integ rated nav igatio n sy stem;data fusio n;feder al Kalman filter 1 引言 数据融合技术是近年来新兴的一门实践性较强的技术,它是对系统多个传感器的数据进行处理的过程。众所周知,由于任何传感器都有自身的不足之处,所以单一传感器具有误报风险大,可靠性和容错能力低等缺点。为了对测量环境或对象的特征有个全面、正确的认识,克服单一传感器的上述缺点,多传感器数据融合技术应运而生。简单的说,多传感器融合技术就是融合多个传感器的信息,以产生比单个传感器更可靠、更准确的信息。常用方法有贝叶斯估计法和DS证据理论法及经典推算法等,神经网络、小波分析等智能方法近年来也是研究数据融合的重要方法和手段。卡尔曼滤波器自上世纪六十年代被提出以后,作为一种新型的滤波手段在控制、跟踪、测量领域得到广泛应用。由于卡尔曼滤波器对数据的估计是无偏最优估计,滤波器结构简单等特点,使得卡尔曼滤波器在多传感器数据融合中应用极为广泛。过去使用的集中式卡尔曼滤波器要集中处理所有传感器的数据,计算量大,实时性差,并且不具备容错性。本文基于Car lson提出的联合卡尔曼滤波算法,介绍了利用信息分配原则实现多传感器信息最优融合的滤波器的设计,不仅使系统具备了一定的容错能力,实时性也有较大幅度的提高。最后给出了联合卡尔曼滤波器在舰船组合导航中的应用实例。 2 联合卡尔曼滤波器的设计步骤 联合卡尔曼滤波器的设计主要围绕两个方面,第一是对数据进行分散处理,第二是分散处理过的数据X收稿日期:2004-11-26

卡尔曼滤波数据融合算法

/********************************************************* // 卡尔曼滤波 //********************************************************* //在程序中利用Angle+=(Gyro - Q_bias) * dt计算出陀螺仪积分出的角度,其中Q_bias是陀螺仪偏差。 //此时利用陀螺仪积分求出的Angle相当于系统的估计值,得到系统的观测方程;而加速度计检测的角度Accel相当于系统中的测量值,得到系统状态方程。 //程序中Q_angle和Q_gyro分别表示系统对加速度计及陀螺仪的信任度。根据Pdot = A*P + P*A' + Q_angle计算出先验估计协方差的微分,用于将当前估计值进行线性化处理。其中A 为雅克比矩阵。 //随后计算系统预测角度的协方差矩阵P。计算估计值Accel与预测值Angle间的误差Angle_err。 //计算卡尔曼增益K_0,K_1,K_0用于最优估计值,K_1用于计算最优估计值的偏差并更新协方差矩阵P。 //通过卡尔曼增益计算出最优估计值Angle及预测值偏差Q_bias,此时得到最优角度值Angle 及角度值。 //Kalman滤波,20MHz的处理时间约0.77ms; void Kalman_Filter(float Accel,float Gyro) { Angle+=(Gyro - Q_bias) * dt; //先验估计 Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; // Pk-先验估计误差协方差的微分 Pdot[1]=- PP[1][1]; Pdot[2]=- PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; // Pk-先验估计误差协方差微分的积分 PP[0][1] += Pdot[1] * dt; // =先验估计误差协方差 PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; //zk-先验估计 PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E;

多传感器融合中的卡尔曼滤波应用

多传感器融合中的卡尔曼滤波探讨 1 引言 目前靠单一的信息源很难保证获取环境信息的快速性和准确性的要求,会给系统对周围环境的理解及系统的决策带来影响,另外,单一传感器获得的仅仅是环境特征的局部、片面的信息,它的信息量是十分有限的。而且每个传感器采集到的信息还受到自身品质、性能噪声的影响,采集到的信息往往是不完整的,带有较大的不确定性,偶尔甚至是错误的。而且在传统方式中,各传感器采集的信息单独、孤立的进行加工处理,不仅会导致处理工作量增加,而且割断了各传感器信息的联系丢失了信息的有机组合蕴涵的信息特征,也造成信息资 源的浪费[3-7]。在运动控制系统中,传统上就往往将速度传感器测量到的速度和加速度计测量到的加速度进行单独处理,没有将两者的信息进行数据融合。由物理定律可知,加速度与速度成导数关系,所以两者的数据是存在内在联系的,完全可以根据信息融合理论对两者数据进行综合处理,从而得到更加准确的结果。卡尔曼滤波器是常用的一种数据融合技术,它利用迭代递推计算的方式,对存贮空间要求很小,适合于存贮空间和计算速度受限的场合 [1,2]。本文分析了数度传感器和加速度计各自的优缺点,给出了一种应用卡尔曼滤波器原理对两者进行数据融合的方法。 2 传感器简介 2.1 光电编码器 光电编码器通常用于角度、位移、或转速测量,通过对光脉冲的个数进行计数再经过计算而得到测量值。假设在周长为L 的圆盘上有M 个过光孔,离散系统中,在周期时间T 内对脉冲进行计数值为N ,则第k 次测量的线速度v 可表达为 MT k Le k v MT k Le MT k LN k e k N MT L k v )()()()())()(()(+=+=+=∧ (2-1) e 是随机误差,为光脉冲取整后的剩余值,取值范围为(-1, 1),可看作均匀分布。∧v 为实际的观测值,与真值v 之间相差MT Le 。可见,在固定长度的L 上,加大M 或T 的值,都可以减小误差。但是加大M 需要付出昂贵的成本,使传感器价格大幅提高,如光栅式光电传感器;而加大T 又会降低系统的动态响应性能,所以在实际应用中,这两者均难如愿。 在需要同时测量加速度的场合,理论上可以由对速度求差分方程得出,即 2 2))1(()(())1()(()1()()(MT k e k Le MT k N k N L T k v k v k a --+--=--= (2-2) 容易看出,相对误差显著提高,数据几乎不可用,所以需要专门的加速度计对加速度进行测量。 2.2 加速度计 加速度计用于测量物体的线性加速度,根据不同的测量原理,有很多种类,本文中使用的MMA7260是一款低成本、低功耗、小体积、功能完善的单芯片加速度计,主要用于运动检测、惯性导航、震动检测、交通安全等。MMA7260响应快、带宽可调整、可响应高频率输入,但是其测量数据噪声与带宽的平方根成正比,会随着带宽增加而增加。 5.1350)(?=BW g rms Noise μ (2-3) 式中BW 为传感器带宽(HZ)。因此在设计时,首先要确定被测加速度的频率范围,然后再

GPS导航定位原理以及定位解算算法.docx

GPS导航定位原理以及定位解算算法 全球定位系统(GPS)是英文Global POSitiOning SyStem 的字头缩写词的简称。它的含义是利用导航卫星进行测时和测距,以构成全球定位系统。它是由美国国防部主导开发的一套具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航定位系统。 GPS用户部分的核心是GPS接收机。其主要由基带信号处理和导航解算两部分组成。其中基带信号处理部分主要包括对GPS卫星信号的二维搜索、捕获、跟踪、伪距计算、导 航数据解码等工作。导航解算部分主要包括根据导航数据中的星历参数实时进行各可视卫星位置计算;根据导航数据中各误差参数进行星钟误差、相对论效应误差、地球自转影响、信号传输误差(主要包括电离层实时传输误差及对流层实时传输误差)等各种实时误差的计算, 并将其从伪距中消除;根据上述结果进行接收机PVT (位置、速度、时间)的解算;对各精 度因子(DoP)进行实时计算和监测以确定定位解的精度。 本文中重点讨论GPS接收机的导航解算部分,基带信号处理部分可参看有关资料。本文讨论的假设前提是GPS接收机已经对GPS卫星信号进行了有效捕获和跟踪,对伪距进行了计算,并对导航数据进行了解码工作。 1 地球坐标系简述 要描述一个物体的位置必须要有相关联的坐标系,地球表面的GPS接收机的位置是相 对于地球而言的。因此,要描述GPS接收机的位置,需要采用固联于地球上随同地球转动 的坐标系、即地球坐标系作为参照系。 地球坐标系有两种几何表达形式,即地球直角坐标系和地球大地坐标系。地球直角坐标系的定义是:原点O与地球质心重合,Z轴指向地球北极,X轴指向地球赤道面与格林威治子午圈的交点(即0经度方向),Y轴在赤道平面里与XOZ构成右手坐标系(即指向东经90 度方向)。 地球大地坐标系的定义是:地球椭球的中心与地球质心重合,椭球的短轴与地球自转 轴重合。地球表面任意一点的大地纬度为过该点之椭球法线与椭球赤道面的夹角φ经度 为该点所在之椭球子午面与格林威治大地子午面之间的夹角λ,该点的高度h为该点沿椭 球法线至椭球面的距离。设地球表面任意一点P在地球直角坐标系内表达为P( X,y,Z ),在地球大地坐标系内表达为P (φλ,h)。则两者互换关系为:大地坐标系变为直角坐标 系: (1)

扩展卡尔曼滤波器(EKF)进行信号处理及信号参数估计

% 扩展卡尔曼滤波器估计单相电压幅值、相位、频率参数(含直流)function test2_EKF close all; clc; tic; %计时 %模型:y=A0+A1*cos(omega*t+phy1) %离散化:y(k)=A0(k)+A1(k)*cos(omega(k)*k*Ts+phy1(k)) %状态变量:x1(k)=A0(k),x2(k)=omega(k),x3(k)=A1(k)*cos(omega(k)*k*Ts+phy1(k) ),x4(k)=A1(k)*sin(omega(k)*k*Ts+phy1(k)) %下一时刻状态变量为(假设状态不突变):A0(k+1)=A0(k),A1(k+1)=A1(k),omega(k+1)=omega(k),phy1(k+1)=phy1 (k); %则对应状态为:x1(k+1)=x1(k),x2(k+1)=x2(k),x3(k+1)=x3(k)*cos(x2(k)*Ts)- x4(k)*sin(x(2)*Ts),x4(k+1)=x3(k)*sin(x2(k)*Ts)+x4(k)*cos(x(2)*Ts); %状态空间描述:X(k+1)=f(X(k))+W(k);y(k)=H*X(k)+v(k) %f(X(k))=[x1(k);x2(k);x3(k)*cos(x2(k)*Ts)- x4(k)*sin(x(2)*Ts);x3(k)*sin(x2(k)*Ts)+x4(k)*cos(x(2)*Ts)] %偏导(只求了三个):f`(X(k))=[1,0,0;0,1,0;0,-x3(k)*Ts*sin(x2(k)*Ts)-x4(k)*Ts*cos(x2(k)*Ts),cos(x2(k)*Ts);0,x3(k)*Ts*cos(x2(k)*Ts)- x4(k)*Ts*sin(x2(k)*Ts),sin(x2(k)*Ts)]

扩展卡尔曼滤波(EKF)应用于GPS-INS组合导航

clear all; %% 惯性-GPS组合导航模型参数初始化 we = 360/24/60/60*pi/180; %地球自转角速度,弧度/s psi = 10*pi/180; %psi角度/ 弧度 Tge = 0.12; Tgn = 0.10; Tgz = 0.10; %这三个参数的含义详见参考文献 sigma_ge=1; sigma_gn=1; sigma_gz=1; %% 连续空间系统状态方程 % X_dot(t) = A(t)*X(t) + B(t)*W(t) A=[0 we*sin(psi) -we*cos(psi) 1 0 0 1 0 0; -we*sin(psi) 0 0 0 1 0 0 1 0; we*cos(psi) 0 0 0 0 1 0 0 1; 0 0 0 -1/Tge 0 0 0 0 0; 0 0 0 0 -1/Tgn 0 0 0 0; 0 0 0 0 0 -1/Tgz 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0;]; %状态转移矩阵 B=[0 0 0 sigma_ge*sqrt(2/Tge) 0 0 0 0 0; 0 0 0 0 sigma_gn*sqrt(2/Tgn) 0 0 0 0; 0 0 0 0 0 sigma_gz*sqrt(2/Tgz) 0 0 0;]';%输入控制矩阵%% 转化为离散时间系统状态方程 % X(k+1) = F*X(k) + G*W(k) T = 0.1; [F,G]=c2d(A,B,T);

H=[1 0 0 0 0 0 0 0 0; 0 -sec(psi) 0 0 0 0 0 0 0;];%观测矩阵 %% 卡尔曼滤波器参数初始化 t=0:T:50-T; length=size(t,2); y=zeros(2,length); Q=0.5^2*eye(3); %系统噪声协方差 R=0.25^2*eye(2); %测量噪声协方差 y(1,:)=2*sin(pi*t*0.5); y(2,:)=2*cos(pi*t*0.5); Z=y+sqrt(R)*randn(2,length); %生成的含有噪声的假定观测值,2维X=zeros(9,length); %状态估计值,9维 X(:,1)=[0,0,0,0,0,0,0,0,0]'; %状态估计初始值设定 P=eye(9); %状态估计协方差 %% 卡尔曼滤波算法迭代过程 for n=2:length X(:,n)=F*X(:,n-1); P=F*P*F'+ G*Q*G'; Kg=P*H'/(H*P*H'+R); X(:,n)=X(:,n)+Kg*(Z(:,n)-H*X(:,n)); P=(eye(9,9)-Kg*H)*P; end %% 绘图代码 figure(1) plot(y(1,:)) hold on; plot(y(2,:)) hold off; title('理想的观测量'); figure(2)

两传感器分布式kalman滤波融合算法及其仿真研究

两传感器分布式kalman滤波融合算法及其仿真分析 摘要:讨论了基于两传感器kalman滤波的数据融合算法,对FAFSS算法机理进行了描述并融合算法进行了仿真,分析了融合结果。 关键字:kalman滤波;分布式传感器信息融合;分布式滤波数据融合算法 Abstract:In this paper six kinds of fusion algorithm based on two-translator using Kalman filter were discussed.According to the FAFSS fusion algorithm, the fusion tracks and square error were analysed through simulation. Key words:Kalman filtering;distribute-translator information fusion algorithm;fusionalgorithm of filtering step by step的最优融合算法,从结构上来看, 最优融合<位置融合级系统)算法主要有集中式、分布式、混合式和多级式。集中式结构因数据互联较困难,并且要求系统必须具备大容量的处理能力,计算负担重系统的生存能 力也相对较差等缺点。混合式体系结构是集中式和分布式两种形式的结合,这种结构比较复 杂一般用于大型融合系统。工程上多采用分布式结构,分布式滤波数据融合算法中是第i个传感器对目标状态的观测值,是测量

GPS与导航的区别

GPS与导航的区别 GPS与导航是两个不同的概念,GPS可以说是一种技术,而导航则是利用这种技术而创造出来的一种产品;所以说导航是在GPS的基础上发展起来的。GPS其实就是一些经纬度和海拔高度的数据信息,对于绝大部分终端用户来说即使知道了也没多少实际作用;导航就不一样了,只要您打开导航系统,并确定了您要去的目的地,导航系统便会自动完成行驶路径的规划,并配合专业文字及语言报读信息引导您安全快捷到达您的目的地。简单地说,导航就是“带路人”,而且这个“带路人”的道路数据非常庞大,天目领航导航系统现在的电子地图覆盖范围已经超过市面上其他任何一种导航产品的地图覆盖范围,达到了一千二百多个城市的具体地图数据(地图具体覆盖范围请转到主营产品里了解)。四、GPS防盗和GPS导航 GPS防盗是利用GPS全球卫星定位技术来实现远程追踪防盗的,属于较早期的GPS产品;而GPS导航则是利用GPS技术并配合电子地图来实现智能导航功能的,属于高新GPS产品;所以两者不是同一个概念,作用当然也不同。但现在仍有一部分人一听到GPS就以为是防盗的,要知道装了GPS防盗的客户一旦去到生疏城市就不很清楚自己行驶在什么地方,也不很清楚要怎样才能更快到达目的地,想知道自己的位置还要打电话到监控服务中心咨询;但有了GPS导航系统以上的问题就全迎刃而解了,不但能让您对自己正行驶的地理位置了如指掌,更能指引您轻松快捷到达您想去的目的地。当然,GPS导航不具备GPS防盗的防盗功能,而

GPS防盗也不具备GPS导航的导航功能,这就是两者的区别。为保证GPS正常工作必须外接GPS天线。室外定位时,首先要远离高层建筑物或上方有遮挡的地方(如立交桥下),某些特殊地方由于有辐射等干扰信号的原因,会出现盲区无法定位。如在某地无法定位,请移动到十几米外。所以永盛杰导航仪的说明书才会讲搜星的时候最好到空旷地带,这样比较快。

导航与定位实验报告

导航与定位上机实习报告 学生姓名:孔令周 班学号:021/ 指导教师:黄鹰、徐战亚 中国地质大学(武汉)信息工程学院 2011年 7月

实习一 GPS设备使用 【实验目的】 (1)熟悉GPS设备的使用 (2)熟悉GPS绝对静态定位和绝对动态定位 (3)使用GPS设备得出某一点、某一线、某一面的相关数据 【实验设备】 动态GPS接收机、静态GPS接收机、天线、GPS定位设备 由于设别数目的限制,这次实习改用一个google的软件,获得GPS数据,此图为软件中的一张截图,上面显示了精准度157feet,卫星数目,每颗卫星的信号强度, 这张图则显示了所在地的经度和纬度分别为东经114度23分秒北纬30度31

分秒。 【实验步骤】 时间:2012年9月2日中午12点30开始,下午三点中结束。 内容: 1、测量点:测量点在北区,从艺术与传媒学院开始,经过北宗,北区食堂, 北门,北区体育馆直到图书馆这一段路程,整个路线成G字型(如下图)。 2、测量线:线的话主要是艺术与传媒学院到北宗与隧道口延伸的路相交的 丁字路口,然后从该路口一直到北区食堂下面,在就走向北区校门,进 而转向体育馆侧边的路,绕过体育馆到达图书馆正门这样一个路线(如 下图)。

3、测量面:该路线主要包括了图书馆,北区篮球场,排球场,北一楼,北 区图书馆,经管院楼还有外国语学院楼。 【实验结果】 部分数据(全部数据在中):

实习二 GPS定位接口解析与开发 【实验题目】 GPS信号解析 编写小程序读取GPS信号并进行解析,将解析结果以一定形式展现出来。 根据老师用GPS导航仪测量得到的测量数据进行解析,将中的数据进行解析,根据不同的格式按照NMEA-0183协议对导航电文进行GPS信息的解析: 1、使用语言不限:C , C++ ,C# ,JAVA 2、对于获取信号可采用以一定时间间隔读取文件中GPS信号的形式代替从串口中读取 信号。 3、该实验基本要求能解析出空间信息(即解析GPRMC格式的GPS信号),其他信号格式 的解析以及星历图的绘制可在完成基本要求之后进行扩展。 4、对解析出来的数据进行画图处理,得到真正的轨迹。 【实验原理】 GPS设备通过对接收到的导航电文进行分析处理,计算出设备所在的经纬度、海拔、航速、航向等空间信息,并按照规定的协议将空间信息以及卫星信息进行组织,将有组织的数据解析出来然后做应用。 是

组合导航技术的发展趋势_曾伟一

技术开发与应用 组合导航技术的发展趋势 曾伟一1 林训超2 曾友州3 贺银平4 (1.2.3.4.成都航空职业技术学院,四川成都610100) 收稿日期:2011-01-10 作者简介:曾伟一(1956 ),男,四川省成都市人,副教授,主要研究方向为电气自动化和微机控制技术。 摘 要:本文揭示了组合导航技术的优越性,论述了组合导航的关键技术,对硅微惯性测量单元的发展和应用情况进行了介绍,指出GNSS/INS 组合中松耦合、紧耦合与深耦合方式的技术特点,展望了耦合技术未来发展方向。 关键词:组合导航 卫星导航 惯性导航 中图分类号:TN967 2 文献标识码:B 文章编号:1671-4024(2011)02-0041-04 Development Tendency of Integrated Navigation Technology ZE NG Weiyi 1,LIN Xunchao 2,ZE NG Youzhou 3,HE Yinping 4 (1.2.3.4.Chengdu Aeronautic Vocational &Technical College,Chengdu,Sichuan 610100,China) Abstract This paper analyzes the advanta ges of integrated navigation technique and the key inte grated navigation technology,presents the development and application of measuring units of silicon micro inertia,points out the techniques of loose coupling,tight coupling and deep c oupling in the combination of GNSS and INS and prospects the development tendenc y of c oupling technology. Key Words integrated navigation,GNSS,I NS 组合导航是采用两种或两种以上导航系统,形成的性能更高、安全性和可靠性更强的导航方式。可与GNSS 进行组合导航的技术有I NS 、多普勒雷达、天文导航、气压高度表、磁力计等。目前世界上应用最为广泛、性能最优、自主性最强的组合导航为卫星导航系统和惯性导航系统的组合,该组合系统主要利用卫星导航系统的长期稳定性与适中精度,来弥补I NS 的误差随时间传播或增大的缺点,同时再利用I NS 的短期高精度来弥补卫星导航接收机在受干扰时误差增大或遮挡时丢失信号等的缺点,提高卫星导航的动态性能和抗干扰能力和卫星的重新捕获能力,从而实现完整的高精度、高可靠性、高稳 定性、高适用性、持续全天候的导航,广泛应用于海、陆、空、天各领域,包括飞机、轮船、车辆、机器人等的 导航。组合导航技术已成为目前世界上最先进的、全天候、自主式制导技术,也是导航技术最具有应用前景的发展方向[1] 。本文针对未来组合导航定位领域的关键技术的发展趋势和面临的挑战进行了论述。 一、惯性器件发展趋势与面临的挑战 惯导系统的误差源包括陀螺和加速度计的器件误差、系统初始对准误差和导航解算中采用的重力场模型误差等,器件误差为大多数系统的主要误差源 [2] 。 41 成都航空职业技术学院学报Journal of Che ngdu Aeronauti c Voc atio na l a nd Te chni cal Col lege 2011年06月第2期(总第87期)Vol.27No.2(Serial No.87)2011

组合导航复习(完整版)

一.名词解释. 1.导航,导航系统及常用导航方法.(书P1) 导航:将航行体从起始点导引到目的地的技术方法. 导航系统:能够向航行体的操纵者或控制系统提供航行体位置,速度,航向等即时运动状态的系统. 常用导航方法:①航标方法.②航位推算法.③天文导航.④惯性导航.⑤无线电导航.⑥卫星定位导航. 2.航位推算导航.(书P1) 航位推算导航:从一个已知坐标位置开始,根据航行体在该点的航向,航速和航行时间,推算下一时刻的坐标位置的导航过程和方法. 优点:航位推算导航技术不受天气,地理条件的限制,是一种自主式导航方法. 缺点:随着时间的推移,其位置累积误差会越来越大. 3.衡量导航性能的参数有哪些? 答:精度,覆盖范围,系统容量,导航信息更新率,导航信息维数;可用性,可靠性,完善性,多值性. 4.伪距.(书P13) 用户接收机一般不可能有十分精确的时钟,他们也不与卫星钟同步,因此用户接收机测量得出的卫星信号在空间的传播时间是不准确

的,计算得到的距离也不是用户接收机和卫星之间的真实距离.这种距离叫做伪距. 5.定轴性与进动性.(书P36) 定轴性:陀螺仪的转子绕自转轴高速旋转,即具有动量矩H 时,如果不受外力矩作用,自转轴将有相对惯性空间保持方向不变的特性. 进动性:如果在陀螺仪上施加外力矩M,会引起陀螺仪动量矩H 相对惯性空间转动的特性. 6.比力.(书P53) 设质点在i 系(惯性系)中的位矢为r ,质点在外力作用下在惯性空 间的运动状态可用牛顿第二定律导出,即22i d r F m mr dt == .在上述等式当中,+F F F = 引非引力,F 非引力为非引力外力,是指作用在载体上的发 动机推力,空气阻力,升力,地面反作用力等等.=F mG 引为引力外力.由此得2 2i F d r G dt m =+ 非引力.比力定义为F f m =非引力,为载体的非引力惯性加速度矢量,也称视加速度矢量.G 为中心引力加速度矢量. 7.惯导系统(书P31) 惯性导航系统(Inertial Navigation System,INS)是利用惯性敏感器(陀螺仪和加速度计)测量得到的载体运动的角速率和加速度,依据惯性定律计算载体位置,速度,姿态等运动参数的装置或系统.

扩展卡尔曼滤波器(EKF):一个面向初学者的交互式教程-翻译

扩展卡尔曼滤波器教程 在使用OpenPilot和Pixhawk飞控时,经常遇到扩展卡尔曼滤波(EKF)。从不同的网页和参考论文中搜索这个词,其中大部分都太深奥了。所以我决定创建自己学习教程。本教程从一些简单的例子和标准(线性)卡尔曼滤波器,通过对实际例子来理解卡尔曼滤波器。 Part 1: 一个简单的例子 想象一个飞机准备降落时,尽管我们可能会担心许多事情,像空速、燃料、等等,当然最明显是关注飞机的高度(海拔高度)。通过简单的近似,我们可以认为当前高度是之前的高度失去了一小部分。例如,当每次我们观察飞行高度时,认为飞机失去了2%的高度,那么它的当前高度是上一时刻高度的98%: altitude current_time=0.98*altitude previous_time 工程上对上面的公式,使用“递归”这个术语进行描述。通过递归前一时刻的值,不断计算当前值。最终我们递归到初始的“基本情况”,比如一个已知的高度。 试着移动上面的滑块,看看飞机针对不同百分比的高度变化。 Part 2:处理噪声 当然, 实际从传感器比如GPS或气压计获得测量高度时,传感器的数据或多或少有所偏差。如果传感器的偏移量为常数,我们可以简单地添加或减去这偏移量来确定我们的高度。不过通常情况下,传感器的偏移量是一个时变量,使得我们所观测到的传感器数据相当于实际高度加上噪声: observed_altitude current_time=altitude current_time+noise current_time 试着移动上面的滑块看到噪声对观察到的高度的影响。噪音被表示为可观测的海拔范围的百分比。

《GPS定位与导航》课程教学大纲

《GPS定位与导航》课程教学大纲 课程代码:2107010321 课程名称:GPS定位与导航 GPS Satellite Positioning and Navigation 学分:4 总学时:64(其中:理论学时:52 实验(上机)学时:12) 先修课程:2107010150大地测量学基础 适用对象:测绘工程、地理信息科学、遥感科学与技术、海洋技术 一、课程地位、作用与任务 本课程是测绘工程专业的核心专业主干课程之一,同时也是地理信息科学专业、遥感科学与技术和海洋技术专业的专业主干课程。使学生掌握现代化大地定位测量的理论和方法,适应现代地理信息数据采集的需要。通过本课程的学习,培养学生应用GPS卫星定位与导航技术,完成各种GPS控制网的设计、布置、施测、数据处理; GPS采集地理信息数据与GPS导航的能力,熟悉GPS测量标准与工程环境。 二、教学内容及组织 1 绪论 使学生了解全球卫星定位系统的应用现状及发展,掌握GPS定位与导航技术主要应用,熟练掌握GPS系统的组成。 重点:GPS系统的组成、GPS定位技的特点。 难点:GPS系统的组成。 教学内容: 1.1 全球卫星定位与导航技术发展 1.2 卫星定位技术特点及应用 1.3 卫星系统组成 2 卫星定位坐标系统与时间系统 了解坐标系统的类型,掌握GPS时间系统,熟练掌握大地测量基准及其转换。 重点:坐标系统的类型、大地测量基准及其转换、GPS时间系统。 难点:大地测量基准及其转换。 教学内容: 2.1协议天球、地球坐标系 2.2 GPS卫星定位坐标系及转换 2.3 GPS卫星导航定位时间系统

3 卫星运动基础知识及坐标计算 了解卫星的受摄运动;掌握GPS卫星的星历;熟练掌握GPS卫星坐标计算。 重点:GPS卫星的星历;GPS卫星坐标计算。 难点:GPS卫星坐标计算。 教学内容: 3.1卫星运动 3.2卫星星历 3.3卫星坐标计算 4 GPS卫星信号 了解大气层对电磁波传播的影响,掌握测距码信号、熟练导航电文及卫星信号构成。 重点:大气层对电磁波传播的影响;GPS卫星信号的构成;GPS卫星的导航电文。 难点:GPS卫星的导航电文;大气层对电磁波传播的影响。 教学内容: 4.1 GPS信号与特点 4.2 GPS卫星导航电文 5 卫星定位导航原理 熟练掌握GPS绝对定位原理和相对定位原理;掌握整周未知数确定与周跳分析;熟悉差分GPS测量原理与导航;了解广域差分GPS测量原理。 重点:GPS绝对定位原理;GPS相对定位原理;GPS卫星导航原理。 难点:差分GPS测量原理;整周未知数的确定方法与周跳分析。 教学内容: 5.1绝对定位原理 1)测码伪距观测方程及其线性化 2)测相伪距观测方程及其线性化 3)静态绝对定位原理 4)动态绝对定位原理 5.2 相对定位原理 1)相对定位的概念 2)静态相对定位的观测方程及其解算 5.3 差分测量原理 1)伪距差分原理 2)位置差分原理 3)载波相位差分原理 5.4 整周未知数确定方法与周跳修复

组合定位导航技术研究

2012年2月刊 人工智能与识别技术 信息与电脑 China Computer&Communication 1.引言 智能交通系统(ITS )已被公认为解决消防部队在突发事故发生时如何快速抵达事故现场问题的有效途径,它是在关键基础理论研究的前提下,将先进的信息技术、数据通信技术及电子控制技术等有效地综合运用于地面交通运输体系,从而建立起一种大范围、全方位发挥作用、实时、准确、高效的交通运输系统。 车辆定位导航技术是ITS 中的关键技术之一。车辆导航定位系统的首要功能是能够提供车辆的位置、速度和航向等信息,而精确、可靠的车辆定位则是实现导航功能的前提和基础。常用的车辆定位技术主要有:航位推算技术(DR)、卫星定位技术(GPS)、惯性导航技术(INS)、地图匹配技术(MM)等等。由于基于任何一个单独的定位技术的系统都有本身无法克服的短处,因此出现了组合导航系统。本文根据智能交通系统的特点,提出了GPS 、航位推算技术与地图匹配技术相结合的组合导航系统。 2.GPS定位技术 全球定位系统(Global Positioning System-GPS)[1] 是当前全球定位系统中技术最成熟,应用也最为广泛的系统。它可以全天候连续为全球范围陆、海、空军民用户提供定位导航信息,用户设备的定位精度优于20m ,时间准确度达到ns 量级。具有全天候,定位迅速,精度高,可连续提供三维位置(精度、纬度和高度)、三维速度和时间信息等一系列优点[2],主要应用于单点导航定位与相对测地定位两个方面,是当今车辆定位导航的主流。 GPS 系统包括三大部分:(1)空间部分——GPS 卫星星座 由24颗在轨卫星和3颗备份卫星组成,部署在高达20200km 的轨道上,在地球上和近地空间任何一点均可连续同步地观测4颗以上卫星,从而实现全球、全天候连续导航定位。 GPS 的空间卫星星座如图1所示: 组合定位导航技术研究 谭炳文 (武警赣州市消防支队上犹县公安消防大队,江西赣州341200) 摘要:定位导航技术是智能交通系统(ITS )的关键技术之一。文章首先介绍了GPS 、INS (惯性导航)、DR (航位推算)三种常用定位导航技术,重点研究了各自的优点及缺点。接着探讨了GPS/DR 组合定位导航技术的优势所在。最后,为了进一步提高定位精度,提出采用MM (地图匹配)技术来进一步修正误差,使得定位功能更加准确可靠。 关键词:GPS ;惯性导航;航位推算;地图匹配 中图分类号:U666 文献标识码:A 文章编号:1003-9767(2012)02-0008-03 (2)地面控制部分——地面监控系统 地面控制部分是整个系统的中枢,由美国国防部管理,它包括1个主控站,5个监控站。主控站负责对地面监控站的全面控制。监控站内装备有接收机、原子钟、气象传感器及数据处理计算机,其任务是追踪及预测GPS 卫星轨道,控制GPS 卫星状态及轨迹偏差,维护GPS 系统的正常运作。 (3)用户设备部分——GPS 信号接收机 用户部分则是适用于各种用途的GPS 接收机,其主要功能是接收GPS 卫星播发的定位信息,GPS 用户接收机是由主机、电源和天线组成。主机的核心部件是信道电路、基带处理电路和中央处理器,在专用软件的控制下,进行作业卫星选择、数据搜集、加工、传输、处理和存储,其天线则接收来自各方位的导航卫星信号。GPS 接收机接收到从卫星传来的连续不断的编码信号后,再根据这些编码辨认相关的卫星,从导航电文中获取卫星的位置和时间,然后计算出接收机(即用户)所在的准确地理位置。 三者的关系如图2所示: 图1 GPS的空间卫星星座 图2 GPS全球卫星定位系统的三大组成 GPS 导航利用GPS 模块接受导航卫星信号,然后计算出汽车的经纬度、速度、行驶方向、时间等信息,它具有全球性、全天候、低成本、高精度、实时三维的测定位置和速度的能力,因而有很大的优势。 但是,GPS 导航也有其本身所固有的弱点[3],主要是非自主性、易受干扰、动态性能较差,卫星信号因在有些地方受遮挡会导致丢失信号而影响定位,定位精度容易受电子欺骗等因素影响。更致命的是城区内地物特征复杂,当卫星信号被树木、城市高层建筑、隧道和桥梁等遮挡或GPS 接收机接收不到四颗及以上的卫星信号时,GPS 导航系统便不能提供连续导航信息,其定位误差将增大,甚至可能出现不 定位的现象。

卡尔曼滤波算法及其在组合导航中的应用综述

卡尔曼滤波算法及其在组合导航中的应用综述 摘要:由于描述系统特性的数学模型和噪声的统计模型不准确,不能真实反映物理过程,使模型与获得的观测值不匹配从而会导致滤波器发散。文章在描述组合导航基本特性和卡尔曼滤波原理的基础上提出了滤波发散的问题并提出了抑制发散的方法,最后介绍了卡尔曼滤波在组合导航中的应用。 关键词:卡尔曼滤波;组合导航;发散 随着计算机技术的迅速发展,它有条件提供运算速度高、存贮量大的机载计算机,这为组合导航系统的发展创造了一个很好的技术条件,现代控制理论中最优估计理论的数据处理方法为组合导航系统提供了理论基础。Kalman滤波是R.E.Kalman于1960年提出的从众多与被提取信号有关的观测量中通过算法估计出所需信号的一种滤波算法。他把状态空间的概念引入到随机估计理论中,把信号过程视为白噪声作用下的一个线性系统的输出,用状态方程来描述这种输入-输出关系,估计过程中利用系统状态方程、观测方程、系统噪声和观测噪声的统计特性形成滤波算法。 1组合导航系统基本特性描述 要描述一个实际系统,首先要对其进行建模,即建立系统的状态方程和测量方程。对于组合导航系统,要进行滤波计算必须建立数学模型,此模型具有以下特点。 1.1非线性 组合导航系统本质上是非线性系统,有时为了减少计算量及提高系统实时性,在某些假设条件下组合导航系统的非线性因素可以忽略,其可以用线性化的数学模型来近似描述。但当假设条件不满足时,组合导航系统就必须采用能反映自身实际特性的非线性模型来描述。所以说,非线性是组合导航系统本质的特性。 1.2模型不确定性 组合导航系统处于实际运行环境当中时,受系统本身以及外部应用环境不确定性因素的影响,系统实际模型与建立的理论模型不能完全匹配,即组合导航系统具有模型不确定性。造成系统模型不确定性的主要原因如下: ①模型简化。采用较少的状态变量来描述系统,忽略掉实际系统某些不重要的状态特征。由此造成模型与实际不匹配。②系统噪声统计不准确。所建模型的噪声统计特性与实际系统噪声统计特性有较大差异。③对实际系统初始状态的统计特性建模不准确。④实际系统出现器件老化、损坏等使系统参数发生了变动,造成模型与实际系统不匹配。

相关文档
相关文档 最新文档