文档库 最新最全的文档下载
当前位置:文档库 › 生物医学材料发展回顾与展望

生物医学材料发展回顾与展望

生物医学材料发展回顾与展望
生物医学材料发展回顾与展望

生物医学材料发展回顾与展望

[摘要]:概述了生物医学材料发展的三个阶段的历程,包括第一代、具有生物惰性的第二代、促进人体自身修复和再生的第三代;介绍了目前使用的生物医学材料的分类情况,大致有生物医学金属材料、生物医学高分子材料、生物医学无机非金属材料或生物陶瓷、生物医学复合材料、生物医学衍生材料五类;并且结合当今该材料的发展状况,预测了其今后的应用前景和发展趋势:致力于提高材料的生物相容性,致力于开发生物相容性好、更能适应人体生理需要的新材料。

[关键词]:生物医学材料,发展历程,分类,生物相容性

[正文]:

材料科学与物理学、化学、生物学及临床科学越来越紧密地结合,并突破旧有科学的狭小范围,诞生了另一个新兴的产业--生物医学材料产业。生物医学材料已经成为生物医学工程的4大支柱产业之一,它为医学、药物学及生物学等学科的发展提供了丰富的物质基础。作为材料学的一个重要分支,它对于促进人类文明的发展必将作出更大的贡献。

生物医学材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。现在各种合成和天然高分子材料、金属和合金材料、陶瓷和碳素材料以及各种复合材料,其制成产品已经被广泛地应用于临床和科研。

一、生物医学材料的发展历程:

人类利用生物材料的历史就与人类历史一样漫长。自从有了人类,人们就一直与疾病作斗争,生物材料是人们与疾病作斗争的有效方法之一。而对生物医学材料的有效利用是从近几个世纪开始的:

1、20世纪初, 第一次世界大战以前所使用的材料为第一代生物医学材料。代表材料有石膏、金属、橡胶以及棉花等物品。这一代的材料大都已被现代医学所淘汰。

2、第二代生物材料起源于20 世纪60~70年代, 在对工业化的材料进行生物相容性研究基础上, 开发了第一代生物材料及产品在临床的应用, 例如体内固定用骨钉和骨板、人工关节、人工心脏瓣膜、人工血管、人工晶体和人工肾等。代表材料有经基磷灰石、磷酸三钙、聚经基乙酸、聚甲基丙烯酸轻乙基醋、胶原、多肤、纤维蛋白等。上述生物材料, 具有一个普遍的共性: 生物惰性。即生物材料发展所遵循的原则是尽量将受体对植入器械的异物反应降到最低。在此期间, 数以千万的患者植入了由惰性材料制成的器械, 他们的生活质量也在植入后的5~25年内有了明显的改善。

3、第三代生物医学材料是一类具有促进人体自身修复和再生作用的生物医学复合材料。这种具有活性的材料能够在生理条件下发生可控的反应, 并作用于人体。20 世纪80 年代中期, 生物活性玻璃、生物陶瓷、玻璃-陶瓷及其复合物等多种生性材料开始应用于整形外科和牙科。与惰性材料相比,这些材料在体内不存在免疫和干扰免疫系统的问题, 材料本身无毒, 耐腐蚀强度高, 表面带有

极性, 能与细胞膜表层的多糖和糖蛋白等通过氢键相结合, 并有高度的生物相容性。除具有活性外, 第三代生物材料的另一个优势在于材料具有可控的降解性。生物降解性材料容易在生物体内分解,其分解产物可以代谢,并最终排出体外现今人口快速老龄化,生物惰性、生物活性及可降解植入物在临床的成功应用具有非常重要的意义。

二、生物医学材料的分类:

迄今被详细研究过的生物医学材料一超过一千种,被广泛应用的也达数十种。生物医学材料几乎涉及材料科学的各个领域,将它们按材料的属性分类,可分为以下几大类:

1、生物医学金属材料(biomedical metallic materials)

医用金属材料是作为生物医学材料的金属或合金,具有很高的机械强度和抗疲劳特性,是临床应用最广泛的承力植入材料,主要有钻合金(co-cr-ni)、钛合金(ti-6a1-4v)和不锈钢的人工关节和人工骨。镍钛形状记忆合金具有形状记忆的智能特性,能够用于矫形外科、心血管外科。

2、生物医学高分子材料(biomedical polymer)

生物医学高分子材料有天然的和合成的两种,发展得最快的是合成高分子医用材料。通过分子设计,可以获得很多具有良好物理机械性和生物相容性的生物材料。其中软性材料常用来作为人体软组织如血管、食道和指关节等的代用品;合成的硬材料可以用来作人工硬脑膜、笼架球形的人工心脏瓣膜的球形阀等;液态的合成材料如室温硫化硅橡胶可以用来作注入式组织修补材料。

3、生物医学无机非金属材料或生物陶瓷(biomedical ceramics)

生物陶瓷这类医用材料化学性质稳定,具有良好的生物相容性。生物陶瓷主要包括两类。

(1)惰性生物陶瓷(如氧化铝、医用碳素材料等)。这类材料具有较高的强度,耐磨性能良好,分子中的键力较强。

(2)生物活性陶瓷(如羟基磷灰石和生物活性玻璃等),这类材料具有能在生理环境中逐步降解和吸收,或与生物机体形成稳定的化学键结合的特性,因而具有极为广阔的发展前景。

4、生物医学复合材料(biomedical composites)

生物医学复合材料是由两种或两种以上不同材料复合而成的生物医学材料,主要用于修复或替换人体组织、器官或增进其功能以及人工器官的制造。其中钻合金和聚乙烯组织的假体常用作关节材料;碳-钛合成材料是临床应用良好的人工股骨头;高分子材料与生物高分子(如酶、抗源、抗体和激素等)结合可以作为生物传感器。

5、生物医学衍生材料(biomedical derived materials)

生物衍生材料是经过特殊处理的天然生物组织形成的生物医学材料,经过处理的生物衍生材料是无生物活力的材料,但是由于具有类似天然组织的构型和功能,在人体组织的修复和替换中具有重要作用,主要用作皮肤掩膜、血液透析膜、人工心脏瓣膜等。

三、生物医学材料的应用前景

近年来,世界生物材料市场发展势头更为迅猛,其发展态势可与信息、汽车产业在世界经济中的地位相比。据1988年美国国家健康统计中心调查,美国己有1100万人(不包括齿科材料)植入了一件以上的生物医用材料,全球达3000

万人以上,1995年世界生物医用材料市场已达2000亿美元。中国科学院在2002年《高技术发展报告》中披露,1990~1995年,世界生物医用材料市场以每年大于20%的速度增长。这期间中国的增长虽然也比较快,但由于起点低,市场份额只占世界市场的2%。2000年全球医疗器械市场己达1650亿美元,其中生物医学材料及制品约占40%至50%。20世纪90年代,医疗器械平均年增长率在11%左右,预计未来几年发展中国家将会大幅度增长。生物医用材料及其制品的市场预计10-15年将达到药品市场的规模,成为本世纪经济的支柱性产业。

我国生物材料的应用和开发研究起步比较晚,但是随着政府的重视和投入的不断增加,取得一批较高水平的研究和科研成果,如生物活性骨、关节系统替换材料、人工心脏瓣膜等心血管替换材料以及眼科手术用高分子复合材料等。生物材料产业作为新兴的产业具有极大的发展前景,到21世纪初一直保持着较高的增长速度,其中蕴藏着巨大的经济利益和社会利益。我国生物材料产业不仅受国内的条件制约,同时也面临着国外企业的激烈竞争,加入WTO后我国生物技术产业将会面临更严峻的挑战。

四、生物医学材料科学的发展趋势

生物材料的开发和研究将逐步转向

1、复合型

2、杂化型

3、功能型:指在生理环境下表现为特殊功能的材料,如形状记忆材料、组织引导再生材料等

4、智能型:指能模仿生命系统,同时具有感知和驱动双重功能的材料。感知、反馈和响应是该材料的三大要素。将高新科技、传感器和执行元件与传统材料结合在一起,赋予材料新的性能,使无生命的材料具有越来越多的生物特性。

当前国内外生物医学材料开发研究的主要趋势,是致力于提高材料的生物相容性,致力于开发生物相容性好、更能适应人体生理需要的新材料。

对生物医学工程发展现状与未来发展趋势分析-模板

对生物医学工程发展现状与未来发展趋势分析 论文关键词:生物工程生物医学工程发展趋势 论文摘要:生物医学工程(biomedical engineering,bme)是一门生物、医学和工程多学科交叉的边缘科学,它是用现代科学技术的理论和方法,研究新材料、新技术、新仪器设备 ,用于防病、治病、保护人民健康,提高医学水平的一门新兴学科。 本文就其目前发展情况进行分析讨论。 生物医学工程在国际上做为一个学科出现,始于20世纪50年代,特别是随着宇航技术的进步、人类实现了登月计划以来,生物医学工程有了快速的发展。在我国,生物医学工程做为一个专门学科起步于20世纪70年代,中国医学科学院、中国协和医科大学原院校长、我国着名的医学家黄家驷院士是我国生物医学工程学科最早的倡导者。1977年中国协和医科大学生物医学工程专业的创建、1980年中国生物医学工程学会的成立,有力地推进了我国生物医学工程的发展。目前,我国许多高校科研单位均设有生物医学工程机构,从事着生物医学的科研教学工作,在我国生物医学工程科学事业的发展中发挥着重要作用。 一、显微镜的发明 “解剖”一词由希腊语“anatomia”转译而来,其意思是用刀剖割,肉眼观察研究人体结构。17世纪lee wenhock发明了光学显微镜,推动了解剖学向微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进一步观察研究其细胞形态结构的变化。随着光学显微镜的出现,医学领域相继诞生了细胞学、组织学、细胞病理学,从而将医学研究提高到细胞形态学水平。 普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞的超微细结构、核结构、dna等大分子结构。而20世纪60年代出现的电子显微镜,使人们能观察到纳米(nm)级的微小个体,研究细胞的超微结构。光学显微镜和电子显微镜的发明都是医学工程研究的成果,它们对推动医学的发展起了重要作用。 二、影像学诊断飞跃进步 影像学诊断是20世纪医学诊断最重要发展最快的领域之一。 50年代x光透视和摄片是临床最常用的影像学诊断方法,而今天由于x 线ct技术的出现和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床

【生物医学论文】生物医学工程学科发展思路

生物医学工程学科发展思路 摘要:生物医学工程,是综合了工程学、物理学、生物学、医学等学科,以预防和治疗疾病、保障人体健康为主要目的的新兴学科。生物医学工程致力于研发新的生物学制品和生物学材料,改进医疗技术,在现代医学领域中占有重要的地位。本文将追溯我国生物医学工程学科的发展历程,提出发展过程中存在的一些问题,为解决这些问题提供一些可行的策略。 关键词:生物医学工程;学科发展;学科建设 电子学、光电子学、计算机技术、物理学、化学、精密仪器制造等科学技术的高速发展,对现代医学产生了极大的促进作用,生物医学工程就是在这些技术背景下产生的新型医学分支学科。生物医学工程利用现代工程技术来对人体进行研究,分析疾病的机理,从而制定有效的治疗措施,极大提高了现代医学的治疗水平。但是,我国在建设和发展生物医学工程学科的过程中,也遇到了一些问题,必须对这些问题加以解决,才能够促进生物医学工程学科的发展。 1生物医学工程的发展历程

生物医学工程的历史可以追溯到20世纪50年代,起源于美国。这一学科一经产生,就迅速受到世界各国的重视。1965年,国际医学和生物工程联合会建立,后来改名为国际生物医学工程协会[1]。生物医学工程之所以受到世界各国的重视,是因为具有广阔的应用前景,能够产生极大的经济效益与社会效益。生物医学工程将现代科学的技术成果与医学联系起来,极大地提高了人体对疾病的预防水平和治疗水平。欧美等地区的先进国家,在20世纪70年代初就已经成立了针对这一学科的研究部门,负责生物医学工程学科的发展与建设。而我国的生物医学工程起步相对较晚,而且应用范围比较窄,仅限于医院设备保管和维修、医疗物资采购等方面,生物医学工程学科的建设还有很大的提升空间。 2我国生物医学工程存在的问题 我国在生物医学工程的学科建设方面起步比较晚,应用也处于初级水平。导致这种局面的原因主要来自于以下2个方面。首先,历史遗留的体制问题。我国的各级医院,负责生物医学工程的科室没有统一的名称,也没有明确的职责范围,各级医院都是根据自己的理解,设定有关部门的名称、职责范围、人员编制、归属单位等情况,具有很大的随意性。

生物医用材料详解

2011–2012学年第2学期 生物医用材料期末论文 题目:壳聚糖生物材料的研究进展姓名:黄清优 学号: 20090413310072 专业: 09材料科学与工程 学院:材料与化工学院 任课教师:曹阳王江唐敏 完成日期: 2012年6月7日

壳聚糖生物材料的研究进展 黄清优 (海南大学材料科学与工程专业海口570228) 摘要:壳聚糖作为一种新型天然生物材料,越来越成为国内外研究热点。本文对近年来壳聚糖改性方面的研究进展及其在生物医学方面的应用进行了综述,并对壳聚糖的发展趋势进行了展望。 关键词:壳聚糖;化学改性;应用;生物材料 The Research Progress of Chitosan Biomaterial Qingyou Huang (Department of Material Science and Engineering Hainan University Haikou 570228) Abstract: Chitosan, as a kind of novel natural biomaterials, increasingly becomes a research pot at home and abroad. This paper summarized the progress in chemical modification of chitosan,and application of it in biomedical fields recently. At last, the developing trend of chitosan was predicted. Keywords: chitosan; chemical modification; application; biomaterial 1前言 壳聚糖是一种新型的天然生物医用材料。虾、蟹类作为壳聚糖的原料,在我国具有分布量大,资源丰富的特点,从环保、经济可持续发展的角度来考虑,壳聚糖作为一种天然的材料,不仅无毒、无污染,而且还具有很好的生物降解性和相容性。因此非常有必要加大对壳聚糖的研究,以开发更多的产品[1,2]。 由于壳聚糖安全性良好,且具有可降性和组织相容性,在医药领域具有很高的应用价值。但壳聚糖存在水溶性、稳定性、力学性能差等缺点,在一定程度上使其应用受到很大限制。对壳聚糖进行化学改性,可改善其物理、化学性质,拓宽了壳聚糖及其衍生物的应用领域,是近几年壳聚糖研究的热点之一。文章综述了近几年壳聚糖化学改性方面的研究进展,及其在生物医用方面的应用[2,3]。

常用医用金属材料

常用医用金属材料 概述 生物医用金属材料(biomedical metallic materials)用于整形外科、牙科等领域。由它制成的医疗器件植人人体,具有治疗、修复、替代人体组织或器官的功能,是生物医用材料的重要组成部分。 生物医用金属材料是人类最早利用的生物医用材料之一,其应用可以追溯到公元前400~300年,那时的腓尼基人就已将金属丝用于修复牙缺失。1546年纯金薄片被用于修复缺损的颅骨。直到1880年成功地利用贵金属银对病人的膝盖骨进行缝合,1896年利用镀镍钢螺钉进行骨折治疗后,才开始了对金属医用材料的系统研究。本世纪30年代,随着钻铬合金、不锈钢和钛及合金的相继开发成功并在齿科和骨科中得到广泛的应用,奠定了金属医用材料在生物医用材料中的重要地位。70年代,Ni-Ti形状记忆合金在临床医学中的成功应用以及金属表面生物医用涂层材料的发展,使生物医用金属材料得到了极大的发展,成为当今整形外科等临床医学中不可缺少的材料。虽然近20年来生物医用金属材料相对于生物医用高分子材料、复合材料以及杂化和衍生材料的发展比较缓慢,但它以其高强度、耐疲劳和易加工等优良性能,仍在临床上占有重要地位。目前,在需承受较高荷载的骨、牙部位仍将其视为首选的植人材料。最重要的应用有:骨折固定板、螺钉、人工关节和牙根种植体等。 生物医用金属材料要在人体生理环境条件下长期停留并发挥其功能,其首要条件是材料必须具有相对稳定的化学性能,从而获得适当的生物相容性。迄今为止,除医用贵金属、医用钛、袒、锯、铅等单质金属外,其他生物医用金属材料都是合金,其中应用较多的有:不锈钢、钴基合金、钛合金、镍钛形状记忆合金和磁性合金等。

浅谈当前生物医学发展趋势与特征

浅谈当前生物医学发展趋势与特征 发表时间:2018-01-21T14:27:19.070Z 来源:《健康世界》2017年23期作者:李倪亚[导读] 生物医学贡献出了巨大的力量,因此也展现出了生物医学在当下以至未来一段时间内强大的生命力。 山西现代双语学校南校山西太原 030603 摘要:随着社会的进步,在科学、经济、文化等诸多领域的快速发展的支持下,使得人们的生活质量逐渐提高,人类的平均寿命也得以进一步延长,除了生活环境的改变,也得益于近些年医疗上的快速发展和突破对疾病诊断治疗能力的提高,而在医学的不断发展完善中,生物医学贡献出了巨大的力量,因此也展现出了生物医学在当下以至未来一段时间内强大的生命力。关键词:生物医学;发展趋势;特征 引言: 随着社会经济的逐渐发展,使得生物医学这门综合性的科学在多领域中逐渐展现出巨大的优势和强大的生命力以及广泛的发展空间,其最重要的贡献是使人们对生命本质的认识从宏观发展到了现在的微观分子阶段,这种认识直接影响着人们对疾病的治疗进入了更加科学、更加微观根本上的认识,使得产生了诸多针对疾病病理过程和原因的具有针对性的治疗手段,本文就着重阐述了生物医学的发展趋势和特征。 1.生物医学简介 1.1生物医学工程概念 所谓的生物医学工程,即属于一门新兴的综合性学科,其综合了工程学、物理学、生物学以及医学的理论和方法,通过提出相应的基本概念,加之不断地进行实验验证,产生从分子水平到器官水平的相关知识,以这些知识作为研究和生产开发生物学制品、材料、植入物、器械等的理论依据,并用其来进行对疾病的预防、诊断和治疗,以此实现病人康复,改善卫生状况等目的。 1.2生物医学工程的主要研究领域 针对生物医学工程的主要研究领域,本文主要概括如下几方面:其一,生物力学,生物力学主要是力学与生物学和医学相互融合形成的学科,其主要目的是通过用多种力学观点来了解和解释生命发展中的整个力学过程;其二,生物材料,指的是满足对生物体无害、有一定机械强度和使用寿命的材料来替代或治疗集体内的组织或者器官,或者增强相应这些组织和器官功能的材料;其三,生物建模和仿真,通过对生物体的组织、器官等多层次的信息的收集,运用相应的参数进行数学建模,并利用该模型进行生物运行机制和状态的模拟;其四,物理因子在医学治疗中的应用,例如激光、微波、超声等在医学诊断治疗中的应用;其五,生物医学的信号检测和传感器,通过和人体及组织相关的医学信号的监测以及相应传感器的信号传输实现对疾病的诊治;其六,生物医学信号处理,获取相应的医学信号并进行传输后,还要进行信号的处理,例如放大、动态提取、特征识别、人工神经网络等;其七,医学图像技术,包括当下正在应用的CT、核磁技术等;最后,是人工器官,即目前仍具有伦理争执却非常有效的的器官移植技术等[1]。 2.生物医学的发展趋势 通过对相关文献的阅读,对当下生物医学的发展趋势主要概括为如下几点:其一,逐渐趋向于对生命系统的操控,即随着生物医学的发展逐渐实现按照人们的需要,对生命体系进行有目的性的设计,通过这些设计实现对生命过程中的某些过程的操控,例如人工细胞的合成就是很好的例子,标志着生物医学正在从分子研究水平逐渐向着通过这些技术实现对生命的再造和控制[2];其二,随着生物医学的快速发展,在生物制药领域也取得了显著的成就,基因药物的要就和发展逐渐成为趋势,当下药物已经不再仅仅停留在对症状的一般环节,而是追溯到其致病基因,且逐渐向着可选择性的调节致病基因方向发展,既实现对致病基因的靶向治疗,也减少了对其他正常基因的损害;其三,生物医学当下的发展也逐渐趋向于对复杂性疾病的治疗的研究解决,例如心脑血管疾病及肿瘤疾病等,这种病因复杂的疾病,当下的治疗和防治远远不能满足人们的需求,而生物医学将在不断发展中愈发的完善这些复杂性疾病的治疗;其四,认知科学的发展成为新趋势,例如人类认知组计划的实施,就是通过多学科的综合研究,以实现解释人类大脑和心智[3];其五;纳米医学发展火热,在医学上,通过纳米技术,在纳米尺度上进行医学信息的获取,提供医学信息的同时也调控生命过程;其六,就是基于生物医学工程的基因组的研究,已经从单个碱基、基因、蛋白质的研究逐渐延伸至多碱基、多基因、多蛋白质甚至全部基因组的研究。 3.生物医学的发展特征 伴随着上述生物医学的多种发展趋势,生物医学在当代的发展主要呈现如下几点特征:其一,就是生物医学随着其发展,呈现出的最明显的发展特征之一就是其多学科的综合性,为了实现其在多个领域更广泛的应用和更多功能的实现,就必须实现更多学科的融合;其二,就是生物医学在当下的发展中逐渐呈现由小学科发展成大学科的特征,及其涉及到诸多社会规模和领域、涉及到着多学科和极为庞大的知识体系、加快了人们谈就发现的速度的同时,也产生了极为客观的社会效应;其三,转化医学的概念逐渐被提出,即生物医学的相关研究成果不能脱离临床的应用,而要采取相应的手段使其转化到临床的实际应用中去[4];其四,生命科学逐渐掀起来了新的科学技术可明的潮流,促进人类对健康和疾病的认识以及顺应人们的健康需求,具有巨大的生命力。 结论: 综上所述,生物医学近些年在多学科的不断发展之下呈现出了巨大的生命力,在着多领域尤其是临床医学相关的诸多方面中发挥了巨大的作用,随着人们的研究加深,其发展也呈现出明显的趋势和特征,这也就需要相关人员有针对性的采取相应的措施进行其发展的专攻和优化,以实现其快速健康的发展,并为医疗等诸多领域的发展提供源源不断的动力。参考文献: [1]谢俊祥. 我国生物医学工程领域的研究及发展[J]. 医学研究杂志,2008,37(8):118-121. [2]刘策. 浅析当前生物医学发展趋势与特征[J]. 生物技术世界,2016(2):289-289. [3]罗长坤. 当前生物医学发展趋势与特征[J]. 医学与哲学,2011,32(3):1-4. [4]贾君波. 当前生物医学发展趋势与特征研究[J]. 生物技术世界,2014(6):93-93. 作者简介:李倪亚,女,(2000.08.16——),汉族,山西省太原市人,高中学历

论生物医学工程的现状及发展前景

论生物医学工程的现状及发展前景 生物医学工程(Biomedical Engineering, BME)崛起于20世纪60年代。其内涵是: 工程科学的原理和方法与生命科学的原理和方法相结合, 认识生命运动的规律,并用以维持、促进人的健康。它的兴起有多方面的原因,其一是医学进步的需要;其二则是医疗器械发展的需要。 四十年来, 生物医学工程已经深入于医学,从临床医学到医学基础,并深刻地改变了医学本身, 而且预示着医学变革的方向。可以说,没有生物医学工程就没有医学的今天。另一方面, 生物医学工程的兴起和发展不仅推动了医疗器械产业的发展,而且使它发生了质的改变,最根本的是,将使用对象和使用者以及医疗装置看作是一个系统整体, 强调其间的相互作用, 进而用系统工程的观念研究发展所需要的医疗装置,实现预定的医疗目的。 生物医学工程学科是一门高度综合的交叉学科,这是它最大的特点。所谓交叉学科是指由不同学科、领域、部门之间相互作用,彼此融合形成的一类学科群。从学科发展的历史长河来看,新学科的产生大都是传统或成熟学科相互交叉作用产生的结果。而且,生物医学工程所指的学科交叉,不是生物医学同哪一个工程学科分支的简单结合,而是多学科、广范围、高层次上的融合。近年来,高分子材料科学、电子学、计算机科学等自然科学的不断发展,极大地推动了生物医学工程学科的发展。 此外,生物医学工程学科所涉及的领域非常广泛。可以说,有多少理工科分支,就会产生多少生物医学工程领域,这种多学科的交叉融合涉及到所有的理、工学科和所有的生物学和医学分支。这样一来,当任何一个学科取得突破进展时都能影响到生物医学工程的发展,使其发展的速度异常迅速。 发达国家生物医学工程的现状 在美国以及欧洲等经济发达国家,早在上世纪50年代就指出生物医学工程的重要性,基于其强大的经济、科技实力,经过近半个世纪的努力均取得了各自的成果。如今,这些国家在生物医学工程方面处于世界前列。但是面对当今科技飞速发展的新形势,他们仍在想尽一切办法努力前进。在美国,许多著名大学根据自身条件和生物医学工程学科的特点以及社会需要采用各种方式积极推进“学科交叉计划”。这样一来,生物医学工程在这一有利条件下迅速发展,朝向以整合生物、医学、物理、化学及工程科学等高度交叉跨领域方向发展。这种发展方向既促进了传统性专业的提升,又为逐步形成新专业创造了条件。 另外,美国政府因认识到新的世纪生物医学工程对促进卫生保障事业发展所具有极大的重要性,急需扭转美国生物医学工程领域研发工作群龙无首的分散局面,美国第106届国会于2000年1月24日通过立法。在国立卫生研究院内设立了国家生物医学成像和生物工程研究所,规定由该所负责对美国生物医学工程领域的科研创新、开发应用、教育培训和信息传播等进行统一协调和管理,促进生物学、医学、物理学、工程学和计算机科学之间的基本了解、合作研究以及跨学科的创新。这也大大推动了美国的生物医学工程学科的发展。 国内生物医学工程的现状 我国的生物医学工程学科相对国外发达国家来说起步比较低。自上世纪70年代以来,经过40多年的发展,目前全国已有很多所高校内设有此专业,在一些理、工科实力较强的高校内均建有生物医学工程专业。由于这些学校的理、工等学科在全国都有重要的影响,且大都设有国家级重点学科,他们开展起来十分方便,这些院校均是以科研性学科设置的。此外,还有一些医学院校则是以医学作为基底学科,置入某些工程学科的

生物医用材料项目计划书

生物医用材料项目 计划书 规划设计/投资分析/产业运营

报告说明— 生物医用材料是当代科学技术中涉及学科最为广泛的多学科交叉领域,涉及材料、生物和医学等相关学科,是现代医学两大支柱—生物技术和生 物医学工程的重要基础。由于当代材料科学与技术、细胞生物学和分子生 物学的进展,在分子水平上深化了材料与机体间相互作用的认识,加之现 代医学的进展和临床巨大需求的驱动,当代生物材料科学与产业正在发生 革命性的变革,并已处于实现意义重大的突破的边缘─再生人体组织,进 一步,整个人体器官,打开无生命的材料转变为有生命的组织的大门。在 我国常规高技术生物医用材料市场基本上为外商垄断的情况下,抓住生物 材料科学与工程正在发生革命性变革的有利时机,前瞻未来20-30年的世 界生物材料科学与产业,刻意提高创新能力,不仅可为振兴我国生物材料 科学与产业,赶超世界先进水平赢得难得的机遇,且可为人类科学事业的 发展做出中国科学家的巨大贡献。 该生物医用材料项目计划总投资18499.76万元,其中:固定资产投资15275.39万元,占项目总投资的82.57%;流动资金3224.37万元,占项目 总投资的17.43%。 达产年营业收入25185.00万元,总成本费用19480.33万元,税金及 附加309.62万元,利润总额5704.67万元,利税总额6801.14万元,税后 净利润4278.50万元,达产年纳税总额2522.64万元;达产年投资利润率

30.84%,投资利税率36.76%,投资回报率23.13%,全部投资回收期5.82年,提供就业职位434个。 生物医用材料及植入器械产业是学科交叉最多、知识密集的高技术产业,其发展需要上、下游知识、技术和相关环境的支撑,因此产业高度集 中(垄断),产品多样或多角化是生物医用材料产业发展的又一特点和趋势。2010年世界医疗器械产业由27000个医疗器械公司构成,其中90%以上为 中小企业。发达国家的中小企业主要从事新产品、新技术研发,通过向大 公司转让技术或被大公司兼并维持生存。大规模产品生产及市场运作基本 上由大公司进行。不同于我国医疗器械企业“多、小、散”的局面,发达 国家医疗器械产业已形成“寡头”统治的局面,全球市场也呈现类似的格局。2009年,排名前50位的跨国大公司占有全球医疗器械市场的88%,其 中排名前25位的公司占有75%;2008年6家美、英公司:DePuy,Zimmer,Stryker,Biomet,Medtronic,SynthesMathys和Smith&Nephew占有全球 骨科材料和器械市场的≈75%,其中前4家美国公司和英国Smith&Nephew 公司占有人工关节市场的90%;6家大公司:Johnson&Johnson,Abbott,BostonScientific,Medtronic,CRBard(美国),Terumo(日本)公司占有心 脑血管系统修复材料及植(介)入器械市场的80-90%;5家大公司:BaxterInternational(美国),Fresenius(德国),Gambro(瑞典),Terumo 和AsahiMedia(日本)占有血液净化及体外循环系统材料和装置市场的80%;牙种植体和牙科材料市场基本上为Straumann(瑞士),

论生物医学工程的现状及发展前景

论生物医学工程的现状及发展前景 论生物医学工程的现状及发展前景 生物医学工程(Biomedical Engineering, BME)崛起于20世纪60年代。其内涵是: 工程科 学的原理和方法与生命科学的原理和方法相结合, 认识生命运动的规律,并用以维持、促 进人的健康。它的兴起有多方面的原因,其一是医学进步的需要;其二则是医疗器械发展的需要。 四十年来, 生物医学工程已经深入于医学,从临床医学到医学基础,并深刻地改变了医学 本身, 而且预示着医学变革的方向。可以说,没有生物医学工程就没有医学的今天。另一 方面, 生物医学工程的兴起和发展不仅推动了医疗器械产业的发展,而且使它发生了质的 改变,最根本的是,将使用对象和使用者以及医疗装置看作是一个系统整体, 强调其间的 相互作用, 进而用系统工程的观念研究发展所需要的医疗装置,实现预定的医疗目的。 生物医学工程学科是一门高度综合的交叉学科,这是它最大的特点。所谓交叉学科是指由不同学科、领域、部门之间相互作用,彼此融合形成的一类学科群。从学科发展的历史长 河来看,新学科的产生大都是传统或成熟学科相互交叉作用产生的结果。而且,生物医学工程所指的学科交叉,不是生物医学同哪一个工程学科分支的简单结合,而是多学科、广范围、高层次上的融合。近年来,高分子材料科学、电子学、计算机科学等自然科学的不断发展,极大地推动了生物医学工程学科的发展。 此外,生物医学工程学科所涉及的领域非常广泛。可以说,有多少理工科分支,就会产生多少生物医学工程领域,这种多学科的交叉融合涉及到所有的理、工学科和所有的生物学和医学分支。这样一来,当任何一个学科取得突破进展时都能影响到生物医学工程的发展,使其发展的速度异常迅速。 发达国家生物医学工程的现状 在美国以及欧洲等经济发达国家,早在上世纪50年代就指出生物医学工程的重要性,基 于其强大的经济、科技实力,经过近半个世纪的努力均取得了各自的成果。如今,这些国家在生物医学工程方面处于世界前列。但是面对当今科技飞速发展的新形势,他们仍在想尽一切办法努力前进。在美国,许多著名大学根据自身条件和生物医学工程学科的特点以及社会需要采用各种方式积极推进“学科交叉计划”。这样一来,生物医学工程在这一有利 条件下迅速发展,朝向以整合生物、医学、物理、化学及工程科学等高度交叉跨领域方向发展。这种发展方向既促进了传统性专业的提升,又为逐步形成新专业创造了条件。 另外,美国政府因认识到新的世纪生物医学工程对促进卫生保障事业发展所具有极大的重要性,急需扭转美国生物医学工程领域研发工作群龙无首的分散局面,美国第106届国

医药用新材料

药用高分子材料 生物医用材料研究现状

摘要:生物医用材料是用于对生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料。它是研究人工器官和医疗器械的基础,己成为材料学科的重要分支,尤其是随着生物技术的莲勃发展和重大突破,生物材料己成为各国科学家竞相进行研究和开发的热点。当代生物材料已处于实现重大突破的边缘,不远的将来,科学家有可能借助于生物材料设计和制造整个人体器官,生物医用材料和制品产业将发展成为本世纪世界经济的一个支柱产业。材料科学与物理学、化学、生物学及临床科学越来越紧密地结合,并突破旧有科学的狭小范围,诞生了另一个新兴的产业--生物医学材料产业。生物医学材料已经成为生物医学工程的4大支柱产业之一,它为医学、药物学及生物学等学科的发展提供了丰富的物质基础。作为材料学的一个重要分支,它对于促进人类文明的发展必将作出更大的贡献。 关键词:生物医用材料生物材料高分子材料 一.生物医用材料简介 生物医用材料又叫做生物材料,分别来自于Biomedical Materials 和Biomaterials的译名。目前国际上两本本学科最主要的学术期刊是英国的《Biomaterials》和美国的《Journal of Biomedical Materials Research》,两个期刊所涉及的内容是相同的,由此可见Biomedical Materials 和Biomaterials两词是指相同的材料。现在给生物医用材料明确的定义:对生物系统的疾病进行诊断、治疗、外科修复、理疗康复、替换生物体组织或器官(人工器官),增进或恢复其功能,而对人体组织不会产生不良影响的材料。生物医用材料本身并不必须是药物,而是通过与生物机体直接结合和相互作用来进行治疗。 另一种说法是:生物医用材料是一种植入躯体活系统内或与活系统相接触而设计的人工材料。也有“用于医用器械、与生物体相互作用的无生命性材料。” [1]一说。 生物医用材料研究内容是:生物医用材料的性能及组织器官与材料之间的相互作用。在体内,生物医用材料如何影响活组织(称之为宿主反应);活组织又如何影响生物材料的性能变化(称之为材料反应)。重点研究化学(包括生物化学)和力学两方面。(例如植入髋关节,磨损碎屑,炎症反应,以及金属离子的溶出)

生物医用材料_尹玉姬

专论与综述 Monograph and Re view   生物医用材料 尹玉姬 李 方 叶 芬 姚康德 (天津大学高分子材料研究所,天津,300072) 提 要 介绍了生物医用材料的进展和一些潜在的应用前景。 关键词 生物医用材料,生物相容性,组织工程 生物医用材料(Biomedical Materials)又称生物材料(Biomaterials),是和生物系统接合以诊断、治疗或替换机体中的组织、器官或增进其功能的材料。许多临床应用的生物医用材料原本不是按生物医用材料所设计,而是以现有材料解决实际问题。近几年来,逐渐开始重视生物医用材料的设计与制备,使其本体特别是表面具有所需的化学、物理和生物特性,因而扩大了应用领域[1]。 20世纪80年代后期,工程学科与医学学科交叉产生的组织工程兴起,将工程科学原理和方法与生命科学(医学、生物学)相融合,使生物组织功能再生、维持和改善。组织工程的产生对相关生物医用材料提出了新的挑战,除生物功能性和生物相容性外,更要求与组织接触时产生所期望的响应。 1 生物医用材料的研究与开发 1.1 生物医用材料 生物医用材料的设计与制备,趋于使材料具有所需的化学、物理和生物功能,此类材料既可直接制备,亦可将所需组分引入材料,或由现有材料经化学或物理修饰产生相应功能。 1.1.1 生物陶瓷 天然矿化物含有少量有机大分子,以控制无机组分的成核、生长、微结构及矿化材料的性质等,大分子包括蛋白质、糖蛋白和多糖,其结构中富含羧酸(如蛋白质中的谷氨酸和天冬氨酸残基)。此类大分子嵌入矿化物微结构内使脆性材料增韧,这与微裂缝的偏位和裂缝扩展吸收能相关。Samuel I.Stupp研究组探索以天然大分子控制生物陶瓷的微结构,制备出“有机磷灰石”并用做人工骨。这类“有机磷灰石”含有聚氨基酸、寡肽和合成聚电解质[2]。1.1.2 表面修饰金属 硬组织材料如人工关节和人工牙根,除生物相容性外,更要求承受一定负荷。常用表面涂层的方法赋予不锈钢SUS316、Co-Cr合金、钛合金等材料生物相容性和耐磨损性。此类表面工程包括:(1)向金属表面添加异种粒子,使金属表面合金化和陶瓷化;(2)表面基材以不同的金属涂层和陶瓷涂层修饰。 可用离子注入和电子射线法进行上述表面改性,如向SUS316L和钛合金表面渗氮,以提高人工股关节和人工膝关节的耐磨性。为改善与骨的结合性,可采用钙离子注入方法。用高能量电子线对金属表面进行热处理后,表面成为非晶态,这将有助于提高表面的硬度。 金属表面用生物活性陶瓷羟基磷灰石和AW玻璃涂层的效果经动物试验后已被临床应用所确认。钛及其合金经碱处理后形成生物相容性良好的表面层,有关这方面的研究正在进行中[3]。 1.1.3 高分子生物医用材料 可用一般单体共聚制备几乎单分散的高分子材料。所制得的聚合物可含有特异的亲水或疏水基团、生物降解重复单元。也可形成三维扩展的星型聚合物和树枝型聚合物,这种聚合物有一个中央核,高度支化结构使其具有大量端基。一个二乙烯基苯核能扩展40到50个聚氧化乙烯(PE O)。与线性PE O相比,这种聚合物的密度显著增加。由于PE O密度的提高能更好地从空间上排斥蛋白质或细胞的吸附,这种方法可有效提高材料的生物相容性[1]。 随着基因工程技术的发展,可制备出均一结构的蛋白质,包括含有非天然氨基酸的多肽。但要注意的是免疫原性和所制备人工蛋白质的纯度。 聚合物表面或本体改性是高分子生物医用材料

生物医用材料未来发展趋势

生物医用材料未来发展趋势 作者:亦云来源:上海情报服务平台发布者:日期:2006-09-07 今日/总浏览:7/6023 组织工程材料面临重大突破 组织工程是指应用生命科学与工程的原理和方法,构建一个生物装置,来维护、增进人体细胞和组织的生长,以恢复受损组织或器官的功能。它的主要任务是实现受损组织或器官的修复和再建,延长寿命和提高健康水乎。其方法是,将特定组织细胞"种植"于一种生物相容性良好、可被人体逐步降解吸收的生物材料(组织工程材料)上,形成细胞――生物材料复合物;生物材料为细胞的增长繁殖提供三维空间和营养代谢环境;随着材料的降解和细胞的繁殖,形成新的具有与自身功能和形态相应的组织或器官;这种具有生命力的活体组织或器官能对病损组织或器宫进行结构、形态和功能的重建,并达到永久替代。近10年来,组织工程学发展成为集生物工程、细胞生物学、分子生物学、生物材料、生物技术、生物化学、生物力学以及临床医学于一体的一门交叉学科。 生物材料在组织工程中占据非常重要的地位,同时组织工程也为生物材料提出问题和指明发展方向。由于传统的人工器官(如人工肾、肝)不具备生物功能(代谢、合成),只能作为辅助治疗装置使用,研究具有生物功能的组织工程人工器官已在全世界引起广泛重视。构建组织工程人工器官需要三个要素,即"种子"细胞、支架材料、细胞生长因子。最近,由于干细胞具有分化能力强的特点,将其用作"种子"细胞进行构建人工器官成为热点。组织工程学已经在人工皮肤、人工软骨、人工神经、人工肝等方面取得了一些突破性成果,展现出美好的应用前景。 例如,存在于脂肪组织基质中的脂肪干细胞(ADSCs)是一类增殖能力强、具有多向分化潜能的成体干细胞,被发现不但具有与骨髓基质干细胞(BMSc)相似的向成骨、软骨、脂肪、肌肉和神经等细胞多分化的能力,而且表达与BMSc相同的表面标志如CD29、CD105、

生物医学工程对生活的影响和前景

作者:楼佳枫1223020057 信息与工程学院电气2班 学科导论作业:(部分参考于百度知道) -----生物医学工程对生活的影响和前景大学,我选择的专业是电气信息类:它未来将分为生物医学工程,计算机科学与技术,电子信息技术三个大类。现在,我很高兴和大家谈谈我对生物医学工程的认识及看法。 生物医学工程在国际上做为一个学科出现,始于20世纪50年代,特别是随着宇航技术的进步、人类实现了登月计划以来,生物医学工程有了快速的发展。就生物医学工程的发展渊源,还得追溯到显微镜的发明:17世纪Lee Wenhock发明了光学显微镜,推动了解剖学向微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进一步观察研究其细胞形态结构的变化。随着光学显微镜的出现,医学领域相继诞生了细胞学、组织学、细胞病理学,从而将医学研究提高到细胞形态学水平。普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞的超微细结构、核结构、DNA等大分子结构。而20世纪60年代出现的电子显微镜,使人们能观察到纳米(nm )级的微小个体,研究细胞的超微结构。光学显微镜和电子显微镜的发明都是医学工程研究的成果,它们对推动医学的发展起了重要作用。

生物医学的一个重要的领域,就是大家所熟知的生物影像技术。自从琴伦射线的发现和应用于医学诊断开始,影像学就开始了她的飞速发展,当之无愧得成为了20世纪医学诊断最重要、发展最快的领域之一。50年代X光透视和摄片是临床最常用的影像学诊断方法,而今天由于X线CT技术的出现和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床诊断水平。即计算机体断层摄影(computed tomography CT),即是利用计算机技术处理人体组织器官的切面显像。X线CT片提供给医生的信息量,远远大于普通X 线照片观察所得的信息。目前,螺旋CT(spiral CT 或helicalet CT)已经问世,能快速扫描和重建图像,在临床应用中取代了多数传统的CT,提高了诊断准确率。医学工程研究利用生物组织中氢、磷等原子的核磁共振(nu clear magnetic resonance)原理。研制成功了核磁共振计算机断层成像系统(MRI),它不仅可分辨病理解剖结构形态的变化,还能做到早期识别组织生化功能变化的信息,显示某些疾病在早期价段的改变,有利于临床早期诊断。可以认为MRI 工程的进步,促进了医学诊断学向功能与形态相结合的方向发展,向超快速成像、准实时动态MRI、MRA、FMRI、MRS发展。根据核医学示踪,利用正电子发射核素(18F,11C,13N)的原理,创造的正电子发射体层摄影(PET),是目前最先进的影像诊断技术。美国新闻媒体把PET列为十大医学生物技

浅谈生物医学材料的现状与发展

浅谈生物医学材料的现状与发展 [摘要] 生物医学材料以及良好的生物相容,耐酸性耐碱性耐腐蚀且不会破坏体内平衡的优良特性,正逐步替代传统医学材料,受到广泛的关注。本篇文章将就生物医学材料的特性、分类以及生物医学材料的特点,进行一简单综述,并以此为基础浅谈生物医学材料的现状与未来发展趋势。 [关键词]生物医学材料的分类,医疗器械,现状,未来发展 生物医学材料是一类有着特殊性能、特种功能的材料,能够被应用于人工器官替代、外科手术修复、康复理疗等,并且不会对人体产生排异反应的特殊材料。它是研究人工器官和医疗器械的基础,已成为材料学科的重要分支。当前,各种人工合成材料和天然高分子材料、金属、陶瓷材料等各种复合材料,广泛地应用于临床医学和科研工作,并显示出对于传统材料的无可取代的优势。随着生物技术的蓬勃发展和不断突破,生物医学材料已成为各国科学家研究和发展的热点。 一、生物医学材料的分类 生物材料品种丰富,分类方法很多。一般按照属性对其进行分类包括生物医学金属材料,生物医学高分子材料,生物陶瓷,生物医学复合材料以及生物医学衍生材料。 二、生物医学材料的特性 生物医学材料做为一种临床医学的替代材料,其要求和期望相对较高。首先,生物医用材料应具有良好的血液和组织相容性,不能出现凝血现象和排异反应。其次,要求其能够抗生物老化。生物体内代谢产生的酸碱物质可能会对生物材料造成一定程度的腐蚀,因此对于长期植入的材料,要求材料的生物稳定性高,耐体内化学物质腐蚀能力强,而对于短暂植入的医学材料,则耍求在一定时间之后为可被人体吸收或代谢。最后,生物医学材料还要求具有良好的物理机械性质、易于加工、造价低廉,另外在消毒灭菌方面,要便于消毒灭茵,不能够含有致癌或致畸的组分。对于不同用途的材料,其要求各有侧重。 目前应用最为成熟和广泛的两种生物医学材料应属医用硅橡胶和人工骨。医用硅胶是高分子有机化合物聚硅酮的一种橡胶样固体形态,又称二甲基硅氧烷。具有优异的生理惰性,无毒、无味、无腐蚀、抗凝血、与机体的相容性好,能经受苛刻的消毒条件,是美容外科中应用较广的生物材料.。随着生物医学和材料的发展,人工骨作为人为制备的生物医用材料被植入骨内替代骨移植,收到了不错的临床效果,这些人工合成或提取的植入材料生物相容性好,对骨形成具有明显的诱导作用,因而受到了广大医生和患者的信赖。 三、生物医学材料研究进展 有学者依据生物医学材料的发展历史及材料本身的特点,将其分为三代: 20世纪初第一次世界大战以前所使用的生物医学材料归于第一代,代表材料有石膏、各种金属、橡胶以及棉花等物品,这些材料大都已被现代医学所淘汰;第二代生物材料的发展是建立在医学、材料科学(尤其是高分子材料学)、生物化学、物理学及大型物理测试技术发展的基础之上的,代表材料有羟基磷灰石、磷酸三钙、聚羟基乙酸、聚甲基丙烯酸羟乙基酯、胶原、多肽、纤维蛋白等;第三代生物材料主要是具有促进人体自身修复和再生作用的生物医学复合材料,它们一般是由具有生理“活性”的组元及控制载体的“非活性”组元所

生物医学工程的发展历程和展望

生物医学工程的发展历程和展望 生物医学工程概论论文 —生物医学工程的发展过程和未来展望 班级医电121 姓名代新朝学号 120411113 成绩 2013年1月10日 生物医学工程的发展过程和未来展望 生物医学工程的发展历程 摘要:生物医学工程(Biomedical Engineering,BME)是一门生物、医学和 工学学科交叉的边缘科学~它是用现代科学技术的理论和方法~研究新 材料、新技术、新仪器设备~用于防病、治病、保护人民健康~提高医 学水平的一门新兴学科。 关键词:生物医学工程新兴学科新仪器设备新技术 20世纪50年代生物医学工程开始在国际上做为一个新的学科出现,而随着宇航技术的进步、人类实现了登月计划以来,生物医学工程有了快速的发展。我国的生物医学工程做为一个专门学科起步于20世纪70年代,中国医学科学院、中国协和医科大学原院校长、我国著名的医学家黄家驷院士是我国生物医学工程学科最早的倡导者。1977年中国协和医科大学生物医学工程专业的创建、1980年中国生物医学工程学会的成立,有力地推进了我国生物医学工程的发展。目前,我国许多高校科研单位均设有生物医学工程机构,从事着生物医学的科研教学工作,在我国生物医学工程科学事业的发展中发挥着重要作用。 医学影像系统的发展 显微镜的发明“解剖”一词由希腊语“Anatomia”转译而来,其意思是用刀剖割,肉眼观察研究人体结构。17世纪Lee Wenhock发明了光学显微镜,推动了

解剖学向微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进一步观察研究其细胞形态结构的变化。随着光学显微镜的出现,医学领域相继诞生了细胞学、组织学、细胞病理学,从而将医学研究提高到细胞形态学水平。 普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞的超微细结构、核结构、DNA等大分子结构。而20世纪60年代出现的电子显微镜,使人们能观察到纳米(nm )级的微小个体,研究细胞的超微结构。光学显微镜和电子显微镜的发明都是医学工程研究的成果,它们对推动医学的发展起了重要作用。影像学诊断飞跃进步影像学诊断是20世纪医学诊断最重要发展最快的领 2 生物医学工程的发展过程和未来展望 域之一。50年代X光透视和摄片是临床最常用的影像学诊断方法,而今天由于X线CT技术的出现和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床诊断水平。即计算机体断层摄影(computed tomography CT),即是利用计算机技术处理人体组织器官的切面显像。X线CT 片提供给医生的信息量,远远大于普通X线照片观察所得的信息。目前,螺旋CT(spiral CT 或helicalet CT)已经问世,能快速扫描和重建图像,在临床应用中取代了大多数传统的CT,提高了诊断准确率。生物医学工程研究利用生物组织中氢、磷等原子的核磁共振(nu clear magnetic resonance)原理。研制成功了核磁共振计算机断层成像系统(MRI),它不仅可分辨病理解剖结构形态的变化,还能做到早期识别组织生化功能变化的信息,显示某些疾病在早期价段的改变,有利于临床早期诊断。可以认为MRI工程的进步,促进了医学诊断学向功能与形态相结合的方向发展,向超快速成像、准实时动态MRI、MRA、FMRI、MRS发展。根据核医学示踪,利用正电子发射核素(18F,11C,13N)的原理,创造的正电子发射体层摄影(PET),是目前最先进的影像诊断技术。美国新闻媒体把PET列为十大医学生物技术的榜首。PET问世不过

生物医用材料发展的认识

医用卫生材料发展的认识 生物医用纺织品是纺织学科与生物医学学科相互交叉的新学科领域。它具有科技含量高,市场前景广阔,创新性强等特点。目前生物医用纺织品主要采用非织造技术,约有70%的生物医用纺织品为用即弃产品。 我们了解的生物医用纺织品在卫生方面有尿布,卫生巾,成人失禁尿垫,防护服,创可贴等。 传统的尿布具有透气性好,柔软,价格较低,可重复使用等优点,但是需频繁更换,洗涤、晾晒麻烦,多次使用表面毛糙,易引发尿布疹。根据市场调研报告,一次性的纸尿裤具有巨大的市场空间。目前,一次性纸尿裤的结构有四层,表层是柔软、快速渗透、保持干爽的聚丙烯热轧布、纺粘非织造布;导流层是热塑性纤维或双组分纤维的热粘合纤网,能使尿液快速转移;吸收芯层是绒毛浆加超吸收树脂,能够大量储存液体;背层是PP透气薄膜,能够防止尿液渗透,隔离。它具有干净卫生、表面干爽、吸收强、渗透快、穿着方便等优点,但是这种一次性纸尿裤抗菌性差、异味大、长时间使用易得尿布疹、属于一次性产品,而且处理麻烦。因此在一次性纸尿裤上面还有一定的发展前景和空间。 防护服在医用方面起着重要的作用,它必须具有良好的过滤阻隔性、抗粒子穿透性、抗静水压、屏蔽性、抗撕裂、抗磨、拒污、不起绒、无毒、舒适等优良特征。此外,耐用型防护服还要求一定的耐消毒耐洗涤性能。欧美国家以涤纶、粘胶等纤维为原料通过浸渍粘合法、泡沫浸渍法、热轧法或水刺法等方法获得手感柔软,抗拉力高,透气性好,“用即弃”型防护服,避免交叉感染。而我国一次性用品仅限于口罩、帽子之类,一次性手术衣等防护服使用率很低。国内市场上销售的医用防护服主要有三类:非织造类、涂层类闪蒸法一次成型类,且普通非织造防护服防护效率只40%。目前,我国采用《GB19082-2003医用一次性防护服技术要求》标准,以《生物防护服通用规范》作为补充,但仍然不够完善。美国的NFPA 1999要求更为严格。下表是医用防护服的设计要求比较

相关文档
相关文档 最新文档