文档库 最新最全的文档下载
当前位置:文档库 › 物理化学

物理化学

物理化学
物理化学

物理化学

概念解析.解题方法.应用举例

热力学第二定律

1、在做任何有用功的同时,都会伴随着内耗的发生,故热二律可表述为:耗散功是不可避

免的。

2、热二律的应用前提:经历一个工作循环。

3、熵值不变的过程:可逆循环、不可逆循环,绝热不可逆循环不存在。

4、封闭体系中,熵S、恒压热容C p、这两个状态函数的值在理论上是可知的,其中

S=k

5、若把体系和环境加在一起形成一个新的孤立体系,则经此变化后,孤立体系经历的时不

可逆途径,所以△S孤立=△S体+△S环,应该增加。

6、1 mol理想气体在绝热条件下,经恒外压压缩至稳定,则△S体>0,△S环=0

7、绝热体系中的自发变化都是熵增加过程,但熵增加过程并非都是自发变化。

8、用熵判据△S判断变化是否自发进行,必须是在绝热条件下或孤立体系中。

9、恒容恒熵条件下,对于不做非体积功的封闭体系,用热力学能U的增量判断自发进行的

方向。

10、恒压恒熵条件下,对于不做非体积功的封闭体系,用焓H判断自发进行的方向。

11、恒焓恒压条件下,单相单组份封闭体系的平衡判据是△S=0

12、恒热力学能恒容条件下,单相单组份封闭体系的平衡判据是△S=0

13、在相变温度T m和T b时,C p有间断点;熵值S和焓值H在相变温度时分别产生突变,

其突变的垂直线段长度分别为相变熵和相变潜热的值;在相变点温度,G有折线点,在T m处有G s=G l ,在T b处有G l=G g表示在相变点两相平衡时,△G=0(仅在可逆相变中成立) 14、△G T,P<0的应用条件:封闭体系、恒温、恒压(体系的总压力)、只做体积功(缺一

不可)。

15、热功转换的不等价;孤立体系的总熵变△S U,V>0;△A T,V<0;△G T,P<0对于同一种变

化,应得到同一结论。

16、下列全微分应用的条件是:

dU=TdS-PdVdH=TdS+VdPdA=-SdT-PdVdG=-SdT+VdP

上述全微分成立的条件是:封闭体系、只做膨胀功、双变量体系,即单组份、单相、各向同性的体系。

17、在一定压力下,单组份液体有一定沸点,即T、P均不变,此时dH>0

物质的构成溶解及物理化学性质

学生:科目:第阶段第次课教师: 考点1:分子的热运动 1知识梳理

温度越高,分子热运动越剧烈。 2典型例题 1 水结冰,分子间的距离如何变化? 2 “墙内开花墙外香"这句话涉及的科学知识是-—----—— 3 我们知道汽化是一个吸热过程,为什么蒸发有致冷作用? 3知识概括、方法总结与易错点分析 分子很小 分子之间有空隙 分子处于不停的无规则运动之中 4 针对练习 1 下列现象中,不能说明分子做无规则运动的是 A 在小盘子里倒一点酒精,满屋子都是酒精气体。 B 扫地时,灰尘在空气中飞舞. C 腌咸菜时,时间一长才就变咸了。 D 晒衣服时,水分蒸发衣服变干。 2 请用分子的知识解释下列现象的原因。 《1》。温度越高,液体蒸发越快:-—————-——-—--———-—-———--—---—----———-——-—-————-——-— 《2》.物体的热胀冷缩现象:—————----———-———-——-—————-——--—--——-—————-—--——-———--—--- 3 固体,液体分子之间的距离比气体分子之间的距离要--—--———---—— 考点2:物质的溶解 1知识梳理 1、氢氧化钠溶于水放出大量的热,硝酸铵溶于水会吸收热量。 2、温度越高,气体在液体溶解得越少。 2典型例题 1色拉油地在衣服上,用水洗不掉,为什么用汽油可以洗干净? 2 一些工厂向河里排放热水,造成河里的鱼死亡,你能解释这个现象吗? 3 你知道汽水瓶打开盖子后为什么会冒泡吗? 3知识概括、方法总结与易错点分析 物质的溶解能力是有限的

不同的物质,溶解能力并不相同。 同一物质在不同物质中溶解能力不一样. 温度影响物质的溶解能力. 物质溶解过程中会有热量变化。 4 针对性练习 1 物质在溶解时会发生温度的改变,它与吸放热的关系正确的是 ( ) A 有的温度升高放热 B 有的温度降低吸热 C 有的温度不变,吸热放热等效 D 以上说法都有道理 2 小明的妈妈买了一瓶蜂蜜,到了冬天,她发现瓶子里洗出了白色晶体。她觉得非常不满意,认为被欺骗了,但工作人员则认为这白色晶体是葡萄糖晶体,是从蜂蜜中析出的,你认为他们谁有理?请说出理由。 考点4:物质的物理性质、化学性质;化学变化和物理变化 1 知识梳理 物理性质;状态、密度、挥发性、导电性、传热性等 化学性质:有些物质有毒性、食物会腐烂、澄清的石灰水中通入二氧化碳后会变浑浊等 没有别的物质生成的变化叫物理变化,有别的物质生成的变化叫化学变化. 2 经典例题 1下列各组两个变化都属于化学变化的是() A 酒精挥发、酒精燃烧 B 蜡烛受热融化、蜡烛燃烧 C 镁条燃烧、钢铁生锈 D 钢锭轧成钢材、食物腐烂 2蜡烛燃烧过程中存在哪些变化?通过这些变化你知道了蜡烛的哪些物理性质和化学性 质? 3知识概括、方法总结与易错点分析 物质的变化 物质的性质 物质的酸碱性 酸碱性的检测 针对性练习: 1 化学变化区别于物理变化的标志是-—--—--——— 2 在下列物质的变化或属性中,属于物理变化的是-—————,属于化学变化的是-—————,属于物理性质的是-----——-,属于化学性质的是——-——--— A 木材做成各种家具 B 氨气有刺激性气味 C 酒精挥发 D 煤油燃烧 E 氧化酶是白色粉末 F 铁在潮湿的空气中会生锈 G 煤油能燃烧 H 酒精易挥发

水的物理、化学及物理化学处理方法

水的物理、化学及物理化学处理方法简介 (一)物理处理方法 利用固体颗粒和悬浮物的物理性质将其从水中分离去除的方法称为物理处理方法。物理处理法的最大优点是简单易行,效果良好,费用较低。 物理处理法的主要处理对象是水中的漂浮物、悬浮物以及颗粒物质。 常用的物理处理法有格栅与筛网、沉淀、气浮等。 (1)格栅与筛网 格栅是用于去除水中较大的漂浮物和悬浮物,以保证后续处理设备正常工作的一种装置。格栅通常有一组或多组平行金属栅条制成的框架组成,倾斜或直立地设立在进水渠道中,以拦截粗大的悬浮物。 筛网用以截阻、去除水中的更细小的悬浮物。筛网一般用薄铁皮钻孔制成,或用金属丝编制而成,孔眼直径为0.5~1.0mm。 在河水的取水工程中,格栅和筛网常设于取水口,用以拦截河水中的大块漂浮物和杂草。在污水处理厂,格栅和筛网常设于最前部的污水泵之前,以拦截大块漂浮物以及较小物体,以保护水泵及管道不受阻塞。 (2)沉淀 沉淀是使水中悬浮物质(主要是可沉固体)在重力作用下下沉,从而与水分离,使水质得到澄清。这种方法简单易行,分离效果良好,是水处理的重要工艺,在每一种水处理过程中几乎都不可缺少。按照水中悬浮颗粒的浓度、性质及其絮凝性能的不同,沉淀现象可分为:自由沉淀、絮凝沉淀、拥挤沉淀、压缩沉淀。 水中颗粒杂质的沉淀,是在专门的沉淀池中进行的。按照沉淀池内水流方向的不同,沉淀池可分为平流式、竖流式、辐流式和斜流式四种。 (3)气浮 气浮法亦称浮选,它是从液体中除去低密度固体物质或液体颗粒的一种方法。通过空气鼓入水中产生的微小气泡与水中的悬浮物黏附在一起,靠气泡的浮力一起上浮到水面而实现固液或液液分离的操作。其处理对象是:靠自然沉降或上浮难以去除的乳化油或相对密度接近于1的微小悬浮颗粒。 浮选过程包括微小气泡的产生、微小气泡与固体或液体颗粒的粘附以及上浮分离等步骤。实现浮选分离必须满足两个条件:一是必须向水中提供足够数量的

天然气物理化学性质

海底天然气物理化学性质 第一节海底天然气组成表示法 一、海底天然气组成 海底天然气是由多种可燃和不可燃的气体组成的混合气体。以低分子饱和烃类气体为主,并含有少量非烃类气体。在烃类气体中,甲烷(CH 4 )占绝大部分, 乙烷(C 2H 6 )、丙烷(C 3 H 8 )、丁烷(C 4 H 10 )和戊烷(C 5 H 12 )含量不多,庚烷以上 (C 5+)烷烃含量极少。另外,所含的少量非烃类气体一般有氮气(N 2 )、二氧化 碳(CO 2)、氢气(H 2 )、硫化氢(H 2 S)和水汽(H 2 O)以及微量的惰性气体。 由于海底天然气是多种气态组分不同比例的混合物,所以也像石油那样,其物理性质变化很大,它的主要物理性质见下表。 海底天然气中主要成分的物理化学性质 名称分 子 式 相 对 分 子 质 量 密度 /Kg ·m-3 临界 温度 /℃ 临 界 压 力 /MP a 粘度 /KP a ·S 自 燃 点 / ℃ 可燃性 限 /% 热值 /KJ·m-3 (15.6℃, 常压) 气体 常数 / Kg· m· (Kg ·K)-1 低 限 高 限 全 热 值 净 热 值 甲烷CH 4 16. 043 0.71 6 -82. 5 4.6 4 0.01( 气) 6 4 5 5. 15. 372 62 334 94 52.8 4 乙烷C 2 H 6 30. 070 1.34 2 32.2 7 4.8 8 0.009( 气) 5 3 3. 2 12. 45 661 51 602 89 28.2 丙烷C 3 H 8 44. 097 1.96 7 96.8 1 4.2 6 0.125( 10℃) 5 1 2. 37 9.5 937 84 862 48 19.2 3 正丁烷n-C 4 H 10 58. 12 2.59 3 152. 01 3.8 0.174 4 9 1. 86 8.4 1 121 417 108 438 14.5 9 异丁烷i-C 4 H 10 58. 12 2.59 3 134. 98 3.6 5 0.194 1. 8 8.4 4 121 417 108 438 14.5 9 氨He 4.0 03 0.19 7 -267 .9 0.2 3 0.0184 211. 79 氮N 228. 02 1.25 -147 .13 3.3 9 0.017 30.2 6

漫谈物理化学的发展及学科特点

漫谈物理化学的发展及学科特点 2007化教一班222007316011045 王祖龙 摘要:经历漫长而艰难的发展,物理化学终以一门新的学科出现。它具有自身独特的特点,并在化学中占有极重要位置。随着人们不断的深入认识,越来越多地为人们服 务。 关键词:物理化学形成发展学科特点前景 世界的变化日新月异,尤其在当今,新兴学科层出不穷,但统而观之,它们有一个重要特点,即很多都是边缘学科(亦称交叉学科,1926年美国首次出现)——横跨两种或两种以上基础学科。边缘学科的产生,是随着人们对物质运动形式及固有次序的逐步揭示,是当基础学科发展到一定阶段时的必然结果,是人们知识的深化。 化学,在其漫长的发展历程中,形成了自己独有的特色,并且一直以来对于人类文明的发展起到了很大的推动作用。与此同时,一系列化学的分支学科也不断形成,大大的丰富了化学知识,拓展了人们的眼界。在所有化学分支学科中,当属物理化学最为重要。 而物理化学,作为最早形成的第一门边缘学科,被称为交叉学科的典范,是现代化学的核心内容和理论基础,在基础化学课程体系中起着龙头作用。它的形成与发展经历了较漫长而艰难的时期。 一、物理化学的形成与发展 “物理化学”这个术语曾在十八世纪首先被罗蒙诺索夫创用,但是它的主要研究方向和基本内容却是在十九世纪下半叶才被确定下来。至今其研究内容也都是在当时的基础上不断深入发展的。对于物理化学的形成,不得不提到一个人——杰出的俄国一德国物理化学家奥斯特瓦尔德(Ostwald,W.F.,1853一1932),他为物理化学作出了最伟大的贡献,在1887年创办了第一份名副其实的专业性期刊:德文的《物理化学杂志》(Zeitschrift physikalische Chemie)121,标志着物理化学的形成.。奥斯特瓦尔德因此被称为“物理化学之父”,也曾被列宁誉为“伟大的化学家和渺小的哲学家”。 在十九世纪下半叶以前的近代化学初期,化学家往往又是物理学家,他们研究的问题常常相互有关,相互渗透和相互补充。例如,1807年法国化学家盖吕萨克观测到气体向真空膨胀后温度没有变化,于是物理学家便据此作出“气体膨胀至真空没有作功”这种结论。又如道尔顿,他起初是一位物理学家,后来才研究化学。他从长期观测气象着手,研究空气组成并得出气体的“微粒说”;再经过对碳的两种氧化物以及多种氢化物的组成的化学分析实验,在1804年正式提出倍比定律,后来将物理原子论(即哲学“微粒说”)发展成为“化学原子论”,成为了近代化学诞生的标志。 到了十九世纪下半世纪,随着工业生产力的发展,以及此前大量拥现的化学和物理学成就的逐步积累,近代化学迅速向专业化分工,化学家在研究方向及方法上和物理学家终于分道扬镰。物理化学正是在这个时期开始独立形成的。在这一时期,主要是以李比希和杜马等为代表的有机化学家。有机化学取得了重大的成就,使得从类型理论向结构理论的发展逐步系统化。同时在这一时期,有少数化学家(有的本来也就是物理学家和数学家)关心物理学的理论和发现,这就使得化学和物理学相结合起来,例如拉乌尔(Raoutt,F.M,1830一1901,法国)、瓦格(Waage,P.1933一1990,娜威)、范霍夫(Van't Hoff,J.H.,1852一1911) 以及能斯特(Nernst,H.W.,1864一1941,德国)等。他们都为物理化学最终成为现代化学的一个独立分支做出了开创性的工作,是初期物理化学的共同奠基人。 从道尔顿提出原子论以来,近代化学前期到奥斯特瓦尔德创办《物理化学杂志》之间,有着许多与物理化学形成有关的十分重要的史实: 1、关于原子一分子学说

常用化学试剂物理化学性质

氨三乙酸 化学式CH6N9O6,分子量191.14,结构式N(CH2COOH)3,白色棱形结晶粉末,熔点246~249℃(分解),能溶于氨水、氢氧化钠,微溶于水,饱和水溶液pH为2.3,不溶于多数有机溶剂,溶于热乙醇中可生成水溶性一、二、三碱性盐。属于金属络合剂,用于金属的分离及稀土元素的洗涤,电镀中可以代替氰化钠,但稳定性不如EDTA。 丙酮 最简单的酮。化学式CH3COCH3。分子式C3H6O。分子量58.08。无色有微香液体。易着火。比重0.788(25/25℃)。沸点56.5℃。与水、乙醇、乙醚、氯仿、DMF、油类互溶。与空气形成爆炸性混和物,爆炸极限2.89~12.8%(体积)。化学性质活泼,能发生卤化、加成、缩合等反应。广泛用作油脂、树脂、化学纤维、赛璐珞等的溶剂。为合成药物(碘化)、树脂(环氧树脂、有机玻璃)及合成橡胶等的重要原料。 冰乙酸 化学式CH3COOH。分子量60.05。醋的重要成份。一种典型的脂肪酸,无色液体。有刺激性酸味。比重1.049。沸点118℃,可溶于水,其水溶液呈酸性。纯品在冻结时呈冰状晶体(熔点16.7℃),故称“冰醋酸”,能参与较多化学反应。可用作溶剂及制造醋酸盐、醋酸酯(醋酸乙酯、醋酸乙烯)、维尼纶纤维的原料。 苯酚 简称“酚”,俗称“石炭酸”,化学式C6H5OH,分子量94.11,最简单的酚。无色晶体,有特殊气味,露在空气中因被氧化变为粉红,有毒!并有腐蚀性,密度1.071(25℃),熔点42~43℃,沸点182℃,在室温稍溶于水,在65℃以上能与任何比与水混溶,易溶于酒精、乙醚、氯仿、丙三醇、二硫化碳中,有弱酸性,与碱成盐。水溶液与氯化铁溶液显紫色。可用以制备水杨酸、苦味酸、二四滴等,也是合成染料、农药、合成树脂(酚醛树脂)等的原料,医学上用作消毒防腐剂,低浓度能止痒,可用于皮肤瘙痒和中耳炎等。高浓度则产生腐蚀作用。 1,2-丙二醇 化学式CH3CHOHCH2OH,分子量76.10,分子中有一个手征性碳原子。外消旋体为吸湿性粘稠液体;略有辣味。比重1.036(25/4℃),熔点-59℃,沸点188.2℃、83.2℃(1,333Pa),与水、丙酮、氯仿互溶,溶于乙醚、挥发油,与不挥发油不互溶,左旋体沸点187~189℃,比旋光度-15.8。丙二醇在高温时能被氧化成丙醛、乳酸、丙酮酸与醋酸。为无毒性抗冻剂。可用于酿酒、制珞中,是合成树脂的原料。医学上用作注射剂、内服药的溶剂与防腐剂,防腐能力比甘油大4倍,此外还可用于室内空气的消毒。 丙三醇 学名1,2,3-三羟基丙烷,分子式C3H8O3,分子量92.09,有甜味的粘稠液体,甜味为蔗糖的0.6倍,易吸湿,对石蕊试纸呈中性。比重1.26362(20/20℃)。熔点7.8℃,沸点290℃(分解)167.2℃(1,3332Pa)。折光率1.4758(15℃),能吸收硫化氢、氰化氢、二氧化硫等气体。其水溶液(W/W水)的冰点:10%,-1.6℃;30%,-9.5℃;50%,-23℃;80%,-20.3℃。与水、乙醇互溶,溶于乙酸乙酯,微溶于乙醚,不溶于苯、氯仿、四氯化碳、二硫化碳、石油醚、油类。可以制备炸药(硝化甘油)、树脂(醇酸树脂)、润滑剂、香精、液体肥皂、增塑剂、甜味剂等。在印刷、化妆品、烟草等工业中作润滑剂。医学上可用滋润皮肤,防止龟裂;作为栓剂(甘油栓)可用作通便药。切勿与强化剂如三氧化铬、氯酸钾、高锰酸钾放在一起,以免引起爆炸。 蓖麻油 化学式C57H104O9,分子量933.37。无色或淡黄色透明液体,具有特殊臭味,凝固点-10℃,比重

各元素物理化学性质

各元素物理化学性质 序号符 号 中 文 读音 原子 量 外层 电子 常见化 合价 分类英文名英文名音标其它 1 H 氢轻 1 1s1 1、-1 主/非 /其 Hydrogen ['haidr?d??n] 最轻 2 He 氦害 4 1s2 主/非 /稀 Helium ['hi:li?m] 最难液化 3 Li 锂里7 2s1 1 主/碱Lithium ['liθi?m] 活泼 4 Be 铍皮9 2s2 2 主/碱 土 Beryllium [be'rili?m] 最轻碱土金属元素 5 B 硼朋10.8 2s2 2p1 3 主/类Boron ['b?:r?n] 硬度仅次于金刚石 的非金属元素 6 C 碳探12 2s2 2p2 2、4、-4 主/非 /其 Carbon ['kɑ:b?n] 沸点最高 7 N 氮蛋14 2s2 2p3 -3 1 2 3 4 5 主/非 /其 Nitrogen ['naitr?d??n] 空气中含量最多的 元素 8 O 氧养16 2s2 2p4 -2、-1、2 主/非 /其 Oxygen ['?ksid??n] 地壳中最多 9 F 氟福19 2s2 2p5 -1 主/非 /卤 Fluorine ['flu?ri:n] 最活泼非金属,不能 被氧化 10 Ne 氖乃20 2s2 2p6 主/非 /稀 Neon ['ni:?n] 稀有气体 11 Na 钠那23 3s1 1 主/碱Sodium ['s?udi?m] 活泼 12 Mg 镁每24 3s2 2 主/碱 土 Magnesium [mæɡ'ni:zi?m] 轻金属之一 13 Al 铝吕27 3s2 3p1 3 主/金 /其 Aluminum [,ælju'minj?m] 地壳里含量最多的 金属 14 Si 硅归28 3s2 3p2 4 主/类Silicon ['silik?n] 地壳中含量仅次于 氧 15 P 磷林31 3s2 3p3 -3、3、5 主/非 /其 Phosphorus ['f?sf?r?s] 白磷有剧毒 16 s 硫留32 3s2 3p4 -2、4、6 主/非 /其 Sulfur ['s?lf?] 质地柔软,轻。与氧 气燃烧形成有毒的 二氧化硫 17 Cl 氯绿35.5 3s2 3p5 -1、1、3、 5、7 主/非 /卤 Chlorine ['kl?:ri:n] 有毒活泼 18 Ar 氩亚40 3s2 3p6 主/非 /稀 Argon ['ɑ:ɡ?n] 稀有气体,在空气中 含量最多的稀有气 体 19 K 钾假39 4s1 1 主/碱Potassium [p?'tæsj?m] 活泼,与空气或水接触发生反应,只能储存在煤油中 20 Ca 钙盖40 4s2 2 主/碱 土 Calcium ['kælsi?m] 骨骼主要组成成分

(环境管理)工业废水的物理化学处理

第13章工业废水的物理化学处理 13.1 混凝 处理环节:预处理、中间处理、最终处理、三级处理、污泥处理、除油、脱色。 胶体:憎水性对混凝敏感,亲水性需特殊处理 高分子絮凝剂:分子量大的水溶性差,分子量小的水溶性好,故分子量要适当。 混凝的操作程序:里特迪克程序。 1)提高碱度:加重碳酸盐(增加碱度但pH值不提高)――快速搅拌1~3min 2)投加铝盐或铁盐――快速搅拌1~3min 3)投加活化硅酸和聚合电解质之类的助凝剂――搅拌20~30min 应用:1)造纸和纸板废水:加入少量的硫酸铝即可有效地混凝。如表13-1 2)滚珠轴承制造厂含乳化油废水:用CaCl2破除乳化,用硫酸铝去除油脂、悬浮物、Fe、PO4。 13.2气浮 13.2.1 气浮的基本原理 气浮=固液分离+液液分离――用于悬浮物、油类、脂肪、污泥浓缩 原理:微气泡――粘附微粒――气浮体(密度小于水)――去除浮渣。 探讨: 1、水中颗粒与气泡粘附条件 (1)界面张力、接触角和体系界面自由能 任何不同介质的相表面上都因受力不均衡而存在界面张力 气浮的情况涉及:气、水、固三种介质,每两个之间都存在界面张力σ。 三相间的吸附界面构成的交界线称为润湿周边。通过润湿周边作水、粒界面张力作用线和水、气界面张力作用线,二作用线的交角称为润湿接触角θ。见图13-3和13-4。 θ>90,疏水性,易于气浮 θ<90, 亲水性 悬浮物与气泡的附着条件: 按照物理化学的热力学理论, 任何体系均存在力图使界面能减少为最小的趋势。 界面能W =σS S:界面面积;σ:界面张力 附着前W1 =σ水气+σ水粒(假设S 为1) 附着后W2=σ气粒 界面能的减少△W= W1-W2=σ水气+σ水粒-σ气粒 图13-4,σ水粒=σ气粒+σ水气COS(180?-θ) 所以: △W=σ水气(1-COSθ) 按照热力学理论, 悬浮物与气泡附着的条件:△W>0 △W越大,推动力越大,越易气浮。 (2)气-粒气浮体的亲水吸附和疏水吸附 由于水中颗粒表面性质的不同,所构成的气一粒结合体的粘附情况也不同。 亲水吸附:亲水性颗粒润湿接触角(θ)小,气粒两相接触面积小,气浮体结合不牢,易脱落。 疏水吸附:疏水性颗粒的接触角(θ)大,气浮体结合牢固。 根据△W=σ水气(1-COSθ),得: 1) θ→0, COSθ→1, △W= 0 气浮 θ<90, COSθ<1, △W<σ水气颗粒附着不牢 θ>90, △W>σ水气气浮――疏水吸附 θ→180 △W=2σ水气最易被气浮

物理化学性质

甲醇 MSDS 基本信息 中文名:甲醇;木酒精木精;木醇英文名: Methyl alcohol;Methanol 分子式:CH4O 分子量: 32.04 CAS号: 67-56-1 外观与性状:无色澄清液体,有刺激性气味。 主要用途:主要用于制甲醛、香精、染料、医药、火药、防冻剂等。 物理化学性质 熔点: -97.8 沸点: 64.8 相对密度(水=1):0.79 相对密度(空气=1): 1.11 饱和蒸汽压(kPa):13.33/21.2℃ 溶解性:溶于水,可混溶于醇、醚等多数有机溶剂临界温度(℃):240 临界压力(MPa):7.95 燃烧热(kj/mol):727.0 甲醇由甲基和羟基组成的,具有醇所具有的化学性质。[3] 甲醇可以在纯氧中剧烈燃烧,生成水蒸气(I)和二氧化碳(IV)。另外,甲醇也和氟气会产生猛烈的反应。[4] 与水、乙醇、乙醚、苯、酮、卤代烃和许多其他有机溶剂相混溶,遇热、明火或氧化剂易 燃烧。燃烧反应式为: CH3OH + O2 → CO2 + H2O 具有饱和一元醇的通性,由于只有一个碳原子,因此有其特有的反应。例如:① 与氯化钙形成结晶状物质CaCl2·4CH3OH,与氧化钡形成B aO·2CH3OH的分子化合物并溶解于甲醇中;类似的化合物有MgCl2·6CH3OH、CuSO4·2CH3OH、CH3OK·CH3OH、AlCl3·4CH3OH、AlCl3·6CH3OH、AlCl3·10CH3OH等;② 与其他醇不同,由于-CH2OH基与氢结合,氧化时生成的甲酸进一步氧化为CO2;③ 甲醇与氯、溴不易发生反应,但易与其水溶液作用,最初生成二氯甲醚(CH2Cl)2O,因水的作用转变成HCHO与HCl;④ 与碱、石灰一起加热,产生氢气并生成甲酸钠;CH3OH+NaOH→HCOONa+2H2;⑤与锌粉一起蒸馏,发生分解,生成 CO和H2O。[2] 产品用途 1.基本有机原料之一。主要用于制造甲醛、醋酸、氯甲烷、甲胺和硫酸二甲酯等多种 有机产品。也是农药(杀虫剂、杀螨剂)、医药(磺胺类、合霉素等)的原料,合成对苯二甲酸二甲酯、甲基丙烯酸甲酯和丙烯酸甲酯的原料之一。还是重要的溶剂,亦

玻璃物理化学性能计算

玻璃物理化学性能计算 一、玻璃的粘度计算 ...1.粘度和温度的关系 ...2.玻璃组成对温度的作用 ...3.粘度参考算点及在生产中的应用 ...4.粘度的计 二、玻璃的机械性能和表面性质 ...1.玻璃表面张力的物理与工艺意义 ...2.玻璃表面张力与组成及温度的关系 ...3.玻璃的表面性质 ...4.玻璃的密度计算 三、玻璃的热学性质和化学稳定性 ...(一)玻璃的热学性能 ...(二)玻璃的化学稳定性 ...(三)玻璃的光学性质 一、玻璃粘度和温度的关系 粘度是玻璃的重要性质之一。它贯穿着玻璃生产整个阶段,从熔制、澄清、均化、成型、加工、直到退火都与粘度密切相关。在成型和退火方面年度起着控制性的作用。在高速成型机的生产中,粘度必须控制在一定的范围内,而成型机的速度决定与粘度随温度的递增速度。此外玻璃的析晶和一些机械性能也与粘度有关。 所有实用硅酸盐玻璃,其粘度随温度的变化规律都属于同一类型,只是粘度随温度变化的速度以及对应某给定温度的有所不同。在10怕.秒(或者更低)至约1011怕.秒的粘度范围内,玻璃的粘度由玻璃化学成分所决定的,而在从约1011怕.秒(1015泊,或者更高)的范围内,粘度又是时间的函数。

这些现象可由图来说明: Na 2O---CaO---SiO 2 玻璃的弹性、粘度与温度的关系 上图的三个区。在A区温度较高。玻璃表现为典型的粘度液体,他的弹性性质近于消失。在这一温度去中粘度仅决定于玻璃的组成和温度。当温度近于B 区时,粘度随温度下降而迅速增大,弹性模量也迅速增大。在这一温度区的粘度去决定于组成和温度外,还与时间有关。当温度进入C区,温度继续下降,弹性模量继续增大,粘滞留东变得非常小。在这一温度区,玻璃的粘度和其它性质又决定于组成和温度而与时间无关。图中所市的粘度和弹性随温度的变化现象,可以从玻璃的热历史说明。

初中化学常见物质的物理化学性质-

初中化学常见物质的物理化学性质 一、初中化学常见物质的颜色 (一)、固体的颜色 1、红色固体:铜,氧化铁 2、绿色固体:碱式碳酸铜 3、蓝色固体:氢氧化铜,硫酸铜晶体 4、紫黑色固体:高锰酸钾 5、淡黄色固体:硫磺 6、银白色固体:银,铁,镁,铝,汞等金属 7、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭) 8、红褐色固体:氢氧化铁 9、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧 化镁 (二)、液体的颜色 10、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液 11、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液 12、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液 13、紫红色溶液:高锰酸钾溶液 (三)、气体的颜色 14、红棕色气体:二氧化氮15、黄绿色气体:氯气 16、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。 二、初中化学溶液的酸碱性 1、显酸性的溶液:酸溶液和某些盐溶液(硫酸氢钠、硫酸氢钾等) 2、显碱性的溶液:碱溶液和某些盐溶液(碳酸钠、碳酸氢钠等) 3、显中性的溶液:水和大多数的盐溶液 三、化学敞口置于空气中质量改变的 (一)质量增加的 1、由于吸水而增加的:氢氧化钠固体,氯化钙,氯化镁,浓硫酸; 2、由于跟水反应而增加的:氧化钙、氧化钡、氧化钾、氧化钠,硫酸铜; 3、由于跟二氧化碳反应而增加的:氢氧化钠,氢氧化钾,氢氧化钡,氢氧化钙; (二)质量减少的1、由于挥发而减少的:浓盐酸,浓硝酸,酒精,汽油,浓氨水 4、由于风化而减少的:碳酸钠晶体。.1.

四、初中化学物质的检验(一)、气体的检验 1、氢气:在玻璃尖嘴点燃气体,罩一干冷小烧杯,观察杯壁是否有水滴,往烧杯中倒入澄清的石灰水,若不变浑浊,则是氢气. 2、氨气:湿润的紫红色石蕊试纸,若试纸变蓝,则是氨气. 3、水蒸气:通过无水硫酸铜,若白色固体变蓝,则含水蒸气. (二)、离子的检验. 1、氢离子:滴加紫色石蕊试液/加入锌粒 2、氢氧根离子:酚酞试液/硫酸铜溶液 3、碳酸根离子:稀盐酸和澄清的石灰水 4、氯离子:硝酸银溶液和稀硝酸,若产生白色沉淀,则是氯离子 5、硫酸根离子:硝酸钡溶液和稀硝酸/先滴加稀盐酸再滴入氯化钡 6、铵根离子:氢氧化钠溶液并加热,把湿润的红色石蕊试纸放在试管口 7、铜离子:滴加氢氧化钠溶液,若产生蓝色沉淀则是铜离子 8、铁离子:滴加氢氧化钠溶液,若产生红褐色沉淀则是铁离子 (三)、相关例题 1、如何检验NaOH是否变质:滴加稀盐酸,若产生气泡则变质 2、检验NaOH中是否含有NaCl:先滴加足量稀硝酸,再滴加AgNO3溶液,若产生白色沉淀,则含有NaCl。 3、检验三瓶试液分别是稀HNO3,稀HCl,稀H2SO4? 向三只试管中分别滴加Ba(NO3)2 溶液,若产生白色沉淀,则是稀H2SO4;再分别滴加AgNO3溶液,若产生白色沉淀则是稀HCl,剩下的是稀HNO3 4、淀粉:加入碘溶液,若变蓝则含淀粉。 5、葡萄糖:加入新制的氢氧化铜,若生成砖红色的氧化亚铜沉淀,就含葡萄糖。。 6、铁的三种氧化物:氧化亚铁,三氧化二铁,四氧化三铁。。 new:实验室制取CO2不能用的三种物质:硝酸,浓硫酸,碳酸钠。 34、三种遇水放热的物质:浓硫酸,氢氧化钠,生石灰。。。 六、初中化学常见混合物的重要成分 1、水煤气:一氧化碳(CO)和氢气(H2) 七、初中化学常见物质俗称 1、硫酸铜晶体(CuSO4 .5H2O):蓝矾,胆矾 2、乙醇(C2H5OH):酒精 3、乙酸(CH3COOH):.2.

物理化学练习题(上)

物理化学练习题 一、选择题 1. 理想气体模型的基本特征是 (A) 分子不断地作无规则运动、它们均匀分布在整个容器中 (B) 各种分子间的作用相等,各种分子的体积大小相等 (C) 所有分子都可看作一个质点, 并且它们具有相等的能量 (D) 分子间无作用力, 分子本身无体积 2. 理想气体状态方程pV=nRT表明了气体的p、V、T、n、这几个参数之间的定量关 系,与气体种类无关。该方程实际上包括了三个气体定律,这三个气体定律是 (A) 波义尔定律、盖-吕萨克定律和分压定律 (B) 波义尔定律、阿伏加德罗定律和分体积定律 (C) 阿伏加德罗定律、盖-吕萨克定律和波义尔定律 (D) 分压定律、分体积定律和波义尔定律 3.热力学第一定律ΔU=Q+W 只适用于 (A) 单纯状态变化(B) 相变化 (C) 化学变化(D) 封闭物系的任何变化 4.关于焓的性质, 下列说法中正确的是 (A) 焓是系统内含的热能, 所以常称它为热焓 (B) 焓是能量, 它遵守热力学第一定律 (C) 系统的焓值等于内能加体积功 (D) 焓的增量只与系统的始末态有关 5.下列哪个封闭体系的内能和焓仅是温度的函数 (A) 理想溶液(B) 稀溶液(C) 所有气体(D) 理想气体 6.下列过程中, 系统内能变化不为零的是 (A) 不可逆循环过程(B) 可逆循环过程 (C) 两种理想气体的混合过程(D) 纯液体的真空蒸发过程 7.第一类永动机不能制造成功的原因是 (A) 能量不能创造也不能消灭 (B) 实际过程中功的损失无法避免 (C) 能量传递的形式只有热和功 (D) 热不能全部转换成功 8.下面的说法符合热力学第一定律的是 (A) 在一完全绝热且边界为刚性的密闭容器中发生化学反应时,其内能一定变化 (B) 在无功过程中, 内能变化等于过程热, 这表明内能增量不一定与热力学过程无关 (C) 封闭系统在指定的两个平衡态之间经历绝热变化时, 系统所做的功与途径无关 (D) 气体在绝热膨胀或绝热压缩过程中, 其内能的变化值与过程完成的方式无关 9.关于热平衡, 下列说法中正确的是 (A) 系统处于热平衡时, 系统的温度一定等于环境的温度 (B) 并不是所有热力学平衡系统都必须满足热平衡的条件 (C) 若系统A与B成热平衡, B与C成热平衡, 则A与C直接接触时也一定成热平衡

最全的物理化学名词解释

最全的物理化学名词解释 材料人考学 饱和蒸汽压:单位时间内有液体分子变为气体分子的数目与气体分子变为液体分子数目相同,宏观上说即液体的蒸发速度与气体的凝结速度相同的气体称为饱和蒸汽,饱和气体所具有的压力称为饱和蒸汽压。 敞开体系:体系与环境之间既有物质交换,又有能量交换。 封闭体系:体系与环境之间无物质交换,但有能量交换 孤立体系:体系与环境之间既无物质交换,又无能量交换,故又称为隔离体系。 广度量和强度量:是指与物质的数量成正比的性质,如系统物质的量,体积,热力学能,熵等。具有加和性,在数学上是一次齐函数,而是指与物质无关的性质,如温度压力等 平衡态:系统内部处于热平衡、力平衡、相平衡、化学平衡 状态函数:体系的一些性质,其数值仅取决于体系所处的状态,而与体系的历史无关;它的变化值仅取决于体系的始态和终态,而与变化的途径无关。具有这种特性的物理量称为状态函数。 热:体系与环境之间由于温度的不同而传递的能量称为热。 功:体系与环境之间传递的除热以外的其它能量都称为功。 摩尔相变焓:是指单位物质的量的物质在恒定温度T及该温度平衡压力下发生相变时对应的焓变 标准摩尔生成焓:在温度为T的标准态下,由稳定相态的单质生成化学计量数VB=1的β相态的化合物B 该生成反应的焓变称为该化合物B在温度T时的标准摩尔生成焓。 标准摩尔燃烧焓:在标准压力下,反应温度时,1摩尔反应物质B完全氧化成相同温度的指定产物时的标准摩尔反应焓。 可逆过程:我们把某一体系经过某一个过程,如果能使体系和环境都完全复原,则该过程称为“可逆过程”。 反应热当体系发生反应之后,使产物的温度回到反应前始态时的温度,体系放出或吸收的热量,称为该反应的热效应。 溶解热:在恒定的T、p下,单位物质的量的溶质B溶解与溶剂A中,形成B的摩尔分数xB=0.1的溶液时,过程的焓变。 稀释热:在恒定的T、p下,某溶剂中质量摩尔浓度b1的溶液用同样的溶剂稀释成为质量摩尔浓度b2的溶液时,所引起的每单位物质的量的溶质之焓变。 准静态过程:在过程进行的每一瞬间,体系都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成。 卡诺循环:1恒温可逆膨胀2绝热可逆膨胀3恒温可逆压缩,4绝热可逆压缩 卡诺定理:在两个不同温度的热源之间工作的所有热机,以可逆热机效率最大 热力学基本方程:1dU=Tds—pdV 2dH=TdS+Vdp 3dA=-SdT-pdV 4dG=-SdT+Vdp(记忆方法见后)拉乌尔定律:稀溶液中溶剂的蒸汽压等于同一温度下纯溶剂的饱和蒸汽压与溶液中溶剂的摩尔分数的乘积PA=PA*xA 亨利定律:一般来说,气体在溶剂中的溶解度很小,所形成的溶液属于稀溶液范围。气体B 在溶剂A中溶液的组成无论是由B的摩尔分数XB,质量摩尔浓度bB,浓度cB等表示时,均与气体溶质B的压力近似成正比。 偏摩尔量:在温度、压力及除了组分B以外其余组分的物质的量均不变的条件下,广度量X 随组分B的物质的量nB变化率XB称为组分B的偏摩尔量。

LNG的物理化学特性

LNG的物理化学特性 LLNG 的基本性质的基本性质 1.LNG的物理性质 主要成分:甲烷,临界温度:190.58K在常温下,不能通过加压将其液化,而是经过预处理,脱除重烃、硫化物、二氧化碳和水等杂质后,深冷到-162 O C,实现液化。 主要物理性质如表1-1所示:无色透明41.5~45.3 430~460 约-162°C 0.60~0.70 颜色高热值(MJ/m 3 )液体密度(g/l)(沸点下)沸点/°C (常压)气体相对密度表1-1 4 4 . LNG . LNG 的基本性质的基本性质2. 典型的LNG组成(摩尔分数)/% N 2 CH 4 C 2 H 6 C 3 H 8 I-C 4 H 10 N-C 4 H 10 C 5 H 12 摩尔质量/(kg/mol)泡点温度/ o C 密度/(kg/m 3 ) LNG 的基本性质的基本性质3. LNG的性质特点 温度低在大气压力下,LNG沸点都在-162°C左右。液态与气态密度比大1体积液化天然气的密度大约是1体积气态天然气的600倍,即1体积LNG大致转化为600体积的气体。 可燃性一般环境条件下,天然气和空气混合的云团中,天然气含量在5%~15%(体积)范围内可以引起着火,其最低可燃下限(LEL)为4% LNG 的基本性质

4. LNG的安全特性1)燃烧特性燃烧范围:5%~15%,即体积分数低于5%和高于15%都不会燃烧; 自燃温度:可燃气体与空气混合物,在没有火源的情况下,达到某一温度后,能够自动点燃着火的最低温度称为自燃温度。甲烷性质比较稳定,在大气压力条件下,纯甲烷的平均自燃温度为650°C。以甲烷为主要成分的天然气自燃温度较高,LNG的自燃温度随着组份的变化而变化。 燃烧速度:是火焰在空气-燃气的混合物中的传递速度。天然气的燃烧速度较低,其最高燃烧速度只有0.3m/s。 LNG 的基本性质的基本性质 低温特性隔热保冷:LNG系统的保冷隔热材料应满足导热系数低,密度低,吸湿率和吸水率小,抗冻性强,并在低温下不开裂,耐火性好,无气味,不易霉烂,对人体无害,机械强度高,经久耐用,价格低廉,方便施工等。 蒸发特性:LNG作为沸腾液体储存在绝热储罐中,外界任何传入的热量都会引起一定量液体蒸发成气体,这就是蒸发气(BOG)。标准状况下蒸发气密度是空气60%。当LNG压力降到沸点压力以下时,将有一定量的液体蒸发成为气体,同时液体温度也随之降低到其在该压力下的沸点,这就是LNG闪蒸。由于压力/温度变化引起的LNG蒸发产生的蒸发气处理是液化天然气储存运输中经常遇到的问题。 8 8 一一 . LNG . LNG 的基本性质的基本性质

MCC和SMCC物理化学性质的比较

International Journal of Pharmaceutics169(1998)183–194 Physicochemical comparison between microcrystalline cellulose and silici?ed microcrystalline cellulose Michael J.Tobyn*,Gerard P.McCarthy1,John N.Staniforth,Stephen Edge Pharmaceutical Technology Research Group,Department of Pharmacy,Uni6ersity of Bath,Cla6erton Down,Bath,BA27AY,UK Received5January1998;received in revised form9March1998;accepted11March1998 Abstract Silici?ed microcrystalline cellulose(SMCC)has been compared with a standard grade of microcrystalline cellulose (MCC)using several physicochemical techniques in order to elucidate any chemical or polymorphic changes in the material that could be attributed to the silici?cation process.Samples of SMCC,MCC and dry and wet mixes of MCC and silicon dioxide were analysed using FT-IR,13C NMR,powder X-ray diffraction,mercury porosimetry, helium pycnometry and scanning electron microscopy together with particle size analysis and deaggregation studies. Analysis of the data obtained from these methods suggested that there were no discernible chemical or polymorphic differences between the samples,indicating that the‘silici?cation’process produces a material which is chemically and physically very similar to standard MCC.?1998Elsevier Science B.V.All rights reserved. Keywords:Microcrystalline cellulose;Silici?ed microcrystalline cellulose 1.Introduction Microcrystalline cellulose(MCC)is widely used as a?ller and binder for wet granulation,direct compression tableting and as a?ller for hard gelatin capsules.It has low chemical reactivity combined with excellent compactibility at low pressures.In a survey carried out by Shangraw and Demarest(1993)relevant workers rated MCC the most useful?ller for direct compression tableting. However,a recent review of the direct compres-sion properties of MCC with respect to its use as a primary excipient nevertheless pointed out a number of limitations to the use of MCC(Bolhuis and Chowhan,1996),the most important of which were considered to be its low bulk density, high lubricant sensitivity,poor?ow characteristics and the in?uence of moisture on the compression characteristics. *Corresponding author.Fax:+441225826114;e-mail: prsmjt@https://www.wendangku.net/doc/8f17891600.html, 1Present address:Carr’s Paper,Cranmore Boulevard,Shir- ley,Solihull,W.Midlands,UK. 0378-5173/98/$19.00?1998Elsevier Science B.V.All rights reserved. PII S0378-5173(98)00127-6

各种化学试剂的物理化学性质

安全防护知识 化验工作中接触的化学药品,很多对人体是有毒的。它们对人体的毒害途径和程度各不相同,有些毒物可有几种途径进入人体,而有些毒物对人体的危害是慢性的、积累性的,因

A中毒与急救 一、毒物侵入的途径 毒物,是指某物质进入人的机体以后,能引起局部或整个机体功能发生疾病的物质。由毒物所引起的任何疾病现象,都称为中毒。 化学试剂中毒一般通过三个途径,引起不同症状的疾病。 1、通过呼吸道中毒:由呼吸道吸入有毒气体、粉尘、蒸汽、烟雾能引起呼吸系统中毒。这种形式的中毒是比较常见的,尤其是有机溶剂的蒸汽和化学反应中所产生的有毒气体。如乙醚、丙酮、甲苯等蒸汽和氰化氢(气体)、氯气、一氧化碳等。 2、通过消化道中毒:除误行吞服外,更多的情况是由于手上污染毒物,在吸烟、进食、饮水咽入消化系统而引起中毒。这类毒物多以剧毒的粉剂较为常见,如氰化物、砷化物、汞盐等。 3、通过触及皮肤中毒和五官粘膜受刺激:某些毒物接触及皮肤,或其蒸汽、烟雾、粉尘对眼、鼻、喉等的粘膜产生的刺激作用。如汞剂、苯胺类、硝基苯等,可通过皮肤黏膜吸收而中毒。氮的氧化物、二氧化碳、三氧化硫、挥发性酸类、氨水等,对皮肤粘膜和眼、鼻、喉粘膜刺激性都很大。 毒物从以上三个途径进入人的机体后,逐渐侵入血液系统直至遍及全身各部,引起更加危险的症状。特别是由消化系统侵入,通过门脉系统经肝脏进入血液,以及从呼吸道进入肺泡中被吸收都是比较迅速的。 二、中毒急救 在化验室里,如发生人身中毒,原则上应首先尽快派人或电话请医生,并报告有关领导或上级组织,同时采取急救措施。 在医生抢救之前,急救中毒的原则是尽量使毒物对人体不发生有害的作用,或者是将有害的作用尽量减少到最小程度。在送医院(或医生到来)之前应迅速查清中毒原因后,针对具体情况,采取以下具体措施进行急救。 1、呼吸系统中毒:如果是呼吸系统中毒,应迅速使中毒者离开现场,移到通风良好的环境,使中毒者呼吸新鲜空气。轻者,短时间内会自行好转;如有昏迷休克、虚脱或呼吸机能不全时,可人工协助呼吸,化验室如有氧气,可给予氧气,如可能,给予喝兴奋剂,如浓茶、咖啡等。 2、经由口服中毒:由口中服入毒物时,首先要立即进行洗胃,呕吐。常用的洗胃液是1:5000的高锰酸钾溶液(千万不要太浓,浓度过大会烧坏胃壁粘膜),或用肥皂水或者3~5%的碳酸氢钠(小苏打)溶液。洗胃要大量地喝,边喝边使之呕吐。最简单的催吐方法是用手指或木杆压舌根,或者给中毒者喝少量(15~25毫升,最多不超过50毫升)1%硫酸铜或硫酸锌溶液催吐剂。如果无洗胃液,可给予大量的温水喝,冲淡毒物并使之呕吐。洗胃要反复

相关文档
相关文档 最新文档