文档库 最新最全的文档下载
当前位置:文档库 › H.323及SIP协议入门

H.323及SIP协议入门

H.323及SIP协议入门

摘要:随着VOIP和视频通信的发展,H.323 和SIP 作为IP 多媒体通信领域中被广泛采纳的两种信令控制协议,受到业界的普遍重视。H. 323 和SIP这两种关键协议各具特色,它们通过互通协调,在各自的领域内必将会有更大的发展前景。

一、VOIP技术的发展现状

由于网络的普及,频宽的增加与语音压缩技术的进步,通过IP 网络传递语音、视频等多媒体信号将是今后IP 网络应用发展的趋势之一。

自从1995 年以色列的VocalTec 公司开发出第一套网际网络电话( Internet Phone )软件以来,VOIP电话(基于IP传输技术的电话)概念已提出10年多了,VOIP的英文全称是“Voice over Internet Protocol ”,它以IP 数据网络为传输平台,对模拟的语音信号进行数字化,并进行压缩、打包等一系列特殊处理后进行传输。压缩后每个普通电话传输速率约占用8~11 kbit/s 带宽,再加上分组交换的计费方式与距离的远近无关,因此与普通电信网同样使用传输速率为64 kbit/s 的带宽相比,VOIP既可以节省大量的长途话费,又可以节省带宽,增加同时通话的进程数。

VOIP技术的发展前景还可以从市场调研公司In-Stat最新预计得知:从2005年至2009年,亚洲地区VOIP市场每年将增长10亿美元,2009年该市场规模将达到100亿美元。在日本、韩国、中国的香港和新加坡等国家和地区,很大比例的长途电话呼叫已转移到了IP 网络。另外,时下流行的即时通信软件如MSN、QQ、NetMeeting等,它们所提供的语音通话功能,也是VOIP技术的典型应用。

二、支撑VOIP技术的通信协议比较分析

在传统电话系统中,一次通话从建立连接到释放连接都需要一定的信令配合完成。在IP电话系统中,寻找被叫方的地址,建立双方的应答,按照彼此的数据能力发送数据,也需要相应的信令系统,称为信令协议。目前VOIP技术最常用的话音建立和控制信令的传输

协议有H.323(无QoS保证的分组网络上的多媒体通信系统标准)和SIP协议(Session Initiation Protocol,会话发起协议)。

H.323和SIP作为VOIP实现实时IP呼叫和多媒体通信业务的两大协议,它们的共同目的都是为实现多媒体通讯。二者都是利用RTP(real-time transport)作为媒体传输的协议,对IP网络电话系统(VOIP)信令提出了完整的解决方案。但随着协议向纵深发展和网络的快速膨胀,二者的发展和竞争也在深化,因此对它们的比较分析就显得至为重要。

1、起源不同

从起源上来看,H.323出现比SIP要早,它在管理控制和QoS(服务质量管理)机制上比SIP更加严格。H.323协议的提出的根本动力是来自于“三网合一”。当IP技术和因特网技术发展迅猛时,迫切要求一个没有严格QoS保障的可以实现多媒体通讯的网络。所以在1996年由ITU-T 国际电信联盟第16研究组制定的第一版的H.323协议应运而生了。H.323协议保证了无QOS保证的分组网络(如IP网络等)的语音、图像和数据的点到点或点到多点的多媒体通信,它是通信领域的协议。而SIP协议是基于计算机和网络的多媒体通信协议,是由Internet标准化组织IETF(Internet Engineering Task Force)在充分参考H.323后而制定了SIP协议。IETF提出的IP电话信令协议,它可以同软交换机(SoftSwitch)进行通信,整合传统的语音及增值服务,并提供最新的即时通信服务以及IP网络上的视频服务。在Internet 飞速发展的情况下,与H.323相比,它更加简单,扩展性更好,和Internet应用更加紧密,可见这是个处于因特网领域的协议。

2、设计风格不同

不同的设计思想,借鉴不同的领域标准,形成了不同的设计风格,H.323与SIP两大协议特色鲜明。

H.323协议采用了综合业务数字网ISDN(Integrated Service Digital NeTwork)的设计思想,它由ITU (国际电信联盟)提出,在呼叫控制和信令方面是一种分层、主从、集中处理和管理的控制方式。它试图把IP电话当作众所周知的传统电话。只在传输方式上,H.323

协议由电路交换变换为分组交换,而且不同设备、不同厂商之间可以进行互相操作,用户不必考虑兼容性问题,可以为用户提供取代普通电话的VOIP业务和视频通信业务。而且其推出较早,目前经过多年的技术发展和标准的不断完善,H.323已经成为被广大ITU成员以及客户所接受的一个成熟标准族。

SIP协议则是作为一个IETF提出的标准,它主要是将IP电话作为因特网上的一个应用,很大程度上借鉴了其它各种广泛存在的Internet协议的设计思想,如HTTP(超文本传输协议)、SMTP(简单邮件传输协议)等,所以SIP协议本身也是一个文本协议。同时SIP借鉴web业务成功的经验,以现有的Internet为基础来架构IP电话业务网, 其通信方式是基于一个分布、客户机/服务器、水平的控制结构,可以简单易行地嵌入廉价终端用户设备,使不同的设备进行通信,确保互操作,具有兼容和扩展能力,所以相对简单、自由,不同的厂商使用相对小的成本就可以构造需要的系统。

3、消息的编码方法不同

从消息的编码方法来看,H.323协议对编解码协议的支持必须是ITU-T严格标准定义的,采用基于ASN.1和压缩编码规则的二进制方法来表示其消息。ASN.1通常需要特殊的代码生成器来进行词法和语法的分析,比较繁杂。而SIP有能力支持任何编解码协议,又因为SIP是基于文本的,所以对以文本形式表示的消息的词法和语法分析就很简单, 如From、To、Subject等域名,根本不需要复杂的说明。而且在头域中增加几个域,就能方便地支持补充业务或智能业务,具有极大的灵活性、扩充性以及跨平台使用的兼容性。例如:对于呼叫转移,只要在BYE请求消息中增加Contact头域,加入欲转至的第三方地址就可实现此业务,这一点使得运营商可以十分方便地利用现有的网络环境实现大规模的推广应用。

4、呼叫建立过程不同

H.323和SIP作为VOIP技术中话音建立和控制信令的传输协议,对呼叫的连接都有建立、管理和释放的能力,都具有网络管理、信息交换的功能,使用户的呼叫建立和信息交换具有QOS能力。

H.323的呼叫建立过程涉及三条信令信道:RAS信令信道,H.225呼叫信令信道和H.245控制信道。通过三条信道的协调才使得H.323的呼叫得以进行, 呼叫建立过程和媒体参数的协商过程是分开进行的,呼叫建立时间较长。

首先,由呼叫方向关守(gatekeeper)发出呼叫请求(ARQ)信息,请求的信息包含一个序列号码,呼叫类型、目的信息等,经过关守同意呼叫后,主叫方通过关守返回消息中提供的H.225信令通道地址与对方(不一定是被叫)建立H.225信令连接, H.225信令交换完毕后,呼叫建立。根据H.225交换过程中得到的H.245通道地址,与对方进行H.245控制信令通信,通过媒体协商,建立多通道的媒体传输。

SIP 在架构上是一个点对点式(Peer-to-peer)的通讯协定,欲通话的双方可以自行决定建立修改参数或取消该通话。当建立通话时,拨号方必须先寻找适当的服务器地址,然后发送SIP 的需求( Request )。SIP只使用6个指令管理呼叫控制信息,分别是:邀请

( INVITE )、确认( ACK )、再见( BYE )、取消(CANCEL)、选项(OPTIONS)和注册(REGISTER)。其中INVITE 、ACK用于建立呼叫,完成三次握手,BYE用以结束会话,OPTIONS用于查询服务器相关信息和功能,CANCEL用于取消已经发出但未最终结束的请求,REGISTER 用于客户机向注册服务器注册用户位置等信息。

首先,由呼叫方向SIP服务器发出呼叫请求,请求的信息包含自身的端点名、所在位置以及对方的端点名、所在位置等。SIP服务器收到信息后会查询和判断被叫方当前的精确地址,并向被叫方发出INVITE类的会话邀请。被叫收到邀请后,会向SIP服务器发出两个响应消息:首先是表示我收到邀请,第二个消息是我接受邀请可以通话。这两个消息依次由SIP服务器转发给主叫方之后,主叫方会直接向被叫用户发送确认和通话信息。通话结束后呼叫方会发出BYE类信息,收到结束回应后结束通话。

5、应用领域和发展前景

由于H.323协议比较成熟,并与传统的电话网相连,目前,包括我国在内的许多国家都采用H.323作为IP电话网关之间的协议。而且H.323特别适合分级分域网络结构,当前的

专业视讯会议也多采用H.323协议,这样就可以进行严格的集中控制,可靠性较高。另外H.323协议便于计费,对宽带的管理也比较简单、有效。

但是因为H.323是由多点控制单元(MCU)集中执行大型会议控制功能,其信令控制功能也必然存在一些问题:如MCU模块一般同通信终端应用程序集成在一起,那么如果提供MCU功能的会议某一参与方决定退出通话,并结束应用程序的运行,整个多方会议也将被终止。而且所有参加会议的终端都向MCU发送控制消息,MCU可能成为瓶颈,相应降低了呼叫处理能力。另外H.323不支持信令的组播功能,其单播功能限制了可扩展性。

SIP则相反,SIP在设计上就使分布式的呼叫模型,具有分布式的组播功能,其组播功能不仅便于会议控制,提高了通信规模和复杂情况的适应能力,而且加快用户定位速度、群组邀请等,也能节约带宽。另外,在会议电话(如大规模视频通讯网络)方面SIP有很强的完善发展空间,会议终端和服务器的实现相对容易,成本也较低。所以目前SIP得到了很多方面的响应:先是3GPP将SIP作为第三代移动通信全IP网络的核心协议,这就使所有的3G设备厂商开始了服从SIP协议以达到互联互通的努力;再是Windows XP操作系统中NetMeeting组建的协议也由H.323改为SIP协议,SIP协议成为了网络未来发展的方向,在下一代网络中的比重越来越大。

当前,这些协议的互通性是研究的一大方向,根据二者互通的基本要求,必需解决用户注册和地址解析、呼叫序列映射和媒体参数映射等方面的问题。而且随着这些协议在构建复杂IP电话系统的过程中不断发展,目前开发的许多网络系统中至少包含以上协议的一种,各制造商都在尝试研制具备互操作性的系统,所以协议的互通能力将继续成为未来关注的热点。

三、结束语

随着通信事业的日益发展,VOIP 技术已慢慢成为语音技术发展的主流。虽然H.323协议与SIP协议分别提出了两套IP电话系统结构,归属两个不同领域的标准化组织,基于两个截然不同的网络业务模型的设计理念,使用的呼叫过程也不尽相同,之间也不可能完全兼容。但它们追求的目标是一致的,都为了实现语音、图像和数据的点到点或点到多点的多媒

体通信。从H.323协议和SIP协议的发展历程看,H.323协议比较成熟稳重,SIP协议比较简单灵活,二者在各自应用的不同阶段和领域,通过互通协调,采用不同的通信协议以达到最佳通信效果。而且随着VOIP技术的逐渐成熟,充分发挥他们应有的作用,更广阔的发展前景正在迎接着它们。

SIP协议呼叫流程及协议分析

一、SIP协议介绍: 会话发起协议SIP(Session Initiation Protocol)是一个应用层控制信令协议,用于建立、更改和终止多媒体会话或呼叫。SIP作为一个基础,可以在其上提供很多不同的服务。目前已经定义的媒体类型有音频、视频、应用、数据、控制。 二、SIP呼叫流程: 注册流程: (1)用户首次试呼时,终端代理A 向代理服务器发送REGISTER 注册请求; (2)代理服务器通过后端认证/计费中心获知用户信息不在数据库中,便向终端代理回送401Unauthorized 质询信息,其中包含安全认证所需的令牌; (3)终端代理提示用户输入其标识和密码后,根据安全认证令牌将其加密后,再次用REGISTER 消息报告给代理服务器; (4)代理服务器将REGISTER 消息中的用户信息解密,通过认证/计费中心验证其合法后,将该用户信息登记到数据库中,并向终端代理A 返回成功响应消息200 OK。 呼叫流程:

(1)用户摘机发起一路呼叫,终端代理A 向该区域的代理服务器发起Invite 请求;(2)代理服务器通过认证/计费中心确认用户认证已通过后,检查请求消息中的Via 头域中是否已包含其地址。若已包含,说明发生环回,返回指示错误的应答;如果没有问题,代理服务器在请求消息的Via 头域插入自身地址,并向Invite 消息的To 域所指示的被叫终端代理B 转送Invite 请求; (3)代理服务器向终端代理A 送呼叫处理中的应答消息,100 Trying; (4)终端代理B 向代理服务器送呼叫处理中的应答消息,100 Trying; (5)终端代理B 指示被叫用户振铃,用户振铃后,向代理服务器发送180 Ringing 振铃信息; (6)代理服务器向终端代理A 转发被叫用户振铃信息; (7)被叫用户摘机,终端代理B 向代理服务器返回表示连接成功的应答(200 OK);(8)代理服务器向终端代理A 转发该成功指示(200 OK); (9)终端代理A 收到消息后,向代理服务器发ACK 消息进行确认; (10)代理服务器将ACK 确认消息转发给终端代理B; (11)主被叫用户之间建立通信连接,开始通话; 结束流程:

sip协议原理分析及总结

SIP协议学习总结 1、SIP协议定义 SIP(Session Initiation Protocol,即初始会话协议)是IETF提出的基于文本编码的IP电话/多媒体会议协议。用于建立、修改并终止多媒体会话。SIP 协议可用于发起会话,也可以用于邀请成员加入已经用其它方式建立的会话。多媒体会话可以是点到点的话音通信或视频通信,也可以是多点参与的话音或视频会议等。SIP协议透明地支持名字映射和重定向服务,便于实现ISDN,智能网以及个人移动业务。SIP协议可以用多点控制单元(MCU)或全互连的方式代替组播发起多方呼叫。与PSTN相连的IP电话网关也可以用SIP协议来建立普通电话用户之间的呼叫。 SIP协议在IETF多媒体数据及控制体系协议栈结构的位置 H.323SIP RTSP RSVP RTCP H.263 etc. RTP TCP UDP IP PPP Sonet AAL3/4AAL5 ATM Ethernet PPP V.34 SIP协议支持多媒体通信的五个方面: ◆用户定位:确定用于通信的终端系统; ◆用户能力:确定通信媒体和媒体的使用参数; ◆用户有效性:确定被叫加入通信的意愿; ◆会话建立:建立主叫和被叫的呼叫参数; ◆会话管理:包括呼叫转移和呼叫终止; SIP协议的结构 SIP是一个分层的协议,也就是说SIP协议由一组相当无关的处理层次组成,这些层次之间只有松散的关系。 SIP最底层的是它的语法和编码层。编码方式是采用扩展的Backus-Naur Form grammar (BNF范式)。 第二层是传输层。它定义了一个客户端发送请求和接收应答的方式,以及一 个服务器接收请求和发送应答的方式。所有的SIP要素都包含一个通讯层。 第三层是事务层。事务是SIP的基本组成部分。一个事务是UAC向UAS发送的一个请求以及UAS向UAC发送的一系列应答。事务层处理应用服务层的重发,匹配请求的应答,以及应用服务层的超时。任何一个用户代理客户端完成的事情都是

SIP协议相关文件

Osip2是一个开放源代码的sip协议栈,是开源代码中不多使用C语言写的协议栈之一,它具有短小简洁的特点,专注于sip底层解析使得它的效率比较高。 eXosip是Osip2的一个扩展协议集,它部分封装了Osip2协议栈,使得它更容易被使用。 一、介绍 Osip2是一个开放源代码的sip协议栈,是开源代码中不多使用C语言写的协议栈之一,它具有短小简洁的特点,专注于sip底层解析使得它的效率比较高。但缺点也专门明显,首先确实是可用性差,没有专门好的api封装,使得上层应用在调用协议栈时专门破裂;其次,只做到了transaction层次的协议过程解析,

缺少call、session、dialog等过程的解析,这也增加了使用的难度;再次,缺少线程并发处理的机制,使得它的处理能力有限。 eXosip是Osip2的一个扩展协议集,它部分封装了Osip2协议栈,使得它更容易被使用。eXosip增加了call、dialog、registration、subscription等过程的解析,使得有用性更强。然而eXosip局限于UA的实现,使得它用于registrar、sip server等应用时极其不容易。另外,它并没有增加线程并发处理的机制。而且只实现了音频支持,缺少对视频和其它数据格式的支持。 综合来讲,Osip2加上eXosip协议栈仍然是个实现Sip协议不错的选择。因此需要依照不同的需求来增加更多的内容。 二、Osip2协议栈的组成 Osip2协议栈大致能够分为三部分:sip协议的语法分析、sip 协议的过程分析和协议栈框架。 1、Sip协议的语法分析:

要紧是osipparser2部分,目前支持RFC3261和RFC3265定义的sip协议消息,包括INVITE、ACK、OPTIONS、CANCEL、BYE、SUBSCRIBE、NOTIFY、MESSAGE、REFER和INFO。不支持RFC3262定义的PRACK。 遵循RFC3264关于SDP的offer/answer模式。带有SDP的语法分析。 支持MD5加解密算法。支持Authorization、www_authenticate 和proxy_authenticate。 2、Sip协议的过程分析: 要紧是osip2部分,基于RFC3261、RFC3264和RFC3265的sip 协议描述过程,围绕transaction这一层来实现sip的解析。 Transaction是指一个发送方和接收方的交互过程,由请求和应答组成。请求分为Invite类型和Non-Invite类型。应答分为响应型的应答和确认型的应答。响应型的应答是指那个应答仅代表

SIP协议主要消息讲解

第一章SIP协议主要消息 1.1 SIP消息分类 SIP协议是以层协议的形式组成的,就是说它的行为是以一套相对独立的处理阶段来描述的,每个阶段之间的关系不是很密切。 SIP协议将Server和User Agent之间的通讯的消息分为两类:请求消息和响应消息。 请求消息:客户端为了激活特定操作而发给服务器的SIP消息,包括INVITE、ACK、BYE、CANCEL、OPTION和UPDATE消息。 SIP请求的6种方法: 1、邀请(INVITE)——邀请用户加入呼叫 2、确认(ACK)——确认客户机已经接收到对INVITE的最终响应 3、可选项(OPTIONS)——请求关于服务器能力的信息 4、再见(BYE)——终止呼叫上的两个用户之间的呼叫 5、取消(CANCEL) 6、注册(REGISTER)——提供地址解析的映射,让服务器知道其它用户的位置 响应消息:服务器向客户反馈对应请求的处理结果的SIP消息,包括1xx、2xx、3xx、4xx、5xx、6xx响应 1.2 SIP消息结构 请求消息和响应消息都包括SIP消息头字段和SIP消息体字段; SIP消息头主要用来指明本消息是有由谁发起和由谁接受,经过多少跳转等基本信息; SIP消息体主要用来描述本次会话具体实现方式; 1.3 消息格式 1.3.1 请求消息格式 SIP请求消息的格式,由SIP消息头和一组参数行组成,如图1-1所示。通过换行符区分命令行和每一条参数行。

图1-1 SIP 请求消息结构 注意:参数行的顺序不是固定的。对应的参数解释见错误!未找到引用源。。 消息体定义: Call-ID :头字段是用来将消息分组的唯一性标识 From :头字段是指示请求发起方的逻辑标识,它可能是用户的注册地址。From 头字段包含一个URI 和一个可选的显示名称 CSeq :头字段用于标识事务并对事务进行排序。它由一个请求方法和一个序列号组成,请求方法必须与对应的请求消息类型一致 Max-Fowords :头字段限定一个请求消息在到达目的地之前允许经过的最大跳数。它包含一个整数值,每经过一跳,这个值就被减一。如果在请求消息到达目的地之前该值变为零,那么请求将被拒绝并返回一个483(跳数过多)错误响应消息。 Via :头字段定义SIP 事务的下层(传输层)传输协议,并标识响应消息将要被发送的位置。只有当到达下一跳所用的传输协议被选定后,才能在请求消息中加入Via 头字段值。 expires :参数指出了该值中包含的URI 地址的有效期。这个参数的值是以秒为单位计算的。如果没有提供该参数,那么URI 地址的有效期由Expires 头字段值来确定。 消息头

SIP协议格式详解

1.SIP 1.1.1.SIP格式 每条SIP消息由以下三部分组成: (1)起始行(Start Line):每个SIP消息由起始行开始。起始行传达消息类型(在请求中是方法类型,在响应中是响应代码)与协议版本。起始行可以是一请求行(请求)或状态行(响应)。 (2)SIP头:用来传递消息属性和修改消息意义。它们在语法和语义上与HTTP头域相同(实际上有些头就是借自HTTP),并且总是保持格式:<名字>:<值>。 (3)消息体:用于描述被初始的会话(例如,在多媒体会话中包括音频和视频编码类型,采样率等)。消息体能够显示在请求与响应中。SIP清晰区别了在SIP起始行和头中传递的信令信息与在SIP 范围之外的会话描述信息。可能的体类型就包括本文将要描述的SDP会话描述协议。

1.1. 2.消息头 Header field where proxy ACK BYE CAN INV OPT REG Accept R - o - o m* o Accept 2xx - - - o m* o Accept 415 - c - c c c Accept-Encoding R - o - o o o Accept-Encoding 2xx - - - o m* o Accept-Encoding 415 - c - c c c Accept-Language R - o - o o o

Accept-Language 2xx - - - o m* o Accept-Language 415 - c - c c c Alert-Info R ar - - - o - - Alter-Info 180 ar - - - o - - Allow R - o - o o o Allow 2xx - o - m* m* o Allow r - o - o o o Allow 405 - m - m m m Authentication-Info 2xx - o - o o o Authorization R o o o o o o Call-ID c r m m m m m m Call-Info ar - - - o o o Contact R o - - m o o Contact 1xx - - - o - - Contact 2xx - - - m o o Contact 3xx d - o - o o o Contact 485 - o - o o o Content-Disposition o o - o o o Content-Encoding o o - o o o Content-Language o o - o o o Content-Length ar t t t t t t Content-Type * * - * * * Cseq c r m m m m m m Date a o o o o o o Error-Info 300-699 a - o o o o o Expires - - - o - o From c r m m m m m m In-Reply-To R - - - o - - Max-Forwards R amr m m m m m m Min-Expires 423 - - - - - m MIME-Version o o - o o o Organization ar - - - o o o Priority R ar - - - o - - Proxy-Authenticate 407 ar - m - m m m Proxy-Authenticate 401 ar - o o o o o Proxy-Authorization R dr o o - o o o Proxy-Require R ar - o - o o o Record-Route R ar o o o o o o Record-Route 2xx,18x mr - o o o o - Reply-To - - - o - - Require ar - c - c c c - o o o o o Retry-After 404, 413,

SIP协议与视频通信

SIP协议与视频通信 关键字:SIP视频通信H.323 摘要:文章简要概述现有视频通信技术,包括H.320与H.323应用。然后介绍IETF可以用于视频通信的协议:SIP。在SIP介绍中首先描述SIP协议的历史,然后描述SIP的组成部件。明确部件后举例说明了一个SIP呼叫建立的流程。在第四部分通过与H.323协议族比较来说明SIP用于视频通信的优劣。最后指出SIP协议用于视频通信的前景。 引言 沟通是人类生存的基本需求,通信已成为现代生活中必不可少的内容。在任何时间,任何地点与人和人通信是电信发展的目标。通信技术发展到今天,电话网几乎覆盖全球。语音通信(电话)似乎已基本达到上述目标。但是随着技术的发展,人们已不满足仅仅语音通信。大规模视频通信已成为下一阶段信息产业发展方向。虽然电视会议已出现二十多年,当前不但统一的标准而且有成熟的产品;但是由于种种原因一直没有得到象电话那样的普遍应用。视频通信似乎一直是一座未被足量开采的金矿。随着传输技术的发展,带宽资源已不是瓶颈;随着一场SARS的肆虐,视频通信又成为热点。随着SIP协议的出现,视频通信在技术上又有了新的发展动力。 视频通信协议概述 基于H.320的视频应用 传统会议电视利用以电话网2M或者1.544M直联数字线路连接终端会议电视设备进行实时音频、视频和数据信息的传送。通过使用多点控制器,可以在一块控制板具备所有主会场的操作切换功能。最初会议电视厂家以各自专用的压缩和通信算法进行生产,各个会议电视厂家产品无法互联互通。 随着ITU-T推出H.320协议,上述问题得到很大程度的解决。H.320是同步电路交换网(如ISDN)上现频传输的标准。电路交换网适用于实时应用,如长时间和具有确定延迟的音频和视频信号传递。电路的建立依赖于带外信令、集中的路由控制和昂贵的交换设备。使用H.320协议,电话网上中商用会议电视的理想电路是384 kbps。使用384kbps的电路可以以合理的成本提供高质量的音频和视频信号。采用2M或者1.544M的中继直连当然很容易满足上述带宽要求,但是作等于建立专网,价格将令用户难以承受。 由于电话网络中继价格不断下降以及大量既成事实的基于H.320的电视会议应用,虽然H.320通信成本相对于现有的其它方式稍显昂贵,但其市场仍将在未来数年里继续成长——尽管其成长是缓慢的。 基于H.323协议的视频应用 H.323是国际电信联盟制定的局域网上的多媒体通信系列标准。该协议专门为不提供服务质量(QOS)保证的局域网技术制定,例如运行于以太网、快速以太网和令牌环网(Token Ring)上的TCP/IP和IPX。尽管H.323协议特别为局域网制定,只要带宽时延满足要求同样可以应用在更大范围例如城域网和广域网。1997年5月,国际电信联盟第15研究小组重新定义

SIP协议介绍及应用前景分析

2017年第2期信息通信2017 (总第170 期)INFORM ATION & COMMUNICATIONS (Sum. No 170) SIP协议介绍及应用前景分析 杜鑫 (中国人民解放军9155〇部队3分队) 摘要:S IP是一种源于互联网的IP语音会话控制协议,具有灵活、易于实现、便于扩展等特点。文章介绍了 S IP协议的发 展历史、网络组成,通过与传统的电信网络协议对比分析了 S IP协议的特点,结合S IP协议特点及现状对其应用前景进 行了分析。 关键词:SIP ;融合通信;VO LTE;互联网 中图分类号:TN913.23 文献标识码:A文章编号:1673-1131(2017)02-0105-02 1S IP协议的发展历史 SIP(Session Initiation Protocal)会话初始化协议的概念在 1996年出现,主要运用在Internet的不同文本类型当中,用于 电子邮件以及文字聊天等各项环节中。1999年由IE T F最初 建立,应用于Internet的相关网络环境结构当中,实现实时性 通讯。二H世纪初,由IE T F当中的S IP工作团队发出 RFC3261建议后才得到了逐渐推广。 S IP协议最初应用于Internet网络中,实现多媒体的会话 建立控制,后来作为IMS(IP M ultim edia Subsystem IP多媒体 子系统)的主要信令应用于电信领域的VOBB(V oiceover Broad Band宽带语音),近年来随着LT E的推广,SIP成为LTE 的语音最终解决方案V O LTE的主要信令协议,其应用范围从 特定环境逐步扩展至主流多媒体通信环境。 2 S IP网络组成 2.1 S IP协议在IM S中的应用 S IP协议是IM S中的基本协议,应用于M w、U t、ISC、M i、M g、M j、M k、M r等众多接口,整个IM S网络的会话控制功能 都是由S IP协议完成,具体使用情况如图1所示: P-CSCF ATS IM-SSF SIPl 4 M RFC UGC 19 图1S IP协议在IM S网络中应用示意图 2.2 S IP网络架构 S IP使用CS(Client/server客户端/服务器)架构如图2所 示,交互形式为请求、响应的方式。User Agent C lie n t即客户 端,发起S IP请求;User Agent Server即服务器端,进行S IP请 求处理,并进行响应,Request Proxy Server起到消息路由转发的功能。 3.2认证测试标准 系统B模型采用的简表是07B0,根据K N X协议必须满 足如表1所列的功能需求。认证测试将会针对这些基本功能 来设计测试例进行测试。 按照测试规范[6]要求,先通过E TS配置软件配置好K N X 设备后,采用E IT T软件编写好测试例,运行测试序列,所有测 试例均通过,说明该协议栈符合K N X协议规范要求。在软件 开发过程中,可以通过该方式进行各个功能点的验证,从而保 证软件的可靠性,缩短最终的认证周期。 表1系统B的基本功能表 协议栈主要功能 数据链路层数据帧的封装和解析、应答、数据过滤 网络层正确设置路由计数器 传输层支持四种传输模式;支持style3的状态机 配置和管理直接内存访问;用户内存的直接内存访问;验证模式;接口对象处理;下载状态机;运行状态机;重启;授权;设备描述业务;编程模式;K N X序列号;地址表?,关 联表;组对象表;应用相关参数 4结语 本文介绍的系统B模型的K N X设备是基于LPC处理器、L in u x系统来设计和实现的,并采用了 NCN5120芯片作为 K N X总线收发模块。该设备通过了第三方认证测试实验室的 认证测试,符合K N X协议规范。系统B模型K N X具有更丰 富的资源,可应用于复杂的智能家居和楼宇控制系统中,具有 广阔的市场价值和应用前景。 参考文献: [1]夏长凤.基于K N X总线智能家居控制系统的设计[J].电 器自动化,2016, 38⑴. [2]任志勇.基于K N X智能家居的应用[J].重庆电子工程职 业学院学报,2010, 19(4). [3]Jason Richards,Development o f Complex K N X Devices. W EINZIERL ENGINNERING GmbH,2010. [4]Konnex Association.Konnex Standard,Vol3,System Specifications,2013. [5]Konnex Association.Konnex Standard,Vol6,Profiles,2013. [6]Konnex Association.Konnex Standard,Vol8,System Test Specifications,2013. 作者简介:朱莉(1979-),女,四川省资中县人,电子工程师,硕 士学位,主要研宄方向为智能家居、大数据、LTE。 105

SIP协议扩展分析

协议分析 协议扩展分析 STATE KEY LABORATORY OF SWITCHING TECHNOLOGY AND TELECOMMUNICATION NETWORK ????STATE KEY LABORATORY OF SWITCHING TECHNOLOGY AND TELECOMMUNICATION NETWORK ???STATE KEY LABORATORY OF SWITCHING TECHNOLOGY AND TELECOMMUNICATION NETWORK STATE KEY LABORATORY OF SWITCHING TECHNOLOGY AND TELECOMMUNICATION NETWORK ???STATE KEY LABORATORY OF SWITCHING TECHNOLOGY AND TELECOMMUNICATION NETWORK ?

SWITCHING TECHNOLOGY AND TELECOMMUNICATION NETWORK 与传统 Telephony 业务互通的场景 ?Encapsulation –'Transparent' Transit of ISUP Messages –SIP 与ISUP 协议不可能一一映射 –如果为了保证SP1-SP2之间业务的无缝互通,只有SP1发出的ISUP 消息能够透传到SP2–将ISUP 消息封装在SIP 消息体里–Content-Type: application/ISUP

STATE KEY LABORATORY OF SWITCHING TECHNOLOGY AND TELECOMMUNICATION NETWORK ?可STATE KEY LABORATORY OF SWITCHING TECHNOLOGY AND TELECOMMUNICATION NETWORK SIP GW INVITE SIP Proxy PSTN PSTN IAM SIP GW Transaction STATE KEY LABORATORY OF SWITCHING TECHNOLOGY AND TELECOMMUNICATION NETWORK ???准?STATE KEY LABORATORY OF SWITCHING TECHNOLOGY AND TELECOMMUNICATION NETWORK SIP GW INVITE SIP Proxy PSTN PSTN IAM SIP GW STATE KEY LABORATORY OF SWITCHING TECHNOLOGY AND TELECOMMUNICATION NETWORK ?规则CANCEL ???

sip协议解析与实现(c和c 使用osip)11

sip协议解析与实现(c和c++使用osip)11 第八章查询能力 SIP的OPTIONS方法允许一个UA查询另外一个UA或者一个代理服务器的能力。这能让客户端探测关于它们所支持的方法、内容类型、扩展和编码等信息,而不用"呼叫(ringing)"另外一端。例如,在客户端插入了一个Require头域到INVITE 中,并列出了不确定目标UAS是否支持的能力之前,它可以先使用OPTIONS方法查询目标UAS是否要查询的选项被目标UAS在应答的Supported头域中返回。所有UA必须支持OPTIONS方法。 OPTIONS方法的目标使用Request-URI来标识,因为它可以表示不同的UA或者SIP服务器。如果OPTIONS被定位到一个代理服务器,Request-URI不由客户端设置,这类似于REGISTER请求设置Request-URI的方法。 如果服务器接收到一个Max-Forwards头域的值为0的的OPTIONS请求,它要对这个请求进行应答而不用管Request-URI. 这个行为与HTTP/1.1一致。这个行为可以被用于"追踪路由线路(traceroute)"功能,从而使用发送一系列递增的 Max-Forwards值的OPTIONS请求的方法检查消息路由过程中个别服务器的能力。

作为一般UA的行为,如果OPTIONS长时间没有应答,事务层能够返回一个超时错误。这将指出,目标是不可到达的并且查询的能力是不可以使用的。 OPTIONS请求可能由建立一个对话的一端发送,用于查询对端在后面的对话中可能会被使用到的能力。 第一节构造OPTIONS请求 OPTIONS请求使用像RFC3261第8.1.1讨论的标准的构造SIP请求的规则来构造。 OPTIONS可能会有一个Contact头域。 应该包含一个Accept头域用来指出UAC希望接收到的应答中的消息体类型。典型的,这可能被设置成用来描述UA的媒体能力的类型,比如,SDP(application/adp)。OPTIONS请求的应答被认为是有限定范围的,它被限定在原始请求的Request-URI内。只有当OPTIONS被作为建立对话的一部分发送,它保证会话中后继的请求也由应答OPTIONS的服务器所接收时,对OPTIONS请求的应答才是可用的。 OPTIONS请求的例子: OPTIONS sip:carol@https://www.wendangku.net/doc/8c17928020.html, SIP/2.0 Via: SIP/2.0/UDP https://www.wendangku.net/doc/8c17928020.html,;branch=z9hG4bKhjhs8ass877 Max-Forwards: 70

SIP协议讲解

14 SIP协议关于本章

本章将对SIP协议做一简要介绍,包括涉及的基本概念、消息结构以及简要的消息流程。 14.1 概述 SIP(Session Initiation Protocol)是一个应用层控制协议,用于创建、更改和终止会话。这里的会话类型包括多媒体会议、Internet电话等类似的应用。SIP是实现VOIP(Voice over IP)的关键协议之一。 SIP支持别名映射、重定向服务、ISDN和智能网业务。它支持个人移动(personal mobility),即终端用户能够在任何地方、任何时间请求和获得已订购的任何电信业务。总的来说,SIP能够支持下列五种多媒体通信的信令功能。 l用户定位:确定参加通信的终端用户的位置; l用户通信能力协商:确定通信的媒体类型和参数; l用户意愿交互:确定被叫是否乐意参加某个通信; l建立呼叫:包括向被叫“振铃”,确定主叫和被叫的呼叫参数; l呼叫处理和控制:包括呼叫重定向、呼叫转移、终止呼叫等等。 SIP可以通过MCU(Multipoint Control Unit)、单播联网方式、或组播方式创建多方会话,支持PSTN和IP电话之间的网关功能。 SIP协议对低层协议作了最少的假设,低层协议可以为SIP协议提供可靠或非可靠传输,可以为分组或字节流业务。SIP可以使用UDP协议或TCP协议作为传输层协议,首选UDP协议。 14.1.1 相关概念 呼叫 一个呼叫是由一个会议中被同一个发起者邀请加入的所有成员组成的。一个SIP 呼叫由Call-ID进行标识。 因此,如果一个用户是被不同的人邀请参加同一个多点会议,那么每个邀请都构成一个呼叫。点到点IP电话会话是一种最简单的会话,它映射为单一的SIP呼叫。 呼叫分支 一个呼叫分支(Call leg)由Call-ID、To、From三个参数共同决定。在同一个Call-ID中,从A到B的请求与从B到A的请求都属于同一个呼叫分支,呼叫分支也可以理解成一次呼叫中消息经过的路径。 事务 事务是发生在客户端和服务器之间的,包括从客户端发给服务器的第一个请求消息直到服务器端发给客户端的最终响应消息,这期间的所有的消息。 事务是由一个呼叫分支中的CSeq顺序号来标识的。但也有例外,比如一个ACK 请求与对应的INVITE请求具有相同的CSeq,但它们却构成了各自的事务。 一个正常的呼叫一般包含三个事务。其中,呼叫启动包含两个操作请求:邀请(INVITE)和证实(ACK),前者需要回送响应,后者只是证实已收到最终响应,不需要回送响应。呼叫终结包含一个操作请求:再见(BYE)。 定位服务 SIP重定位服务器或代理服务器用来获得被叫位置的一种服务,可由定位服务器提供,但SIP协议不规定SIP服务器如何请求定位服务。 代理服务器 代理服务器(Proxy Server)是用于将SIP请求路由到目的地的中间路径。它既是客户端也是服务器。用户请求可以直接被代理服务器处理或被转发给别的代理服务器。代理服务器在转发之前要对消息进行解析,必要时还会改写请求。 重定向服务器

SIP协议测试总结

SIP协议测试总结 一:响应码定义 1、响应(Response) 1)1XX:临时响应,表示请求消息正在被处理。 2)2XX:成功响应,表示请求已被成功接收,完全理解并被接受。 3)3XX:重定向响应,表示需采取进一步以完成该请求。 4)4XX:客户机错误,表示请求消息中包含语法错误信息或服务器无法完成客户机请求。 5)5XX:服务器错误,表示服务器无法完成合法请求。 6)6XX:全局故障,表示任何服务器无法完成该请求。 100:临时响应,正在尝试 180:振铃,UA收到INVITE请求之后用该响应通知用户,该响应也可以再发起一个本地回铃 181:呼叫正在转发 182:排队 183:会话进行 200:OK 300网络协议不兼容:会话描述中的一个或多个网络协议不可用。 301网络地址格式不兼容:会话描述中的一个或多个地址格式不可用。 302传送协议不兼容:会话描述中的一个或多个传送协议不可用。 303带宽单位不兼容:会话描述中的一个或多个带宽度量单位不被理解。 304媒体类型不可用:对话描述中的一个或多个媒体类型不可用。 305媒体格式不兼容:对话描述中的一个或多个媒体格式不可用。 306媒体特征不被理解:对话描述中的一个或多个媒体特征不被支持。

307对话描述参数不被理解:除上述几种参数之外的参数不被理解。 330组播不可用:用户站点不支持组播。 331单播不可用:用户站点不支持单播通信(通常是由于防火墙的存在)。 370带宽不足:对话描述中定义的或者媒体定义的带宽超出可用带宽。 399混合告警:该告警表示用户存在的任意一种错误,收到该告警的系统不可以采取任何自动的动作 401:未授权 403:禁止 404:未找到 405:不允许的请求方法 406:不接受 407:代理服务器需要鉴权 408:请求超时 413:请求消息过大 415:不支持的媒体类型 414:Request-URI过长 415:不支持媒体类型 416:不支持的URI方案 420:错误的扩展 421:需要扩展支持 423:间隔太短 480:临时不可用 481:呼叫/事务不存在 482:检测到路由循环

SIP协议的认识及呼叫追踪分析实验

《软交换系统实验》实验报告四 实验室名称:现代通信网络实验室实验日期: 2011 年 6月 5日 学院(系)专业、班级姓名成绩 实验项目SIP协议的认识及呼叫追踪分析实验指导教师 教师评语 教师签名: 年月日 一、实验过程原始记录(数据、图表等) 1.设备配置实验记录 设备名称设备IP地址短号设置长号设置 EIA2016设备192.168.0.3 101 EIT200 SIP电话192.168.1.101 802 2.呼叫跟踪实验记录 3.1)主叫信息 群号: 1 短号: 101 长号:用户标识码: (2)被叫信息 群号:1 短号: 102 长号:用户标识码: (3)呼叫消息原始记录(包括:主叫方和被叫方与EIX交互的信令消息) ①主叫方与EIX交互的呼叫信令消息跟踪结果: [151-12:02:09:970] MSG :--->> to 192.168.0.3/58525 crypt:TRUE Phone Call proto:P2PV2 len:739 INVITE sip:25130016@192.168.0.3 SIP/2.0 Via: SIP/2.0/UDP 192.168.0.3:2080;branch=z9hG4bK7155de6d801d63c038d6335428dfb99e ;rport From: ;tag=95e1a9c636206889ba1e1906afc802bf To: Call-ID: 9677d064ead93fedc5873390abd0f84a@192.168.0.3 CSeq: 25971 INVITE Contact: Supported: 100rel Allow: INVITE, ACK, CANCEL, BYE, OPTIONS, [152-12:02:09:970]INFO, UPDATE, PRACK Content-Type: application/sdp Max-Forwards: 70 Content-Length: 244 v=0

SIP协议深入介绍

SIP协议深入介绍 网络事业部软交换开发部王笑蓉1.SIP简介 SIP(Session Initiation Protocol)是应用层控制协议,可以创建,修改,以及终止一个多媒体会话。它具有以下几个主要功能: User location:确定通信中的终端位置 availability:确定被叫方是否愿意进行通信 User capabilities:确定用于通信的媒体类型及参数 User setup:建立会话各方的会话参数 Session management:终止会话,修改会话参数 Session SIP协议需要和其他IETF协议一起来构成一个完整的多媒体通信构架。这些协议有: RTP(Real Time Transport):传输实时数据,提供QoS反馈信息 Streaming protocol):控制流媒体的传送 Time RTSP(Real MEGACO(Media Gateway Control Protocol):控制媒体网关 SDP(Session Description Protocol):描述多媒体会话 1.1SIP协议结构 SIP协议的行为模型可以用几个分层的相对独立处理阶段来描述: 1.语法及编码层 2.传输层 定义了客户端如何通过网络发送请求及接收响应,以及服务器端如何接收请求并发送响应。所有SIP逻辑实体都包含此层。 3.事务层 事务层处理应用层请求或响应消息的重发,响应与请求的匹配以及应用层的超时。一个SIP事务由一个请求和对该请求的所有响应构成,这些响应分临时响应 (provisional response)和最终响应(final response)。对于INVITE事务,对应于非 2xx响应的ACK确认消息也属于该事物,而对应于2xx响应的ACK确认消息则不 属于该INVITE事物。 UA以及stateful proxy均包含事务层,而stateless proxy 不包含事务层 一个事物根据逻辑功能分为客户事务(client transaction)和服务器事务(server transaction)。客户事务和服务器事务是存在于UA及有状态代理服务器(stateful

相关文档