文档库 最新最全的文档下载
当前位置:文档库 › 第三章晶格振动作业

第三章晶格振动作业

第三章晶格振动作业
第三章晶格振动作业

提示:金属Na为bcc结构,其原子半径为r m = 1.86 埃。

提示:x x

x N N s s --=∑-=1110

结构化学第三章习题

结构化学试卷 班级姓名分数 一、选择题( 共11题15分) 1. 2 分(3251) 3251 下列哪一种说法是正确的?------------------------------------------------ ( ) (A) 略去离心变形,任何分子的转动谱项均可表示为BJ(J+1) (B) 根据非极性双原子分子的转动跃迁选律, J=0说明该分子的转动能级不能改 变 (C) 一双原子分子给定电子组态的振动能级是不等间隔的 2. 2 分(3239) 3239 运用刚性转子模型处理异核双原子分子纯转动光谱,一般需知几条谱线的ν~(J),就可计算其核间距? (A) 1 (B) 2 (C) 3 (D) 4 3. 2 分(3182) 3182 红外光谱中的指纹区源于:---------------------------- ( ) (A) 分子中特征基团的振动 (B) 分子骨架振动 (C) 分子的所有简正振动 (D) 分子的转动 4. 2 分(3125) 3125 下列分子的UPS 与N2的UPS 十分相似的是:------------ ( ) (A) O2(B) (C) H2(D) CO 5. 1 分(3169) 3169 对于C-Cl 键振动光谱特征频率最大的是:---------------------------- ( ) 6. 1 分(3170) 3170 由下述实验方法可验证分子轨道能级顺序的是:---------------------------- ( ) (A) 红外光谱(B) 核磁共振(C) 质谱(D) 光电子能谱 7. 1 分(3167) 3167 下列分子转动光谱中出现谱线波长最长的是:---------------------------- ( )

第三章 红外光谱分析、原子吸收光谱、气相色谱练习题-1

第三章红外光谱分析、原子吸收光谱、气相色谱练习题 一、选择题 1.在光学分析法中, 采用钨灯作光源的是() A原子光谱 B分子光谱 C可见分子光谱 D红外光谱 2.双光束分光光度计与单光束分光光度计相比,其突出优点是 ( ) A 可以扩大波长的应用范围 B 可以采用快速响应的检测系统 C 可以抵消吸收池所带来的误差 D 可以抵消因光源的变化而产生的误差 3. 一种能作为色散型红外光谱仪色散元件的材料为 ( ) A 玻璃 B 石英 C 卤化物晶体 D 有机玻璃 4. 不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) A 分子既有振动运动,又有转动运动,太复杂 B 分子中有些振动能量是简并的 C 因为分子中有 C、H、O 以外的原子存在 D 分子某些振动能量相互抵消了 5.水分子有几个红外谱带,波数最高的谱带对应于何种振动 ( ) A 2 个,不对称伸缩 B 4 个,弯曲 C 3 个,不对称伸缩 D 2 个,对称伸缩 6.能与气相色谱仪联用的红外光谱仪为 ( ) A 色散型红外分光光度计

B 双光束红外分光光度计 C 傅里叶变换红外分光光度计 D 快扫描红外分光光度计 7. 红外光谱法, 试样状态可以是 ( ) A 气体状态 B 固体状态 C 固体, 液体状态 D气体, 液体, 固体状态都可以 8.原子发射光谱的产生是由() A.原子的次外层电子在不同能态问跃迁 B.原子的外层电子在不同能态间跃迁 C.原子外层电子的振动和转动 D.原子核的振动 9.原子吸收光谱法是一种成分分析方法, 可对六十多种金属和某些非金属元素进行定量测定, 它广泛用于( ) 的定量测定。 A.低含量元素 B.元素定性 C.高含量元素 D.极微量元素 10.原子吸收光谱分析中,乙炔是() A. 燃气-助燃气 B. 载气 C. 燃气 D.助燃气 11.原子吸收光谱光源发出的是() A. 单色光 B. 复合光 C. 白光 D. 可见光 12.在气相色谱分析中, 用于定性分析的参数是 ( ) A 保留值 B 峰面积 C 分离度 D 半峰宽 13.在一维气相色谱分析中, 用于定量分析的参数是 ( ) A 保留时间 B 保留体积 C 半峰宽 D 峰面积

晶格振动与声子

2.4 晶格振动与声子 绝热近似下,固体的运动近似地简化为两个相对较小的子系统:电子和核(或原子实)的运动问题。前面对电子体系的运动状态作了讨论,现在对第二个问题,即核(或原子实)子系统的运动作一简要回顾。如2.1中所述,对给定的电子系 状态n ,原子实系统 感受到的 有效势场 ()()() N LL n V V E =+R R R , 原子实间的库伦相互作用() LL V R + 依赖于核构型的电子能() n E R 描述原子实系统运动的哈密顿方程为: ()()()()() 2 2 12I n LL S I I X E V X E X M ??-?++=??∑R R R R R (2.4-1) 2.4.1 简谐近似和正则振动模 上述方程涉及大量粒子的运动,数学上很难求解。需要一个好的近似作为讨论的出发点。我们感兴趣的是:有效势有极小值(即具有稳定平衡构形),原子偏离平衡位置不太远的情形。 设晶体包含N 个原胞,每个原胞有υ个原子,采用周期性边界条件。 第n 个原胞中,第α个原子的平衡位置为 n n R R R αα=+, n R 和R α分别为原胞(代表点)位置和原子α在原胞中相对代表点的位置。 原子相对平衡位置的瞬时位移的直角坐标分量为()n i s t α (1,2,3i =)。 将有效势场() N V R 在平衡核构形{}0n R α=R 处作泰勒展开: ()() 201......2N N N n i n i n in i n i n i V V V s s S S αααααα''''''''' ?=++??∑R R (2.4-2) 取常数项为零,一次项在平衡构型下恒等于零,展开式中第一个不为零的项就是二次项。考虑原子实围绕平衡位置作小振动的情形,高次项可忽略,这就是所谓的 简谐近似。可以证明,由这样的简谐势联系在一起的N υ个粒子构成

结构化学 第三章习题(周公度)

第三章 共价键和双原子分子的结构化学 1试计算当Na +和Cl -相距280pm 时,两离子间的静电引力和万有引力;并说明讨论化学键作用力时,万有引力可以忽略不计。 (已知万有引力 2 21r m m G F =,G=6.7*10-11N.m 2.kg -2; 静电引力2 21r q q K F =,K=9.0*109N.m 2.C -2) 解:已知Na 摩尔质量为 22.98977 g/mol Cl 摩尔质量为 35.453 g/mol )(10 *946.2) 10 *280() 10*602.1(10 *0.99 2 12 2 19 9 2 21N r q q K F ---=== )(10*9207.1) 10*022.6(*)10 *280(10 *453.35*10*98977.2210 *7.642 2 23 2 12 3 3 11 221N r m m G F -----=== 万有引力要比静电引力小得多,在讨论化学键作用时万有引力可以忽略不计 2、写出O 2.,O 2+,O 2-,O 22-的键级、键长长短次序及磁性 解: O 2的分子轨道及电子排布如下 4、试比较下列同核双原子:B 2,C 2,N 2,O 2,F 2的键级、键能和键长的大小关系,在相邻两个分子间填入“<”或“>”符号表示 解 键级:B 2(1)O 2(2)>F 2(1) 键能:B 2(1)O 2(2)>F 2(1) 键长:B 2(1)>C 2(2)> N 2(3) O 2 > O 2 > O 2 有 有 有 无+ 2-

第三章 振动光谱作业

第二章振动光谱作业 1.红外光区的划分? 红外光按波长不同划分为三个区域:近红外区域(1-2.5微米)/中红外区域(2.5-25微米)/远红外区域(25-1000微米) 2.振动光谱有哪两种类型?多原子分子的价键或基团的振动有哪些类型?同一种基团哪种振动的频率较高?哪种振动的频率较低? 振动光谱有红外吸收光谱和激光拉曼光谱两种类型。 价键或基团的振动有伸缩振动和弯曲振动。其中伸缩振动分为对称伸缩振动和非对称伸缩振动;弯曲振动则分为面内弯曲振动(剪式振动、面内摇摆振动)和面外弯曲振动(扭曲振动、面外摇摆振动)。 伸缩振动频率较高,弯曲振动频率较低。(键长的改变比键角的改变需要更大的能量)非对称伸缩振动的频率高于对称伸缩振动。 3. 说明红外光谱产生的机理与条件? 产生机理: 当用红外光波长范围的光源照射物质时,物质因受光的作用,引起分子或原子基团的振动,若振动频率恰与红外光波段的某一频率相等时就引起共振吸收,使光的透射强度减弱,使通过试样的红外光在一些波长范围内变弱,在另一些范围内则较强,用光波波长(或波数)对光的透过率作图,便可得到红外光谱 产生条件: 1)辐射应具有能满足物质产生振动-转动跃迁所需的能量,即振动的频率与红外光谱谱段的某频率相等。 2)辐射与物质间有相互偶合作用,即振动中要有偶极矩变化 4.红外光谱图的表示法? 红外光谱图的表示法:横坐标:波数cm-1或者波长μm 纵坐标:透过率%或者吸光度A 5. 红外光谱图的四大特征(定性参数)是什么? 如何进行基团的定性分析?如何进行物相的定性分析? 四大特征:谱带(或者说是吸收峰)的数目、位置、形状和强度。 进行基团的定性分析时,首先,观察特征频率区,根据基团的伸缩振动来判断官能团。 进行物相的定性分析: 进行物相的定性分析: 对于已知物: a、,观察特征频率区,判断官能团,以确定所属化合物的类型 b、观察指纹频率区,进一步确定基团的结合方式 c、对照标准谱图进行比对,若被测物质的与已知物的谱图峰位置和相对强度完全一致,则可确认为一种物质。 对于未知物:A、做好准备工作。了解试样的来源,纯度、熔点、沸点点各种信息,如果是混合物,尽量用各种化学、物理的方法分离 B、按照鉴定已知化合物的方法进行 6. 何谓拉曼效应?说明拉曼光谱产生的机理与条件? 光子与试样分子发生非弹性碰撞,也就是说在光子与分子相互作用中有能量的交换,产生了频率的变化,且方向改变叫拉曼效应。 产生的机理: 斯托克斯线产生机理:处于振动基态的分子在光子作用下,激发到较高的不稳定的能态(虚

晶格振动与声子

晶格振动与声子 2010-04-24 16:38:01| 分类:微电子物理| 标签:|字号大中小订阅 (什么是声学波?什么是光学波?什么是声子?) 作者:Xie M. X. (UESTC,成都市) (1)格波: 晶格振动(Crystal lattice vibration) 就是晶体原子在格点附近的热振动,这是个力学中的小振动问题, 可用简正振动和振动模来描述。由于晶格具有周期性,则晶格的振动模具有波的形式,称为格波。一个格波就表示晶体所有原子都参与的一种振动模式。格波可区分为声学波和光学波两类——两种模式。 声学波是晶格振动中频率比较低的、而且频率随波矢变化较大的那一支格波;对于波矢比较小的长声学波,与弹性波一致,它表示着原胞中所有原子的一致运动[相位和振幅都相同];声学波的能量虽然较低,但是其动量却可能很大,因此在对于载流子的散射与复合中,声学波声子往往起着交换动量的作用。 光学波是复式晶格振动中频率比较高的、而且频率随波矢变化较小的那一支格波;对于长光学波,它表示着相位相反的两种原子的振动,即表示着两种格子的相对振动[但质心不变]。光学波声子具有较高的能量,而高能量声子的动量往往很小,所以光学波声子在与载流子的相互作用中往往起着交换能量的作用。 (2)声子: 格波的能量是量子化的: 频率ω的格波具有谐振子一样的分离能量:E = ( n + 1/2 ) ?ω, n = 0,1,2,2,…。则当格波与载流子相互作用时, 格波能量的改变只能是?ω的整数倍; 该晶格振动能量?ω的量子即称为声子(Phonon )。当格波能量减少?ω时, 就说晶格放出一个声子; 如格波能量增加?ω时, 就说晶格吸收一个声子. 因此晶格与载流子的相互作用可看成是格波对载流子的散射(碰撞)。 由于晶格振动有声学波和光学波两种模式,所以相应的就有两种声子——声学波声子和光学波声子。一个格波,即一种振动模,就称为一种声子;当这种振动模处于(nq+1/2) ?ωq 本征态时,就说有nq个声子, nq是声子数。晶格中共有3Nr个格波,即有3Nr种声子;共有3支声学波声子和(3r-3)支光学波声子;又可有纵向声子和横向声子。 声子本身不导电,但是它能够传热,并且还对载流子产生散射作用——声子散射。晶体的比热、热导、电导等都与声子有关。 用声子可以简明地描述晶格振动,它反映的是晶体原子集体运动状态的激发单元(元激发),因此声子是固体中的一种典型的元激发。声子是Bose子, 则每一个晶格振动的状态可被很多声子所占据;而声子的数目仅与晶格振动的能量有关(决定于温度),一个晶格振动模式平均的声子占据数目为nj(q) = {exp[?ωj(q) /kT]-1}-1 . 因此,系统中声子的数目随着温度的上升而增加。由于声子的动量q不确定(q和q+ Gn表示相同的晶格振动状态,Gn是倒格子矢量),而且系统中的声子数不守恒(与温度有关), 因此,声子并不是真实的粒子, 而是所谓“准粒子”。 光学波的能量较高(最高能量的格波量子——声子,称为拉曼声子),但是较高能量光学波的动量却很小,因此在载流子的散射和复合过程中往往起着交换能量的作用。晶体中声子的相互作用,有一种过程是两个声子碰撞而产生第三个声子的过程,但声子的动量没有发生变化,即有? q1 + ? q2 = ? q3 (q1、q2和q3分别是第一、第二和第三个声子的动量),这种碰撞就常常简称为正规过程(Normal process)或者N过程。因为正规碰撞过程只改变动量的分布,而不影响热流的方向,故对热阻没有贡献。

固体物理第三章晶格振动与晶体的热力学函数

第三章 晶格振动与晶体的热力学函数 一、 填空体 1. 若在三维空间中,晶体由N 个原胞组成,每个原胞有一个原子,则共有_ 3 N_个独立的 振动,_ N__个波矢, 3N_支格波。 2. 体积为V 的ZnS 晶体,如果晶胞的体积为Ω,则晶格振动的模式书为24N/Ω 。 3. 三维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 3。 4. 某三维晶体由N 个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 9N 支,其中 3N 支声学波,包括 2N 支横声学波, 1N 支纵声学波;另有 6N 支光学波。 5. 二维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 2。 6. 一维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 。 7. 三维绝缘体晶体的低温平均内能与温度T 的关系为U~T 4。 8.二维绝缘体晶体的低温平均内能与温度T 的关系为U~T 3。 9. 一维绝缘体晶体的低温平均内能温度T 的关系为U~T 2。 10.绝缘体中与温度有关的内能来源于 晶格振动能 。 11.导体中与温度有关的内能来源于 晶格振动能 和 价电子热运动动能 。 12. 某二维晶体由N 个原胞组成,每个原胞内有2个原子。考虑晶体的晶格振动,其色散关系共有 4N 支,其中 2N 支声学波,包括 N 支横声学波, N 支纵声学波;另有 2N 支光学波。 13. 某一维晶体由N 个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 3N 支,其中 N 支声学波,包括 N 支横声学波, 0 支纵声学波;另有 2N 支光学波。 14.晶格振动的元激发为 声子 ,其能量为 ω ,准动量为 q 。 15德拜模型的基本假设为:格波作为弹性波、 介质是各向同性介质。 16.对三维体积为V 的晶体,波矢空间中的波矢密度为: 3 ) 2(V π ;对二维面积为S 的晶体,波矢空间中的波矢密度为:2 )2(S π ;对一维长度为L 的晶体,波矢空间中的波矢密度为: π 2L 。 二、基本概念 1. 声子 晶格振动的能量量子。 2.波恩-卡门条件 即周期性边界条件,设想在实际晶体外,仍然有无限多个相同的晶体相连接,各晶体中相对应的原子的运动情况都一样。 3.波矢密度 波矢空间单位体积内的波矢数目,三维时为3 c )2(V π,Vc 为晶体体积。 4. 模式密度 单位频率间隔内模式数目。 5.晶格振动。 答:由于晶体内原子间存在着相互作用,原子的振动就不是孤立的,而要以波的形式在晶体中传播,形成所谓格波,因此晶体可视为一个互相耦合的振动系统,这个系统的运动就叫晶格振动。

第五章晶格振动习题和答案

第五章 晶格振动习题和答案 1.什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事? [解答] 为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线性项忽略掉的近似称为间谐近似。在间谐近似下,由N 个原子构成的晶体的晶格振动,可等效成3N 个独立的谐振子的振动。每个谐振子的振动模式称为间正振动模式,它对应着所有的原子都以该模式的频率做振动,它是晶格振动模式中最简单最基本的振动方式。原子的振动,或者说格波振动通常是这3N 个简正振动模式的线性迭加。 简正振动数目、格波数目或格波振动模式数目是一回事,这个数目等于晶体中所有原子的自由度数之和,即等3N 。 2.长光学支格波与长声学支格波本质上有何差别? [解答] 长光学支格波的特征是每个原胞内的不同原子做相对振动,振动频略较高,它包含了晶格振动频率最高的振动模式。长声学支格波的特征原胞内的不同原子没有相对位移,原胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数。任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波。 3. 温度一定,一个光学波的声子数目多呢,还是声学波的声子数目多? [解答] 频率为ω的格波的(平均)声子数为 1 1)(/-= T k B e n ωω 因为光学波的频率0ω比声学波的频率A ω高,(1/0-T k B e ω )大于(1/-T k B A e ω ),所以在温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目。 4. 对同一个振动模式,温度高时的声子数目多呢,还是温度低时的声子数目多呢? [解答] 设温度H T 〉L T ,由于(1/-H B T k e ω )大于(1/-L B T k e ω ),所以对同一个振动模式,温度 高时的声子数目多于温度低时的声子数目。 5. 高温时,频率为ω的格波的声子数目与温度有何关系? [解答] 温度很高时,T k e B T k B /1/ωω +≈ ,频率为ω的格波的(平均)声子数为 ω ωω T k e n B T k B ≈-= 1 1)(/ 可见高温时,格波的声子数目与温度近似成正比。 6. 喇曼散射方法中,光子会不会产生倒逆散射? [解答] 晶格振动谱的测定中,光波的波长与格波的波长越接近,光波与声波的相互作用才越显著。喇曼散射中所用的红外光,对晶格振动谱来说,该波长属于长波长范围。因此,喇曼散射是光子与长光学波声子的相互作用。长光学波声子的波矢很小,相应的动量q 不大。而能产生倒逆散射的条件是光的入射

2014 第三章 原子吸收光谱法 作业答案

第三章原子吸收光谱法作业答案 一、选择题(每题只有1个正确答案)(2分?10=20分) 1. 由温度引起的原子吸收线变宽称为()。[ B ] A. 自然宽度 B. 多普勒变宽 C. 压力变宽 D. 场致变宽 2. 最早对原子吸收现象给予科学解释的是()。[ B ] A. 英国化学物理学家渥拉斯通(W.H.Wollaston) B. 德国光谱物理学家基尔霍夫(G.Kirchhoff) C. 澳大利亚物理学家沃尔什(A.Walsh) D. 瑞典物理学家西格(K.M.Siegbahn) 3. 空心阴极灯外壳一般根据其工作波长范围选用不同材料制作,若工作波长在350nm以上,应选用的材 料为()。[ A ] A. 玻璃 B. 石英 C. NaCl晶体 D. KBr晶体 4. 当吸收线半宽度一定时,积分吸收系数Kν与峰值吸收系数K0 ( )。[ A ] A. 成正比 B. 成反比 C. 无关 D. 无法判断 5 . Mg、Mo、W是易生成氧化物、氧化物又难解离、易电离元素,用AAS法测其含量时,最佳火焰为()。 [ B ] A. 中性火焰 B. 富燃火焰 C. 贫燃火焰 D. 高温贫燃火焰 6. 下图为实验测得的原子吸收光谱的灰化曲线①和原子化曲线②,根据此图,请选择最佳的原子化温度范 围()。[ D ] A.1600~2000℃ B.2000~2300℃ C. 2300~2500℃ D. 2500~2800℃ 7. 用AAS测量铝锭中Zn含量时,其吸收线波长为213.96nm,应选择()溶解试样。[ B ] A. 硫酸(H2SO4) B. 盐酸(HCl) C. 磷酸(H3PO4) D. 氟化氢(HF) 8. 使用一台具有预混合缝形燃烧器的原子吸收分光光度计,采用普通的燃气和助燃气,发生下列情况,你 建议采取的补救办法是(),分析灵敏度低,怀疑在火焰中形成氧化物粒子。[ B ] A. 采用贫燃火焰 B. 采用富燃火焰 C. 采用中性火焰 D. 没有办法 9.正常燃烧的火焰结构由预热区、第一反应区、中间薄层区和第二反应区组成,原子吸收光谱分析时,试样原子化主要在( )进行。[ C ] A. 预热区 B. 第一反应区 C. 中间薄层区 D. 第二反应区 10. 在测定Ba时,做了两个实验:在纯水中测量Ba的吸光度,绘制A?c曲线(如图中的1),曲线是弯 曲的,但加入0.2% KCl后,再测量Ba的吸光度,绘制A?c曲线,直线性很好,(如图中的2)加入KCl主要消除了( )。[ D ]

结构化学第三章练习题

第三章双原子分子的结构与性质 1.(南开99) 下列AB型分子N2, O2, CN, NeF中分子的得电子变为AB-后比原来中性分子键能大, 失电子后变为AB+后比原分子中性分子键能大。 2.(南开94) 写出B2分子的分子轨道标识及磁性。 3(南开92) 按简单分子轨道理论, 形成有效分子轨道的三个基本原则是()。写出下列分子中电子的排布情况:O2,N2,CO 4.(北师大) 对于分子的三重态,下列解释正确的是( ) A.分子中有一个未成对电子 B.分子中有两个自旋配对电子 C.波函数必是三阶行列式 D.分子中有三个未成对电子 E.分子的总自旋量子数为1 5.(军事科学院93) 按分子轨道理论,氢分子的成键轨道是( ),反键轨道是( )。按价键理论,其基态的键函数是( ) 6.(北师大94) 写出下列分子基态的价层电子组态和键级。 A.N2+ B.CN- C.O2+ 7.(北大93) C2分子的键长(124pm)比C原子的共价双键半径之和(67pm*2)短的原因是什么? 8.(北大92) 判断下列轨道间沿z轴方向能否成键。如能成键,请在相应位置上填上分子轨道名称。

9.(北大91) 在NO 2+,NO +,NO ,NO -中, 哪一个有最短的键长, 指明其价电子组态键级。 10.(北大93) 在HI(H=1,I=127)振动光谱图中, 观察到2230cm -1强吸收峰,若将HI 的简正振动看作谐振子,则 (1)说明此简正振动是否有红外活性 (2)计算HI 简正振动频率 (3)计算零点能 (4)计算HI 简正振动力常数 11.(北大92)实验测得HI 分子基本光谱带和第一泛音谱带分别是2230cm -1和4381cm -1, 求HI 的力常数 (原子量H=1,I=126.9) 12.(北师大94) 测定双原子分子HF 力常数最常用的方法是( ) A.电子能谱 B.电子光谱 C.红外光谱 D.微波波谱 E.核磁共振谱 13.(南开98) 1 H 35Cl 气体振动光谱的主谱带中心波数0ν =2885.9cm -1,用分辨率很高 的红外光谱仪记录谱图,可以清楚地观察到主谱带的谱带结构(带的0ν 两侧分布着许多谱线),请粗略的划出1H 35Cl 分子主谱带的红外光谱图(参见课本p 103) 14.(南开96) 已知1H 35Cl 分子的基本振动谱带波数为2885.67cm -1, 求2D 35Cl 的基本振动谱带波数(振动按谐振子模型处理) 解:1H 35Cl 和2D 35Cl 的键的力常数相同 P x P z d xy d xz P x π -- -- π P y -- -- -- -- d xy -- -- δ -- d xz π -- -- -- 0ν= 0ν=

绪论-分子光谱习题参考答案..

第一章 绪 论 ⒈ 解释下列名词 ⑴仪器分析与化学分析; ⑵标准曲线与线性范围; ⑶灵敏度﹑精密度﹑准确度和检出限。 解:⑴化学分析是以物质的化学反应为基础的分析方法。 仪器分析是以物质的物理性质和物理化学性质(光﹑电﹑热﹑磁等)为 基础的分析方法,这类方法一般需要使用比较复杂的仪器。 ⑵标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线。 标准曲线的直线部分所对应的被测物质浓度(或含量)的范围称该方法的线性范围。 ⑶物质单位浓度或单位质量的变化引起响应信号值变化的程度,称该方法的灵敏度。 精密度是指使用同一方法,对同一试样进行多次测定所得结果的抑制程度。 试液含量的测定值与试液含量的真实值(或标准值)相符合的程度称为准确度。 某一方法在给定的置信水平可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。 ⒉ 对试样中某一成分进行5次测定,所得的测量结果(单位μg ﹒mL -1)分别为0.36,0.38,0.35,0.37,0.39. ⑴ 计算测定结果的相对标准偏差; ⑵ 如果试样中该成分的真实值含量是0.38μg ﹒L -1,试计算测定结果的相对误差 解:⑴ x =n 1(x 1+x 2+…+x n )=0.37; S=1 )(12--∑=n x x n i i =0.0158; r s =x s ×100℅=4.27℅。 ⑵ E r =μμ -x ×100℅=-2.63℅。 ⒊ 用次甲基蓝–二氯乙烷光度法测定试样中硼时,为制作标准曲线,配制一系列质量浓度ρB (单位mg ﹒L -1)分别为0.5,1.0,2.0,3.0,4.0,5.0的标准溶液,测得吸光度A 分别为0.140,0.160,0.280,0.380,0.410和0.540。试写出该标准曲线的一元线性回归方程,并求出相关系数。

3.6晶格振动的实验观测

3.6 晶格振动的实验观测 一. 一般描述 二. 非弹性X-射线散射 三. Raman 散射和Brilouin 散射 四. 远红外和红外吸收光谱 参考黄昆36Kitt l 845五. 非弹性中子散射 六. 隧道谱 参考:黄昆书3.6 节, Kittel 8 版4.5 节 P .Bruesch Phonons: Theory and Experiments Ⅰ,Ⅱ,Ⅲ其中第2卷是测量方法。 由于多种原因我国晶格振动的实验观测相对落后由于多种原因,我国晶格振动的实验观测相对落后,各种固体教材中介绍该内容相对较少,应该予以弥补。

一.一般描述: 从上面讨论中我们已经看到晶格振动是影响固体很多从上面讨论中我们已经看到:晶格振动是影响固体很多性质的重要因素,而且只要T ≠0K ,原子的热运动就是理解。所以从实验上观测晶格振动的固体性质时不可忽视的因素所以从实验观测晶格振动的规律是固体微观结构研究的重要内容,是固体物理实验方法的核心内容之一。(晶体结构测定;晶格振动谱测定;费米面测定缺陷观测等)面测定;缺陷观测;等。) : 晶格振动规律主要通过晶格振动谱反映 1.晶格振动色散关系: ()j q ωω=f 2.态密度:()() g ωω= 实验观测就围绕着这两条曲线的测 定进行,包括各种因素对它们的影响以及 声子的寿命等。主要通过辐射波和晶格 振动的相互作用来完成。

其中最重要、最普遍的方法是: Far-Infrared and (FIR)Infrared Spectroscope (IR) 远红外和红外光谱Raman Spectroscope (R) 电磁波Raman Spectroscope (R) 喇曼光谱Brillouin Spectroscope (B) 布里渊散射谱Diffuse X-Ray Scattering X 射线漫散射Inelastic neutron Scattering (INS) e ast c eut o Scatte g (S) 非弹性中子散射Ultrasonic methods (US) 超声技术 (IETS)非弹性电子隧道谱

第六章 振动光谱作业

第六章振动光谱作业 1.红外光区的划分? 2.振动光谱有哪两种类型?多原子分子的价键或基团的振动有哪些类型?同一种基团哪种振动的频率较高?哪种振动的频率较低? 3. 说明红外光谱产生的机理与条件? 4.红外光谱图的表示法? 5. 红外光谱图的四大特征(定性参数)是什么? 如何进行基团的定性分析?如何进行物质的定性分析? 6. 何谓拉曼效应?说明拉曼光谱产生的机理与条件? 7. 拉曼位移是什么?拉曼谱图的表示法? 8.比较拉曼光谱与红外光谱。 9.某一化合物的分子式是C 4H 8 0,其红外光谱图如下,请推断其结构。 1381 29632824 2722 1728 1467 1160 10. .下图为线型聚乙烯(······—CH 2—CH 2 —CH 2 —CH 2 ······)的 红外光谱图(a)和激光拉曼光谱图(b),根据聚乙烯分子的结构特征,说明两张图谱有何不同,并解释出现明显差异的原因。(解释2张图谱中4个箭头处的异同,并说明原因。)

综合分析题 若要进行下列测试分析项目,从你所学过的现代测试方法中挑选出一种最佳方法,并简述理由。 1.多晶转变温度的检测; 2.尺寸小于5μ的颗粒的显微形貌观察; 3.物质晶体结构的研究; 4.断口上粒状夹杂物的形貌及化学成分分析; 5.被缴获毒品的种类鉴定; 6.酸腐蚀后金属表面的结构分析; 7.材料晶界条纹或晶体缺陷(如位错、层错等)的观察分析; 8. 陶瓷釉料的成分分析; 9.玻璃中包裹体的分析; 10. 高分子材料玻璃化转变温度的测量。 各分析方法的英文缩写: X射线衍射:;X射线荧光光谱: X射线光电子能谱:;等离子发射光谱: 原子吸收光谱:;透射电镜:

红外光谱习题答案

红外光谱习题 一. 选择题 1.红外光谱是(ACE ) A :分子光谱 B :原子光谱 C :吸光光谱 D :电子光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则(ACE ) A :吸收光子的能量越大 B :吸收光子的波长越长 % C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是(AC ) A :乙炔分子中对称伸缩振动 B :乙醚分子中不对称伸缩振动 C :CO 2分子中对称伸缩振动 D :H 2O 分子中对称伸缩振动 E :HCl 分子中H -Cl 键伸缩振动 《 4.下面五种气体,不吸收红外光的是(D ) A:O H 2 B:2CO C:HCl D:2N 5 分子不具有红外活性的,必须是(D ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 ^ 6.预测以下各个键的振动频率所落的区域,正确的是(AD ) A:O-H伸缩振动数在4000~25001 -cm B:C-O 伸缩振动波数在2500~15001 -cm C:N-H 弯曲振动波数在4000~25001 -cm D:C-N 伸缩振动波数在1500~10001 -cm E:C ≡N 伸缩振动在1500~10001 -cm

7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数最大者是(B ) A:乙烷中C-H 键,=k 510?达因1 -?cm 、 B: 乙炔中C-H 键, =k 510?达因1 -?cm C: 乙烷中C-C 键, =k 510?达因1 -?cm D: CH 3C ≡N 中C ≡N 键, =k 5 10?达因1-?cm E:蚁醛中C=O 键, =k 510?达因1 -?cm 8.基化合物中,当C=O 的一端接上电负性大的基团则(ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 ; E:使羰基的振动频率增大 9.以下五个化合物,羰基伸缩振动的红外吸收波数最大者是(E ) A: B: C: D: E: 10.共轭效应使双键性质按下面哪一种形式改变(ABCD ) A:使双键电子密度下降 B:双键略有伸长 C:使双键的力常数变小 $ D.使振动频率减小 E:使吸收光电子的波数增加 11.下五个化合物羰基伸缩振动的红外吸收波数最小的是(E ) A: B: C: D: E:

第二章 晶格振动和晶格缺陷

第二章 晶格振动和晶格缺陷 上一章里,把组成晶体的原子或离子看成是固定不动的,都处在其平衡位置上。实际晶体中的原子却是不停地在其平衡位置附近做热振动的,并且随着温度的升高,振动会不断加剧。这种热振动也称晶格振动,它会破坏晶格的周期性,在晶格中造成缺陷,从而对半导体的性质产生重要影响。实际三维晶体中原子的振动现象很复杂,我们只分析一维晶体(单原子和双原子链)的振动,然后将所得到的规律和结论推广到三维晶体中。 §2-1 一维均匀线的振动 为研究一维原子链的振动,首先复习一下一维均匀线中弹性波(纵波)的传播现象。设均匀线的质量密度为ρ,弹性模量为K ,又设线上每一点只能沿线本身的方向运动,如图2-1所示。 若在线段x ?上施加一作用力,它将引起x 点的纵向位移u (x )。此时在x 处的 相对伸长,即形变为x u x e ??=)(,在x x ?+处的形变则为x x u x e x x e ???+=?+22)()(。 因此在线元x ?上的作用力 []x x u K x e x x e K F x ???=-?+=?22)()( (2-1) 此作用力还可表示为线元质量x ?ρ乘上加速度22t u ??,即 22t u x F x ???=?ρ (2-2) 从而有 22t u ??=22 222x u x u K ??=??υρ (2-3) 式中,ρ υK = 是弹性波的传播速度(声波速度),与振动频率无关。(2-3)式 称线性振动方程,其解为具有如下形式的简谐波 [ ])(e x p ),(t qx i A t x u ω-= (2-4) 式中,A 为振幅,πνω2=为角频率,ν为振动频率,λ π 2=q 为波矢(波数 λ 1 π2?), λνυ=为波速,从而有 q υλπυπνω===/22 (2-5)

晶格振动光谱学

《晶格振动光谱学》课程教学大纲 课程英文名称:Lattice Vibration Spectroscopy 课程编号:0332282002 课程计划学时:32 学分:2 课程简介: 本课程地阐述了晶格振动光谱学的基本理论、实验和研究进展.课程包括两大部分,第一部分为晶格动力学基础,主要包括晶体结构及其对称性、晶格动力学基础和晶格振动的对称性等内容,第二部分为晶格振动光谱,主要包括晶格振动的电磁理论和量子理论、晶格振动的布里渊谱、拉曼光谱、红外反射光谱、二级红外吸收光谱和拉曼光谱等内容.本书介绍了晶格振动光谱研究方面的新进展,并吸收及其插入化合物、单管壁碳纳米管拉曼光谱等方面的研究成果,有利于学生了解、分析物质结构,是材料物理学生必修的一门课程。 本课程的授课对象为数理系材料物理专业的学生。 一、课程教学内容及教学基本要求 第一章晶格动力学基础(2学时) 本章重点:热力学行为的简单近似处理;双原子链的振动;晶格振动的频谱和比热;光学支的长波晶格振动;长波光学振动和红外色散的原子理论;离子晶体红外色散的实验研究。 本章难点:晶格振动的频谱和比热;光学支的长波晶格振动;红外色散及晶格振动的推迟效应;长波光学振动和红外色散的原子理论;离子晶体红外色散的实验研究。 第一节热力学行为的简单近似处理 本节要求掌握热力学行为的简单近似处理,掌握长波光学振动和红外色散的原子理论,以及红外色散及晶格振动的推迟效应。了解晶格的基本振动形式。本节建议采用的主要教学形式(讲授、习题)。 第二节双原子链的振动 本节要求掌握热双原子链的振动基本形式(考核概率10%)。 第三节晶格振动的频谱和比热 本节要求掌握晶格振动的频谱和比热(考核概率10%)。 第四节光学支的长波晶格振动 本节要求掌握光学支的长波晶格振动(考核概率10%)。 第五节红外色散及晶格振动的推迟效应 本节要求掌握红外色散及晶格振动的推迟效应(考核概率10%)。 第六节长波光学振动和红外色散的原子理论 本节要求掌握长波光学振动和红外色散的原子理论(考核概率10%)。

apl应变黑磷晶格振动模式及拉曼散射

Lattice vibrational modes and Raman scattering spectra of strained phosphorene Ruixiang Fei and Li Yang Citation: Applied Physics Letters 105, 083120 (2014); doi: 10.1063/1.4894273 View online: https://www.wendangku.net/doc/8017963354.html,/10.1063/1.4894273 View Table of Contents: https://www.wendangku.net/doc/8017963354.html,/content/aip/journal/apl/105/8?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Direction dependent thermal conductivity of monolayer phosphorene: Parameterization of Stillinger-Weber potential and molecular dynamics study J. Appl. Phys. 117, 214308 (2015); 10.1063/1.4922118 Silicon nanocrystals with high boron and phosphorus concentration hydrophilic shell—Raman scattering and X-ray photoelectron spectroscopic studies J. Appl. Phys. 115, 084301 (2014); 10.1063/1.4866497 Vibrational mode and dielectric function spectra of BGaP probed by Raman scattering and spectroscopic ellipsometry J. Appl. Phys. 109, 053504 (2011); 10.1063/1.3549806 Raman scattering on quadrupolar vibrational modes of spherical nanoparticles J. Appl. Phys. 104, 073519 (2008); 10.1063/1.2981083 Raman spectra of P 4 at low temperatures J. Chem. Phys. 119, 5918 (2003); 10.1063/1.1602062

确定晶格振动谱的实验方法

§3-9 确定晶格振动谱的实验方法 3. 9. 1 中子非弹性散射 晶格振动频率与波数矢量之间的函数关系ω(q ),称为格波的色散关系,也称为晶格振动谱。晶体的许多性质都与函数ω(q )有关,因此确定晶格振动谱是很重要的。可能利用波与格波的的相互作用,以实验的方法来直接测定ω(q )。最重要的实验方法是中子的非弹性散射,即利用中子的德布洛依波与格波的相互作用。另外,还有X 射线散射,光的散射等。目前,最常用的方法是中子非弹性散射。 设想有一束动量为p 、能量为2 2n M =p E 的中子流入射到样品上,由于中子仅仅和原子核之间有相互作用,因此它可以毫无困难地穿过晶体,而以动量p ′、能量2 2n M ''=p E 射出。当中子流穿过晶体时,格波振动可以引起中子的非弹性散射,这种非弹性弹射也可以看成是吸收或发射声子的过程。散射过程首先要满足能量守恒关系: ()22 22n n p p M M ω'-=± q …………………………………………………(3-9-1) ?ω( q )表示声子的能量,“+”号和“-”号分别表示吸收和发射声子的过程。散射过程同时要满足准动量守恒关系: n '-=±+ p p q G ………………………………………………………(3-9-2) 其中12233n n n n =++G b b b 1为倒格子矢量,?q 称为声子的准动量。一般说来,声子的准动量并不代表真实的动量,只是它的作用类似于动量,如式(3-9-2)所示,在中子吸收和发射声子过程中,存在类似于动量守恒的变换规律,但是,多出n G 项。动量守恒是空间均匀性(或者称为完全的平移不变性)的结果,而上述准动量守恒关系实际上是晶格周期性(或者称为晶格平移不变性)的反映。一方面,由于晶格也具有一定的平移对称性(以布拉伐格子标志),因而存在与动量守恒相类似的变换规律; 另一方面,由于晶体平移对称性与完全的平移对称性相比,对称性降低了,因而变换规则与动量守恒相比,条件变弱了,可以相差n G 。 如果我们固定入射中子流的动量p (和能量E ),测量出不同散射方向上散射中子流的动量p ′(即能量E ′),就可以根据能量守恒和准动量守恒关系确定出格波的波矢q 以及能量?ω(q )。图3-9-1中示意地画出了一个典型的中子散射谱仪的结构,叫做三轴中子谱仪。中子源是反应堆产生出来的慢中子流,单色器是一块单晶,利用它的布喇格反射产生单色的动量为p 的中子流,经过准直器入射到样品上。随后再经过准直器用于选择散射中子流的方向,分析器也是一块单晶,利用它的布喇格反射来决定散射中子流的动量值(即能量)。利用中子散射谱仪测定晶格振动谱的工作开始于50年代,但因一般的反应堆中子流密度太小,使用实验工作受到很大限制。近年来高能量的中子反应堆(流量大于14-2-1 10cm -s )比较普

相关文档