文档库 最新最全的文档下载
当前位置:文档库 › 晶振旁的电阻(并联与串联)

晶振旁的电阻(并联与串联)

晶振旁的电阻(并联与串联)
一份电路在其输出端串接了一个22K的电阻,在其输出端和输入端之间接了一个10M的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。
晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,一般在M欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。

和晶振串联的电阻常用来预防晶振被过分驱动。晶振过分驱动的后果是将逐渐损耗减少晶振的接触电镀,这将引起频率的上升,并导致晶振的早期失效,又可以讲drive level调整用。用来调整drive level和发振余裕度。

Xin和Xout的内部一般是一个施密特反相器,反相器是不能驱动晶体震荡的.因此,在反相器的两端并联一个电阻,由电阻完成将输出的信号反向 180度反馈到输入端形成负反馈,构成负反馈放大电路.晶体并在电阻上,电阻与晶体的等效阻抗是并联关系,自己想一下是电阻大还是电阻小对晶体的阻抗影响小大?

电阻的作用是将电路内部的反向器加一个反馈回路,形成放大器,当晶体并在其中会使反馈回路的交流等效按照晶体频率谐振,由于晶体的Q值非常高,因此电阻在很大的范围变化都不会影响输出频率。过去,曾经试验此电路的稳定性时,试过从100K~20M都可以正常启振,但会影响脉宽比的。

晶体的Q值非常高, Q值是什么意思呢? 晶体的串联等效阻抗是 Ze = Re + jXe, Re<< |jXe|, 晶体一般等效于一个Q很高很高的电感,相当于电感的导线电阻很小很小。Q一般达到10^-4量级。


避免信号太强打坏晶体的。电阻一般比较大,一般是几百K。

串进去的电阻是用来限制振荡幅度的,并进去的两颗电容根据LZ的晶振为几十MHZ一般是在20~30P左右,主要用与微调频率和波形,并影响幅度,并进去的电阻就要看 IC spec了,有的是用来反馈的,有的是为过EMI的对策




可是转化为 并联等效阻抗后,Re越小,Rp就越大,这是有现成的公式的。晶体的等效Rp很大很大。外面并的电阻是并到这个Rp上的,于是,降低了Rp值 -----> 增大了Re -----> 降低了Q
精确的分析还可以知道,对频率也会有很小很小的影响。




晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点

,以频率的高低分其中较低 的频率
是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶 振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄, 所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。
一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。

晶振是为电路提供频率基准的元器件,通常分成有源晶振和无源晶振两个大类,无源晶振需要芯片内部有振荡器,并且晶振的信号电压根据起振电路而定,允许不同的电压,但无源晶振通常信号质量和精度较差,需要精确匹配外围电路(电感、电容、电阻等),如需更换晶振时要同时更换外围的电路。有源晶振不需要芯片的内部振荡器,可以提供高精度的频率基准,信号质量也较无源晶振要好。

每种芯片的手册上都会提供外部晶振输入的标准电路,会表明芯片的最高可使用频率等参数,在设计电路时要掌握。与计算机用CPU不同,单片机现在所能接收的晶振频率相对较低,但对于一般控制电路来说足够了。

另外说明一点,可能有些初学者会对晶振的频率感到奇怪,12M、24M之类的晶振较好理解,选用如11.0592MHZ的晶振给人一种奇怪的感觉,这个问题解释起来比较麻烦,如果初学者在练习串口编程的时候就会对此有所理解,这种晶振主要是可以方便和精确的设计串口或其它异步通讯时的波特率。

问: 我发现在使用晶振时会和它并一个电阻,一般1M以上,我把它去掉,板子仍可正常工作,请问这个电阻有什么用?可以不用吗? 我有看到过不用的!不理解~
答: 这个电阻是反馈电阻,是为了保证反相器输入端的工作点电压在VDD/2,这样在振荡信号反馈在输入端时,能保证反相器工作在适当的工作区。虽然你去掉该电 阻时,振荡电路仍工作了。但是如果从示波器看振荡波形就

会不一致了,而且可能会造成振荡电路因工作点不合适而
停振。所以千万不要省略此电阻。 这个电阻是为了使本来为逻辑反相器的器件工作在线性区, 以获得增益, 在饱和区是没有增益的, 而没有增益是无法振荡的. 如果用芯片中的反相器来作振荡, 必须外接这个电阻, 对于CMOS而言可以是1M以上, 对于TTL则比较复杂, 视不同类型(S,LS...)而定. 如果是芯片指定的晶振引脚, 如在某些微处理器中, 常常可以不加, 因为芯片内部已经制作了, 要仔细阅读DATA SHEET的有关说明.
和晶振并联的电阻作为负载,一般1M欧。也有和晶振串联的电阻为谐振电阻。.

问:晶振的参数里有配用的谐振电容值。比如说32.768K的是12.5pF;4.096M的是20pF. 这个值和实际电路中晶振上接的两个电容值是什么关系?像DS1302用的就是32.768K的晶振,它内部的电容是6pF的
答: 你所说的是晶振的负载电容值。指的是晶振交流电路中,参与振荡的,与晶振串联或并联的电容值。晶振电路的频率主要由晶振决定,但既然负载电容参与振荡,必 然会对频率起微调作用的。负载电容越小,振荡电路频率就会越高4.096MHz的负载电容为20pF,说明晶振本身的谐振频率<4.096MHz, 但如果让20pF的电容参与振荡,频率就会升高为4.096MHz。或许有人会问为什么这么麻烦,不如将晶振直接做成4.096MHz而不用负载电容?不 是没有这样的晶振,但实际电路设计中有多种振荡形式,为了振荡反馈信号的相移等原因,也有为了频率偏差便于调整等原因,大都电路中均有电容参与振荡。为了 准确掌握晶振电路中该用多大的电容,只要把握晶体负载电容应等于振荡回路中的电容+杂散电容就可以了。你所说的IC中6pF的电容就可看作杂散电容





相关文档
相关文档 最新文档