文档库 最新最全的文档下载
当前位置:文档库 › 两端悬挂梁各阶固有频率及主振形的测定试验

两端悬挂梁各阶固有频率及主振形的测定试验

两端悬挂梁各阶固有频率及主振形的测定试验
两端悬挂梁各阶固有频率及主振形的测定试验

两端悬挂梁各阶固有频率及主振形的测定试验

一、实验目的

1、用共振法确定两端悬挂梁横向振动时的前五阶固有频率;

2、熟悉和了解两端悬挂梁振动的规律和特点;

3、观察和测试两端悬挂梁振动的各阶主振型,分析各阶固有频率及其主振型的实测值与理论计算值的误差。

二、仪器和设备

两端悬挂支座;脉冲锤1个;圆形截面钢梁标准件一个;加速度传感器一个;LMS振动噪声测试系统。

三、实验基本原理

实验基本同悬臂梁实验

四、实验结果记录

前五阶固有频率表

阶数固有频率(Hz)

1 8.4735

2 54.6935

3 152.1624

4 295.9601

5 490.4713

实验测得前5阶振型图如下:

1阶振型图

2阶振型图

3阶振型图

4阶振型图

5阶振型图

五、ANSYS有限元模拟仿真结果

5.1前五阶固有频率仿真数据

5.2前五阶振型仿真图

1阶振型仿真图

2阶振型仿真图

3阶振型仿真图

4阶振型仿真图

5阶振型仿真图

六、结果误差分析

悬臂梁理论计算固有频率理论值、有限元仿真值与实测值表 梁几何尺寸 梁长 L=1m

梁直径D=12mm

固有频率(Hz ) 1f 2f

3f

4f

5f

实验值 8.4735 54.6935 152.1624 295.9601 490.4713 有限元仿真值 0

53.884

148.43

290.69

479.87

结论:由以上表可以看梁一阶频率的实验值和仿真值完全不同,并且仿真值为0,其余四阶的数值比较接近,推测出现此结果的原因是:

(1)有限元仿真中梁为无约束梁,其六个自由度均未约束,因此会出现前六个仿真值均接近0的情况,即悬挂梁不存在一阶振型。

(2)由于悬挂梁的六个自由度都未约束,实际震动中会将能量分散到整个空间,因此难以测得悬挂梁的一阶固有频率。

悬臂梁一阶固有频率及阻尼系数测试

说明:在下面的数据处理中,如1 A,11d T,1δ,1ξ,1n T,1nω:表示第一次实 1 验中第一、幅值、对应幅值时间、变化率、阻尼比、无阻尼固有频率。第二 次和和三次就是把对应的1改成2或3.由于在编缉公式时不注意2,3与平 方,三次方会引起误会,请老师见谅!! Ap0308104 陈2006-7-1 实验题目:悬臂梁一阶固有频率及阻尼系数测试 一、实验要求以下: 1. 用振动测试的方法,识别一阻尼结构的(悬臂梁)一阶固有频率和阻尼系数; 2. 了解小阻尼结构的衰减自由振动形态; 3. 选择传感器,设计测试方案和数据处理方案,测出悬臂梁的一阶固有频率和阻尼 根据测试曲线,读取数据,识别悬臂梁的一阶固有频率和阻尼系数。 二、实验内容 识别悬臂梁的二阶固有频率和阻尼系数。 三、测试原理概述: 1,瞬态信号可以用三种方式产生,有脉冲激振,阶跃激振,快速正弦扫描激振。 2,脉冲激励用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大。 3.幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,可以看到共振时的频率,也就可以得到悬臂梁的固有频率 4、阻尼比的测定 自由衰减法: 在结构被激起自由振动时,由于存在阻尼,其振幅呈指数衰减波形,可算出阻尼比。一阶固有频率和阻尼比的理论计算如下:

11 3 3 44 4 2 3.515(1) 2=210 ;70;4;285;7800 ; ,12 12 ,, Ix = 11.43 c m Iy= 0.04 c m 0.004 2.810,,1x y y f k g E p a b m m h m m L m m m a b a b I I I m m E L π ρρ-----------?===== = ?=?固x y = 式惯性矩:把数据代入I 后求得 载面积:S =b h =0.07m 把S 和I 及等数据代入()式, 求得本41.65() H Z 固理悬臂梁理论固有频率f = 阻尼比计算如下: 2 2 2 1 111 220, 2,........ln , ,22;n d n n n d n d n T i i i j j i i i i j i i i j i n d i j n d n d d d d x d x c k x d t d t c e A A A A A T A T T ξωξωωξωωωξωωηη δξωωωωωπδπξ++ -++ +++ + ++=++===≈== ? ?? ==≈2 二阶系统的特征方程为S 微分方程:m 当很少时,可以把。A 减幅系数=而A A A A A 1则:= j 又因为所以==,所以=即可知δξπ = 2 在这个实验中,我们使用的是自由衰减法,以下是实验应该得到的曲线样本及物理模型。

简支梁固有频率及振型函数

简支梁横向振动的固有频率及振型函数的推导 一.等截面细直梁的横向振动 取梁未变形是的轴线方向为X 轴(向右为正),取对称面内与x 轴垂直的方向为y 轴(向上为正)。梁在横向振动时,其挠曲线随时间而变化,可表示为 y=y(x,t) (1) 除了理想弹性体与微幅振动的假设外,我们还假设梁的长度与截面高度之比是相当大的(大于10)。故可以采用材料力学中的梁弯曲的简化理论。根据这一理论,在我们采用的坐标系中,梁挠曲线的微分方程可以表示为: 22y EI M x ?=? (2) 其中,E 是弹性模量,I 是截面惯性矩,EI 为梁的弯曲刚度,M 代表x 截面处的弯矩。挂怒弯矩的正负,规定为左截面上顺时针方向为正,右截面逆时针方向为正。关于剪力Q 的正负,规定为左截面向上为正,右截面向下为正。至于分布载荷集度q 的正向则规定与y 轴相同。在这些规定下,有: M Q Q q x x ??==??, (3) 于是,对方程(2)求偏导,可得: 222222(EI )(EI )y M y Q Q q x x x x x x ??????====??????, (4) 考虑到等截面细直梁的EI 是常量,就有:

3434y y EI Q EI q x x ??==??, (5) 方程(5)就是在等截面梁在集度为q 的分部李作用下的挠曲微分方程。 应用达朗贝尔原理,在梁上加以分布得惯性力,其集度为 22 y q t ρ?=-? (6) 其中ρ代表梁单位长度的质量。假设阻尼的影响可以忽略不计,那么梁在自由振动中的载荷就仅仅是分布的惯性力。将式(6)代入(5),即得到等截面梁自由弯曲振动微分方程: 4242y y EI x t ρ??=--?? (7) 其中2 /a EI ρ=。 为求解上述偏微分方程(7),采用分离变量法。假设方程的解为: y(x,t)=X(x)Y(t) (8) 将式(8)代入(7),得: 22424 1Y a d X Y t X dx ?=-? (9)

悬臂梁固有频率测试实验数据处理

实验题目:悬臂梁固有频率测试实验数据处理 一、实验要求以下: 1. 用振动测试的方法,识别一阻尼结构的(悬臂梁)一阶固有频率和阻尼系数; 2. 了解小阻尼结构的衰减自由振动形态; 3. 选择传感器,设计测试方案和数据处理方案,测出悬臂梁的一阶固有频率和阻尼 根据测试曲线,读取数据,识别悬臂梁的一阶固有频率和阻尼系数。 二、实验内容 识别悬臂梁的二阶固有频率和阻尼系数。 三、测试原理概述: 1,瞬态信号可以用三种方式产生,有脉冲激振,阶跃激振,快速正弦扫描激振。 2,脉冲激励用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大。 3.幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,可以看到共振时的频率,也就可以得到悬臂梁的固有频率 实验步骤及内容 1,按要求,把各实验仪器连接好接入电脑中,然后在悬臂梁上粘紧压电式加速度传感器打开计算机,。。 2,打开计算机,启动计算机上的“振动测试及谱分析.vi ”。 3,选择适当的采样频率和采样点数以及硬件增益。点击LabVIEW 上的运行按钮(Run )观察由脉冲信号引起梁自由衰减的曲线的波形和频谱。 4,尝试输入不同的滤波截止频率,观察振动信号的波形和频谱的变化。 5,尝试输入不同的采样频率和采样点数以及硬件增益,观察振动信号的波形变化。 6,根椐最合适的参数选择,显示最佳的结果。然后按下“结束按钮,完成信号采集。最后我选择的参数是:采样频率 f为512HZ,采样点数N为512点。 s 7,记录数据,copy读到数据的程序,关闭计算机。

悬臂梁固有频率测量[参照模板]

上海第二工业大学 名称:传感器与测试技术技能实习 专业:机械电子工程 班级:13机工A1 姓名: 学号:2013481 指导老师:杨淑珍孙芳方 实训地点:14#407

目录 一、技能实习内容及要求 (1) 二、总体方案设计 (2) 2-1. 测量原理 (2) 2-2. 测试系统组成 (2) 2-3. 激励方法 (3) 三、实验硬的件选用 (3) 3-1、悬臂梁 (3) 3-2.传感器 (4) 3-3、电荷放大器 (5) 3-4、采集卡 (6) 四、硬件电路的设计 (6) 五、测量软件设计 (9) 六、小结和体会 (16)

一、技能实习内容及要求 1-1. 内容: 设计一个测试悬臂梁固有频率的自动测试系统,悬臂梁如下所示: 具体技术要求: 能显示相应所采集到的波形图、频谱图等相关图 能显示固有频率 能对固有频率进行超限报警,上下限制用户可设定 生成当前测试报告,(包括相应波形图和固有频率值以及合格状态) 1-2. 实训要求: 1、提出设计方案(提出测量原理,传感器选用和安装,构建测试系统) 2、设计测量电路(包括放大,滤波电路,制作滤波电路) 3、测试软件设计:利用Labview或其它开发程序(VB、VC等),设计测量软件进行数据采集和分析 4、调试 5、撰写实训报告 1-3. 报告要求: 1.实训内容 2.撰写总体设计方案 3.硬件选用(包括传感器、采集卡的选用和安装等) 4.电路设计(包括测量电路设计,系统总电路)

5.测量软件设计(包括软件设计流程图,各功能实现方法和代码,包括个主程序,子程序描述以及相应的重要参数设置如采样通道,采样频率,采样点数) 6.小结和体会(可包含调试中遇到的问题) 二、总体设计方案 2-1.测量原理: 在测试的过程中,通过脉冲锤敲击悬臂梁的横梁产生一个脉冲信号。信号会逐渐衰减,在衰减过程中会有一个时刻衰减到的频率和悬臂梁的固有频率相同,我们要找到的就是这个相同的频率,这个频率与悬臂梁固有频率形成共振,那时候的复制达到最大,用labview分析这个值,就可以测出悬臂梁的固有频率。 2-2.测试系统的组成: 图1测试系统组成图 测试系统包括下述三个主要部分: 激励部分:

悬臂梁固有频率的计算

悬臂梁固有频率的计算 试求在0x =处固定、x l =处自由的等截面悬臂梁振动的固有频率(求解前五阶)。 解:法一:欧拉-伯努利梁理论 悬臂梁的运动微分方程为:4242(,)(,)+0w x t w x t EI A x t ρ??=??; 悬臂梁的边界条件为:2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x l dw w w w x x dx x x x ==???======???,; 该偏微分方程的自由振动解为(x,t)W(x)T(t)w =,将此解带入悬臂梁的运动微分方程可得到 1234(x)C cos sin cosh sinh W x C x C x C x ββββ=+++,(t)Acos t Bsin t T w w =+;其中2 4 A EI ρωβ= 将边界条件(1)、(2)带入上式可得13C 0C +=,24C 0C +=;进一步整理可得 12(x)C (cos cosh )(sin sinh )W x x C x x ββββ=-+-;再将边界条件(3)、(4)带入可得 12(cos cosh )C (sin sinh )0C l l l l ββββ-+-+=;12(sin sinh )C (cos cosh )0C l l l l ββββ--+-+=要 求12C C 和有非零解,则它们的系数行列式必为零,即 (cos cosh ) (sin sinh ) =0(sin sinh )(cos cosh ) l l l l l l l l ββββββββ-+-+--+-+ 所以得到频率方程为:cos()cosh()1n n l l ββ=-; 该方程的根n l β表示振动系统的固有频率:12 2 4 ()(),1,2,...n n EI w l n Al βρ==满足上式中的各 n l β(1,2,...n =)的值在书P443表8.4中给出,现罗列如下:123451.875104 4.6940917.85475710.99554114.1372l l l l l βββββ=====,,,,; 若相对于n β的2C 值表示为2n C ,根据式中的1n C ,2n C 可以表示为21cos cosh ()sin sinh n n n n n n l l C C l l ββββ+=-+;

二维梁的固有频率和振型

一、综合实验题目和要求 题目:求一二维梁的固有振型和频率。 要求:用有限元理论,求一二维梁的固有振型和频率: (1) 用二维梁有限元对梁进行分析数值计算求出其主振型向量和频率; (2) 求出其理论精确解,精确主振型向量和频率; (3) 将理论结果和计算结果进行比较。 二、程序流程图

三、实验结果 1.前六阶振型 同一有限元数不同阶数比较(以有限元20为例)如下图所示:

00.10.20.30.40.50.60.70.80.9 一阶 -0.8 -0.6-0.4-0.200.20.40.60.81 二阶 -0.8 -0.6-0.4-0.200.20.40.60.81 三阶

-0.8 -0.6-0.4-0.200.20.40.60.8 四阶 -0.8 -0.6-0.4-0.200.20.40.60.81 五阶 -0.8 -0.6-0.4-0.200.20.40.60.81 六阶 四、实验分析

对于二维梁有限元的划分(以下只对二维梁而言),要根据需求精度进行合理划分,既兼顾精度,同时也兼顾计算量(随着计算精度的提高,单元数量增加,相应计算量也会增加,计算时间也会增加),经过试验随着单元数量增加,其计算精度也不段提高,当将梁分到七单元时,通过计算得到的主振型和频率和理论值吻合的非常好。当梁取一单元时(elementno=1),由于梁总体只有两自由度,故只能得出前两阶主振型;当梁取二单元时(elementno=2),由于梁总体有四自由度,故只能得出前四阶主振型;对于梁取三单元(elementno=3)以及三单元以上(elementno>3)时,梁总体有六自由度以及更高自由度,这里只画出前六阶主振型图。下六图是在elementno=20的情况下,通过计算,画出前六阶的主振型图(其中红线部分为理论主振型图,绿色五角星是计算在梁各单元节点处的振型,数量取决于梁单元划分的数目)。 五、源程序清单 clear all close all %各参数的设置 rou=2.7e3; %密度 A=1e-3;%横截面积 E=72e9; %弹性模量 L=1; %梁长 I=8.3333e-009;%截面惯性矩 elementno=input('输入有限元的数量:'); %有限元的数量 rodno=elementno+1;%节点数 alldimension=rodno*2; l=L/elementno; %单元刚度矩阵 ke=E*I/l^3*[12 -6*l -12 -6*l; -6*l 4*l^2 6*l 2*l^2; -12 6*l 12 6*l; -6*l 2*l^2 6*l 4*l^2]; %单元质量矩阵

悬臂梁固有频率的计算之令狐采学创编

悬臂梁固有频率的计算 令狐采学 试求在0x =处固定、x l =处自由的等截面悬臂梁振动的固有频率(求解前五阶)。 解:法一:欧拉伯努利梁理论 悬臂梁的运动微分方程为:4242 (,)(,) +0w x t w x t EI A x t ρ??=??; 悬臂梁的边界条件为: 2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x l dw w w w x x dx x x x ==???======???,; 该偏微分方程的自由振动解为(x,t)W(x)T(t)w =,将此解带入悬臂梁的运动微分方程可得到 1234(x)C cos sin cosh sinh W x C x C x C x ββββ=+++, (t)Acos t Bsin t T w w =+;其中2 4 A EI ρωβ= 将边界条件(1)、(2)带入上式可得13C 0C +=,24C 0C +=;进一步整理可得12(x)C (cos cosh )(sin sinh )W x x C x x ββββ=-+-;再将边界条件(3)、(4)带入可得 12(cos cosh )C (sin sinh )0C l l l l ββββ-+-+=; 12(sin sinh )C (cos cosh )0C l l l l ββββ--+-+=要求12C C 和有非零解,则

它们的系数行列式必为零,即 (cos cosh )(sin sinh ) =0(sin sinh ) (cos cosh ) l l l l l l l l ββββββββ-+-+--+-+ 所以得到频率方程为:cos()cosh()1n n l l ββ=-;该方程的根n l β表示振 动系统的固有频率:1 2 24()(),1,2,...n n EI w l n Al βρ==满足上式中的各n l β(1,2,...n =)的值在书P443表8.4中给出,现罗列如下: 123451.875104 4.6940917.85475710.99554114.1372 l l l l l βββββ=====,,,,;若相对于n β的2C 值表示为2n C ,根据式中的1n C ,2n C 可以表示为21cos cosh ( )sin sinh n n n n n n l l C C l l ββββ+=-+;因此 1cos cosh (x)C (cos x cosh x)(sin x sinh x),1,2,... sin sinh n n n n n n n n n n l l W n l l ββββββββ??+=---=??+?? 由此可得到悬臂梁的前五阶固有频率,分别将n=1,2,3,4,5带入可得: 1112 2222 2123444 1.875104() 4.694091()7.854757()EI EI EI Al Al Al ωωωρρρ===,,, 11 2 2 224544 10.995541()14.1372()EI EI Al Al ωωρρ==,; 法二、铁摩辛柯梁梁理论 1.悬臂梁的自由振动微分方程: 4242442224(,)(,)(1)0w x t w x t E w I w EI A I kG kG x t x t t ρρρ????+-++=?????; 边界条件:(0)(0)0w x x φ====(1),0x l x l w x x φ φ ==??-= =??(2);

模态振型固有频率基本理论

模态振型是一个相对量,通常是一个列向量,二维以上地系统其模态振型不是一个数.一个数对应单模态,其数值无意义.某模态频率下地模态振型反映了在该模态频率下各自由度地相对位移地比值.如果系统地初始位移恰好等于模态频率下地模态振型(或与之成比例),则此时系统地自由响应中只会出现该模态频率. 感谢欧阳中华教授地指点,我现在觉得自己当初确实对模态振型概念不清楚.模态振型是系统固有地振动形态,线性响应是振型线性叠加地结果,但振型之间是独立不耦合地.振型是个相对量,所以就有了多种振型归一划地方法.振型是个很重要地固有特征,正如楼上所说用于验证固有频率. 文档来自于网络搜索 我觉得振型在判别你计算固有频率正确性是非常有用地,比如,通过有限元计算得到了模型地前十阶固有频率,试验模态分析也得到了低阶地固有频率,假设计算地某阶固有频率与试验地某阶固有频率非常接近,但是并不能马上说明他们是同一阶地,需要通过振型来判断. 文档来自于网络搜索 其他地不知道,但是之所以引入模态地概念,之所以从物理坐标变换到模态坐标就是为了解耦,就是为了让其正交,这样方程才能解出来. 从能量角度说,这样各个振型之间就没有能量地交换. 文档来自于网络搜索 从数学上看,对响应函数级数展开后,其中地各项构成各阶模态,而级数展开形式本身要求各个基函数是相互正交地,也就是说:其实是把响应函数放到了一个函数空间里,各个展开项系数相当于这个响应在此函数空间里地坐标.文档来自于网络搜索 因为个自由度以上地系统往往都有耦合现象,例如方程*^^*中地、不同时为对角阵.但是从求解地角度来说,我们又希望其中地每个方程都是独立地,那样我们就可以像求解单自由度系统一样求解.我们就想能否选到合适地坐标系,使得运动完全不耦合,即系统质量矩阵和刚度矩阵同时为对角矩阵,称这样地坐标系为主坐标系,而模态坐标正是我们要寻找地主坐标.固有振型地正交性是指(以自由度为例),第一阶固有振动引起地作用力在第二阶固有振动上所做地功为零,即两种固有振动间无弹性势能地交换.同时也可证明振型地各阶导数间也是正交地. 文档来自于网络搜索 就像不同地坐标系下,对同一运动系统地表述会很不一样,表述同一运动系统地振型模态也可以有很多物理量地坐标系,当然其中很多都是很复杂地,对解决实际问题是没有实际意义和帮助地,只有那个特殊地正交状态地模态坐标,才是最简单最有用地坐标,因为它能把系统解耦,,这个特殊地坐标称之为主坐标,对应主振型,这个状态可以把方程解开,把问题解决掉,,文档来自于网络搜索 各阶模态是互相正交是为了解耦,使问题最简化.类似向量地分解,比方说,一个平面内力向量地分解方式有很多种,但采用直角正交分解最方便. 文档来自于网络搜索 主要从以后地解方程组时候要解耦考虑吧 模态正交,具体表现在模态振型存在正交,请注意“存在”,而这种正交是线性系统模态地基本特性,准确地说是固有特性,正因为存在这种正交特性,带来了运算时地广义坐标下地耦合矩阵变为模态坐标中.文档来自于网络搜索 地解耦,计算变得简单. 注:(对上段话地个人理解:线性系统具有正交特性,人们利用线性系统地正交特性,对线性模态进行解耦,使问题简化.)文档来自于网络搜索 .任一阶主振型地惯性力在另一阶主振型作为虚位移上所做地虚功之和为零 .任一阶主振型地惯性力只在各自地振型上做功,在另外地主振型上不做功 这是正交相应地物理解释,是模态振型正交地物理形式,所以不能用物理含义去证明其相应地数学表达. 上面模态正交地数学和物理形式和概念有解释清楚了,那么,为什么会正交呢?

28.悬臂梁固有频率测量实验

实验二十八悬臂梁固有频率测量实验 1. 简介 悬臂梁实验台主要是针对高校工程测试课程实验教学需要而设计的,结合drvi快速可重组虚拟仪器开发平台、振动测量传感器和数据采集仪,可以开设悬臂梁固有频率测量实验。 2. 结构组成 悬臂梁实验台的结构示意如图1所示,结构总体尺寸为120×110×150mm(长×宽×高),主要包括的零件有: 图1 悬臂梁实验台结构示意图 1. 悬臂 2. 底座 3. 操作说明 3.1 实验准备 运用悬臂梁实验台进行实验教学所需准备的实验设备为: 1. 悬臂梁实验台(lxbl-a)1套 2. 加速度传感器(yd-37)1套 3. 加速度传感器变送器(lbs-12-a)1台 4. 蓝津数据采集仪(ldaq-epp2)1台 5. 开关电源(ldy-a)1套 6. 脉冲锤1只 7. 5芯对等线1条 备齐所需的设备后,将加速度传感器安装在悬臂梁前端的安装孔上,然后将加速度传感器与变送器相连,变送器通过5芯对等线与数据采集仪1通道连接,数据采集仪通过并口电缆与pc机并口连接,加速度传感器调理电路模块接线如图2所示。在保证接线无误的情况下,可以开始进行实验。

图2 加速度传感器调理电路接线示意图 3.2 实验操作 悬臂梁固有频率测量实验利用加速度传感器来测量悬臂振动的信号,经过频谱变换(fft)处理后得到悬臂梁的一阶固有频率,需要注意的是该实验数据采集采用预触发方式,数据采集仪的触发电平要根据现场情况进行设置,实验过程如下: 1. 启动服务器,运行drvi主程序,开启drvi数据采集仪电源,然后点击drvi快捷工具条上的“联机注册”图标,进行服务器和数据采集仪之间的注册。联机注册成功后,启动drvi内置的“web服务器功能”,开始监听8500端口。 图3 悬臂梁固有频率测量实验样本图 2. 启动drvi中的“悬臂梁固有频率测量”实验脚本,然后设定数据采集仪的工作模式为外触发采样,同时设置触发电平(如800)和预触发点数(如20),然后点击“运行”按钮启动采样过程(由于采用外触发采样方式,此时处于等待状态)。 3. 用脉冲锤敲击悬臂梁,产生脉冲激振。敲击的力幅要适当,着力点要准确,迅速脱开。如检测不到冲击振动信号,则适当修改采集仪中的预触发电平,然后点击面板中的“开始”按钮再次进行测量,此时,信号分析窗口中应显示出悬臂梁受瞬态激励后输出的信

悬臂梁各阶固有频率及主振形的测定试验

实验五 悬臂梁各阶固有频率及主振形的测定试验 一、实验目的 1、用共振法确定悬臂梁横向振动时的各阶固有频率。 2、熟悉和了解悬臂梁振动的规律和特点。 3、观察和测试悬臂梁振动的各阶主振型。分析各阶固有频率及其主振型的实测值与理论计算值的误差。 二、基本原理 悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析模型称为欧拉-伯努利梁。 运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程 1 L Lch cos -=ββ (5-1) 式中:L ——悬臂梁的长度。 梁各阶固有园频率为 A EI i i n 2 ρβω= (5-2) 对应i 阶固有频率的主振型函数为 ) ,3,2,1() sin (sin cos cos )( =-++- -=i x x sh L L sh L L ch x x ch x X i i i i i i i i i ββββββββ (5-3) 对于(5-1)式中的β,不能用解析法求解,用数值计算方法求得的一阶至四阶固有园频率和主振型的结果列于表5-1。 各阶固有园频率之比 1f ﹕1f ﹕1f ﹕1f ﹕… = 1﹕6.269﹕17.56﹕34.41﹕… (5-4) y A B x h L b 图5-1 悬臂梁振动模型 表(5-1)给出了悬臂梁自由振动时i =1~4阶固有园频率及其相应主振型函数。除了悬臂梁固定端点边界位移始终为零外,对于二阶以上主振型而言,梁上还存在一些点在振动过程中位移始终为零的振型节点。i 阶振型节点个数等于i -1,即振型节点个数比其振型的阶数小1。 实验测试对象为矩形截面悬臂梁(见图5-2所示)。在实验测试时,给梁体施加一个大小适当的激扰作用力,其频率正好等于梁体的某阶固有频率,则梁体便会产生共振,这时梁体变形即为该阶固有频率所对应的主振型,其它各阶振型的影响很小可忽略不计。用共振法确定悬臂梁的各阶固有频率及振型,我们只要连续调节激扰力,当悬臂梁出现某阶主振型且振动幅值最大即悬臂梁产生共振时,这时激扰力的频率就可以认为是悬臂梁的这一阶振动的固有频率。在工程实践中,最重要是确定振动系统最低的几阶固有频率及其主振型。本实验主要运用共振法测定悬臂梁一、二、三、四阶固有频率及其相应的主振型。

梁的振动实验报告

《机械振动学》实验报告 实验名称梁的振动实验 专业航空宇航推进理论与工程 姓名刘超 学号 SJ1602006 南京航空航天大学 Nanjing University of Aeronautics and Astronautics 2017年01月06日

1实验目的 改变梁的边界条件,对比分析不同边界条件,梁的振动特性(频率、振型等)。对比理论计算结果与实际测量结果。正确理解边界条件对振动特性的影响。 2实验内容 对悬臂梁、简支梁进行振动特性对比,利用锤击法测量系统模态及阻尼比等。 3实验原理 3.1 固有频率的测定 悬臂梁作为连续体的固有振动,其固有频率为: ()1,2,.......r r l r ωλ==其中, 其一、二、三、四阶时, 1.87514.69417.854810.9955.....r l λ=、 、、 简支梁的固有频率为: ()1,2,.......r r l r ωλ==其中 其一、二、三、四阶时, 4.73007.853210.995614.1372.....r l λ=、 、、 其中E 为材料的弹性模量,I 为梁截面的最小惯性矩,ρ为材料密度,A 为梁截面积,l 为梁的长度。 试件梁的结构尺寸:长L=610mm, 宽b=49mm, 厚度h=8.84mm. 材料参数: 45#钢,弹性模量E =210 (GPa), 密度ρ=7800 (Kg/m 3) 横截面积:A =4.33*10-4 (m 2), 截面惯性矩:J =3 12 bh =2.82*10-9(m 4) 则梁的各阶固有频率即可计算出。

3.2、实验简图 图1 悬臂梁实验简图 图2简支梁实验简图

悬臂梁固有频率测量试验

机械工程测试与控制技术试验 试验七悬臂梁固有频率测量试验 ……………………08机电一班 实验数据: 通道11 2355 2301 1957 1472 882.9 84.84 -924 -1903 -2575 -2904 -3070 -3185 -3156 -2850 -2308 -1702 -1104

516.3 1491 2257 2706 2958 3145 3214 3022 2565 1999 1432 786.9 -58.3 -1033 -1890 -2465 -2818 -3086 -3253 -3183 -2821 -2288 -1729 -1127 -359.3 575.6 1480 2149 2579 2900 3156 3228 3008 2554 2023 1460 763.7 -119.6 -1047 -1800 -2316 -2705 -3042

-3127 -2744 -2236 -1703 -1074 -257 669.2 1490 2082 2514 2886 3150 3160 2880 2437 1955 1399 662.7 -228 -1081 -1736 -2217 -2633 -2975 -3105 -2940 -2566 -2121 -1620 -961 -120.4 752.9 1478 2026 2495 2912 3160 3114 2812 2395 1925 1326 538.6

-1113 -1723 -2237 -2711 -3055 -3128 -2914 -2542 -2110 -1579 -866.8 -20.26 792 1454 2003 2512 2935 3130 3034 2738 2360 1896 1259 453.4 -376.9 -1088 -1678 -2223 -2714 -3020 -3040 -2825 -2502 -2103 -1550 -808.4 14.62 760.6 1384 1952 2491 2894 3037

悬臂梁固有频率测量

悬臂梁固有频率测量

上海第二工业大学 名称:传感器与测试技术技能实习 专业:机械电子工程 班级:13机工A1 姓名: 学号:2013481 指导老师:杨淑珍孙芳方 实训地点:14#407

目录 一、技能实习内容及要求 (1) 二、总体方案设计 (2) 2-1. 测量原理 (2) 2-2. 测试系统组成 (2) 2-3. 激励方法 (3) 三、实验硬的件选用 (3) 3-1、悬臂梁 (3) 3-2.传感器 (4) 3-3、电荷放大器 (5) 3-4、采集卡 (6) 四、硬件电路的设计 (6) 五、测量软件设计 (9) 六、小结和体会 (16)

一、技能实习内容及要求 1-1. 内容: 设计一个测试悬臂梁固有频率的自动测试系统,悬臂梁如下所示: 具体技术要求: 能显示相应所采集到的波形图、频谱图等相关图 能显示固有频率 能对固有频率进行超限报警,上下限制用户可设定 生成当前测试报告,(包括相应波形图和固有频率值以及合格状态) 1-2. 实训要求: 1、提出设计方案(提出测量原理,传感器选用和安装,构建测试系统) 2、设计测量电路(包括放大,滤波电路,制作滤波电路) 3、测试软件设计:利用Labview或其它开发程序(VB、VC等),设计测量软件进行数据采集和分析 4、调试 5、撰写实训报告 1-3. 报告要求: 1.实训内容 2.撰写总体设计方案 3.硬件选用(包括传感器、采集卡的选用和安装等) 4.电路设计(包括测量电路设计,系统总电路)

5.测量软件设计(包括软件设计流程图,各功能实现方法和代码,包括个主程序,子程序描述以及相应的重要参数设置如采样通道,采样频率,采样点数) 6.小结和体会(可包含调试中遇到的问题) 二、总体设计方案 2-1.测量原理: 在测试的过程中,通过脉冲锤敲击悬臂梁的横梁产生一个脉冲信号。信号会逐渐衰减,在衰减过程中会有一个时刻衰减到的频率和悬臂梁的固有频率相同,我们要找到的就是这个相同的频率,这个频率与悬臂梁固有频率形成共振,那时候的复制达到最大,用labview分析这个值,就可以测出悬臂梁的固有频率。 2-2.测试系统的组成: 图1测试系 测试系统包括下述三个主要部分: 激励部分:

悬臂梁固有频率的计算电子版本

悬臂梁固有频率的计 算

悬臂梁固有频率的计算 试求在0x =处固定、x l =处自由的等截面悬臂梁振动的固有频率(求解前五阶)。 解:法一:欧拉-伯努利梁理论 悬臂梁的运动微分方程为:4242(,)(,)+0w x t w x t EI A x t ρ??=??; 悬臂梁的边界条件为:2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x l dw w w w x x dx x x x ==???======???,; 该偏微分方程的自由振动解为(x,t)W(x)T(t)w =,将此解带入悬臂梁的运动微分方程可得到1234(x)C cos sin cosh sinh W x C x C x C x ββββ=+++,(t)Acos t Bsin t T w w =+;其中2 4A EI ρωβ= 将边界条件(1)、(2)带入上式可得13C 0C +=,24C 0C +=;进一步整理可得12(x)C (cos cosh )(sin sinh )W x x C x x ββββ=-+-;再将边界条件(3)、(4)带入可得12(cos cosh )C (sin sinh )0C l l l l ββββ-+-+=;12(sin sinh )C (cos cosh )0C l l l l ββββ--+-+=要求12C C 和有非零解,则它们的系数行列式必为零,即 (cos cosh ) (sin sinh )=0(sin sinh )(cos cosh ) l l l l l l l l ββββββββ-+-+--+-+ 所以得到频率方程为:cos()cosh()1n n l l ββ=-;该方程的根 n l β表示振动系统的固有频率:1224 ()(),1,2,...n n EI w l n Al βρ==满足上式中的各n l β(1,2,...n =)的值在书P443表8.4中给出,现罗列如下:123451.875104 4.6940917.85475710.99554114.1372l l l l l βββββ=====,,,,;

悬臂梁模态分析实验报告.doc

精品资料 悬臂梁各阶固有频率及主振形的测定试验 一、实验目的 1、用共振法确定悬臂梁横向振动时的前五阶固有频率; 2、熟悉和了解悬臂梁振动的规律和特点; 3、观察和测试悬臂梁振动的各阶主振型,分析各阶固有频率及其主振型的实测值与理论计算值的误差。 二、仪器和设备 悬臂梁固定支座;脉冲锤1个;圆形截面悬臂钢梁标准件一个;加速度传感器一个;LMS振动噪声测试系统。 三、实验基本原理 瞬态信号可以用三种方式产生,分述如下: 一是快速正弦扫频法.将正弦信号发生器产生的正弦信号,在幅值保持不变的条件下,由低频很快地连续变化到高频.从频谱上看,该情况下,信号的频谱已不具备单一正弦信号的特性,而是在一定的频率范围内接近随机信号. 二是脉冲激励.用脉冲锤敲击试件,产生近似于半正弦的脉冲信号.信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大. 三是阶跃激励.在拟定的激振点处,用一根刚度大、重量轻的弦经过力传感器对待测结构施加张力,使其产生初始变形,然后突然切断张力弦,相当于给该结构施加一个负的阶跃激振力. 用脉冲锤进行脉冲激振是一种用得较多的瞬态激振方法,它所需要的设备较

少,信号发生器、功率放大器、激振器等都可以不要,并且可以在更接近于实际工作的条件下来测定试件的机械阻抗. 四、实验结果记录 前五阶固有频率表 阶数固有频率(Hz) 1 8.491 2 54.216 3 154.607 4 304.354 5 494.691 实验测得的前五阶振型图如下: 1阶振型图

2阶振型图 3阶振型图 4阶振型图

5阶振型图 五、理论计算悬臂梁固有频率 圆截面悬臂钢梁有关参数可取:Pa E 11101.2?=,7850=ρkg/3 m 。用直尺测 量悬臂梁的梁长L=1000mm 、梁直径D=12mm 。计算简支梁一、二、三、四阶固有频率和相应的振型,并将理论计算结果填入表。 悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析 模型称为欧拉-伯努利梁。 运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程 1 L Lch cos -=ββ (5-1) 式中:L ——悬臂梁的长度。 梁各阶固有频率为 4 2 2(Al EI l f i i ρπ β)= (5-2) 悬臂梁固有圆频率及主振型函数

悬臂梁振动参数测试实验

报告四报告四 悬臂梁振动参数测试试验 一 实验目的实验目的 1.了解机械振动测试的基本原理 方法 技能 2.掌握自由共振法确定系统的固有频率和阻尼比的方法 3.了解机械振动数据处理方法 二 要仪器设备 要仪器设备 1.悬臂梁—被测 象 2.DASP 数据采集 分析系统 该系统集成 信号发生器示波器 信号分析仪 和 频响函数测试仪 种仪器, 有多通道同 采集 能,并 采集到的信号实 时域 频域多种分析 能, 有 被测振动系统的频响函数测试的 能 3.电荷放大器—前置放大器 4. 速度计 自由共振法自由共振法 1.1.时域法测梁的振动频率和阻时域法测梁的振动频率和阻时域法测梁的振动频率和阻尼尼 本实验中,圆频率 d ωω=当ξ很小时,有 d d ,2/n T ωωωπ≈= 中,正由测量得到 所示,当ξ很小时,有 1 定d n ωω≈ 2 确定ξ ξ= ln i n i n M M δ+= 2.2.频域法测梁的振动频率 阻尼频域法测梁的振动频率 阻尼频域法测梁的振动频率 阻尼 因 d ωω=当ξ很小时,有 r n ωω≈ 1 由()A ω减掉ω 的共振峰来确定n ω

2 212n ωωξω?= ,12(1)(1)n n ωξωωξω=?=+ 12()()A A ωω≈≈ 四 按理论 式计算按理论 式计算 梁的固有频率梁的固有频率 已知 ()n f HZ = 式中 E ——梁的弹性模量 0I ——梁横截面惯性矩 L ——悬臂梁长度 S ——梁的横截面积 A ——振型常数 3.52A = 一阶 ρ——梁材料单位体积质量 五 悬臂梁振动参数的测试悬臂梁振动参数的测试 图1 实验测试悬臂梁

悬臂梁固有频率的计算

悬臂梁固有频率得计算 试求在处固定、处自由得等截面悬臂梁振动得固有频率(求解前五阶)。 解:法一:欧拉-伯努利梁理论 悬臂梁得运动微分方程为: ; 悬臂梁得边界条件为:2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x l dw w w w x x dx x x x ==???======???,; 该偏微分方程得自由振动解为,将此解带入悬臂梁得运动微分方程可得到,;其中 将边界条件(1)、(2)带入上式可得,;进一步整理可得;再将边界条件(3)、(4)带入可得;要求有非零解,则它 们得系数行列式必为零,即 所以得到频率方程为:;该方程得根表示振动系统得固有频率:满足上式中得各()得值在书P443表8、4中给出,现罗列如下: 123451.875104 4.6940917.85475710.99554114.1372l l l l l βββββ=====,,,,;若相对于得值表示为,根据式中得,可以表示为;因此 1cos cosh (x)C (cos x cosh x)(sin x sinh x),1,2,...sin sinh n n n n n n n n n n l l W n l l ββββββββ??+=---=??+??由此可得到悬 臂梁得前五阶固有频率,分别将n=1,2,3,4,5带入可 得:111 2 22 222123444 1.875104() 4.694091()7.854757()EI EI EI Al Al Al ωωωρρρ===,,, ; 法二、铁摩辛柯梁梁理论 1、悬臂梁得自由振动微分方程: ; 边界条件:;

双简支梁固有频率及振型测量

《振动测试实验》实验报告? 南京航空航天大学 机械结构力学及控制国家重点实验室 二○一一年 ?注:实验报告完成后请以附件形式发送至:wt78@https://www.wendangku.net/doc/8f12360544.html, 邮件主题请写明:《振动测试实验报告》,姓名,学号,分班号(三班或四班)

一、实验目的 ?测量双简支梁的固有频率和振型。 ?理解多自由度系统振型的物理概念。 ?掌握多自由度系统固有频率和振型的简单测量方法。 二、实验原理图 简支梁固有频率和振型测试原理图 三、实验过程 1、将功率放大器“输出调节”旋至最小,“信号选择”置“外接”。打开各设备电源。 2、进入“双简支梁固有频率与振型测量”实验操作界面,使信号发生器的输出频率约为 30Hz,输出电压约为 1V 。调节功率放的“输出调节”,逐渐增大其输出功率直至质量块有明显的振动(观察并用手触摸)。 3、将信号发生器输出频率由低向高逐步调节,同时观察李萨育图形。当李萨育图为稳定的正椭圆时,信号发生器的频率读数即为第一阶固有频率。继续将

信号发生器的频率向高逐步调节,测出第二阶、第三阶固有频率。 4、再将信号发生器调到第一阶固有频率值,保持功率放大器的输出功率恒定(即:不再改变信号发生器的输出电压和功率放大器的输出功率),保持“参考”传感器的位置不变。将“测量”传感器从双简支梁的右端等距跑点,依次记下“测量”传感器在各个位置时的测量点与参考点传感器输出电压之比(即“测量点/参考点”的显示值)及其正负号。将其归一化即可得到第一阶振型,填“振型数据”表格。点击“振型图”或“振型动画”检验振型数据。 四、实验数据与分析 1、列出固有频率。 双简支梁的3个阶段的固有频率分别为: 一阶: 36.7Hz 二阶: 136.5Hz 三阶: 326.6Hz 一阶振型图

悬臂梁模态分析实验报告

悬臂梁各阶固有频率及主振形的测定试验 一、实验目的 1、用共振法确定悬臂梁横向振动时的前五阶固有频率; 2、熟悉和了解悬臂梁振动的规律和特点; 3、观察和测试悬臂梁振动的各阶主振型,分析各阶固有频率及其主振型的实测值与理论计算值的误差。 二、仪器和设备 悬臂梁固定支座;脉冲锤1个;圆形截面悬臂钢梁标准件一个;加速度传感器一个;LMS振动噪声测试系统。 三、实验基本原理 瞬态信号可以用三种方式产生,分述如下: 一是快速正弦扫频法.将正弦信号发生器产生的正弦信号,在幅值保持不变的条件下,由低频很快地连续变化到高频.从频谱上看,该情况下,信号的频谱已不具备单一正弦信号的特性,而是在一定的频率范围内接近随机信号. 二是脉冲激励.用脉冲锤敲击试件,产生近似于半正弦的脉冲信号.信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大. 三是阶跃激励.在拟定的激振点处,用一根刚度大、重量轻的弦经过力传感器对待测结构施加张力,使其产生初始变形,然后突然切断张力弦,相当于给该结构施加一个负的阶跃激振力. 用脉冲锤进行脉冲激振是一种用得较多的瞬态激振方法,它所需要的设备较少,信号发生器、功率放大器、激振器等都可以不要,并且可以在更接近于实际工作的条件下来测定试件的机械阻抗. 四、实验结果记录

前五阶固有频率表 阶数固有频率(Hz) 1 8.491 2 54.216 3 154.607 4 304.354 5 494.691 实验测得的前五阶振型图如下: 1阶振型图 2阶振型图

3阶振型图 4阶振型图 5阶振型图

五、理论计算悬臂梁固有频率 圆截面悬臂钢梁有关参数可取:Pa E 11101.2?=,7850=ρkg/3 m 。用直尺测 量悬臂梁的梁长L=1000mm 、梁直径D=12mm 。计算简支梁一、二、三、四阶固有频率和相应的振型,并将理论计算结果填入表。 悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析 模型称为欧拉-伯努利梁。 运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程 1 L Lch cos -=ββ (5-1) 式中:L ——悬臂梁的长度。 梁各阶固有频率为 4 2 2(Al EI l f i i ρπ β)= (5-2) 悬臂梁固有圆频率及主振型函数 频率方程 A EI f L Lch ρπββ211 cos *= -= i 固有圆频率i n f 主振型函数 )(x X i 1 * 21 1 f f β= 2 *2 22f f β= 3 *2 33f f β= 4 *2 44f f β= 5 *2 55f f β=

相关文档
相关文档 最新文档