文档库 最新最全的文档下载
当前位置:文档库 › 初中数学竞赛第十一讲双曲线(含答案)

初中数学竞赛第十一讲双曲线(含答案)

初中数学竞赛第十一讲双曲线(含答案)
初中数学竞赛第十一讲双曲线(含答案)

第十一讲 双曲线

形如x

k

y =

(0≠k )的函数叫做反比例函数,它的图象是由两条曲线组成的双曲线,与双曲线相关的知识有:

1. 双曲线解析式x

k

y =

中的系数k 决定图象的大致位置及y 随x 变化的状况.

2.双曲线图象上的点是关于原点O 成中心对称,在k >0时函数的图象关于直线x y =轴对称;在k <0时函数的图象关于直线x y -=轴对称.

3.自变量的取值是不等于零的全体实数,双曲线向坐标轴无限延伸但不能接近坐标轴. 【例题求解】

【例1】 已知反比例函数x

k

y =

的图象与直线x y 2=和1+=x y 过同一点,则当0>x 时,这个反比例函数的函数值y 随x 的增大而 (填增大或减小).

思路点拨 确定k 的值,只需求出双曲线上一点的坐标即可. 注:(1)解与反比函数相关问题时,充分考虑它的对称性(关于原点O 中心称,关于x y ±=轴对称),这样既能从整上思考问题,又能提高思维的周密性. (2)一个常用命题: 如图,设点A 是反比例函数x

k

y =(0≠k )的图象上一点,过A 作AB ⊥x 轴于B ,过A

作AC ⊥y 轴于C ,则 ①S △AOB =

k 2

1

; ②S 矩形OBAC =k .

【例2】 如图,正比例函数kx y = (0>k )与反比例函数x

y 1

=

的图象相交于A 、C 两点,过A 作AB ⊥x 轴于B ,连结BC ,若S △ABC 的面积为S ,则( ) A .S=1 B .S =2 C .S=k D .S=2k

思路点拨 运用双曲线的对称性,导出S △AOB 与S △OBC 的关系.

【例3】 如图,已知一次函数8+-=x y 和反比例函数x

k

y =

(0≠k )的图象在第一象限内有两个不同的公共点A 、B . (1)求实数k 的取值范围;

(2)若△AOB 面积S =24,求k 的值.

思路点拨 (1)两图象有两个不同的公共点,即联立方程组有两组不同实数解; (2)S △AOB= S △COB S- S △COA ,建立k 的方程.

【例4】 如图,直线22

1

+=

x y 分别交x 、y 轴于点A 、C ,P 是该直线上在第一象限内的一点,PB ⊥x 轴于B ,S △ABP =9. (1)求点P 的坐标;

(2)设点R 与点P 在同一个反比例函数的图象上,且点R 在直线PB 的右侧,作PT ⊥x 轴于F ,当△BRT 与△AOC 相似时,求点R 的坐标. (2002年上海市中考题)

思路点拨 (1)从已知的面积等式出发,列方程求P 点坐标;(2)以三角形相似为条件,结合线段长与坐标的关系求R 坐标,但要注意分类讨论.

【例5】 如图,正方形OABC 的面积为9,点O 为坐标原点,点A 在x 轴上,点C 在y 轴上, 点B 在函数x k y =

(0>k ,0>x )的图象上,点P(m ,n )是函数x

k

y = (0>k ,0>x )的图象上的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,并设矩形OEPF

和正方形OABC 不重合部分的面积为S . (1)求B 点坐标和k 的值; (2)当2

9

=

S 时,求点P 的坐标; (3)写出S 关于m 的函数关系式.

思路点拨 把矩形面积用坐标表示,A 、B 坐标可求,S 矩形OAGF 可用含n 的代数式表示,

注:求两个函数图象的交点坐标,一般通过解这两个函数解析式组成的方程组得到,求符合某种条件的点的坐标,需根据问题中的数量关系和几何元素间的关系建立关于纵横坐标的方程(组),解方程(组)便可求得有关点的坐标,对于几何问题,还应注意图形的分类讨论.

学历训练

A 组

1. 若一次函数b kx y +=的图象如图所示,则抛物线b kx x y ++=2的对称轴位于y 轴的 侧;反比例函数x

kb

y =的图象在第 象限,在每一个象限内,y 随x 的增大而 .

2.反比例函数x

k

y =

的图象经过点A(m ,n),其中m ,n 是一元二次方程042=++kx x 的两个根,则A 点坐标为 . 3.如图:函数kx y -=(k ≠0)与x

y 4

-

=的图象交于A 、B 两点,过点A 作AC ⊥y 轴,垂足为点C ,则△BOC 的面积为 .

4.已知,点P(n ,2n)是第一象限的点,下面四个命题: (1)点P 关于y 轴对称的点P 1的坐标是(n ,-2n);

(2)点P 到原点O ;(3)直线 y=-nx+2n 不经过第三象限; (4)对于函数y=

n

x

,当x <0时,y 随x 的增大而减小; 其中真命题是 .(填上所有真命题的序号) 5.已知反比例函数y=

1m

x

-的图像上两点A(x 1,y 1)、B (x 2,y 2),当x 1<0<x 2时,有y 1

<y 2 ,则m 的取值范围是( ) A .m <O B .m >0 C. m <12 D.m >12

6.已知反比例函数x

k

y =

的图象如图所示,则二次函数222k x kx y +-=的图象大致为( )

7.已知反比例函数),0(≠=

k x

k

y 当0

A .第一、二、三象限

B .第一、二、四象限

C .第一、三、四象限

D .第二、三、四象限

8.如图,A 、B 是函数x

y 1

=

的图象上的点,且A 、B 关于原点O 对称,AC ⊥x 轴于C ,BD ⊥x 轴于D ,如果四边形ACBD 的面积为S ,那么( ) A . S =1 B .12 D .S =2

9.如图,已知一次函数y=kx+b(k ≠O)的图像与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=

x

m

(m ≠0)的图像在第一象限交于C 点,CD 垂直于x 轴,垂足为D .若OA=OB=OD=l .

(1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.

10.已知A(x 1、y 1),B(x 2,y 2)是直线2+-=x y 与双曲线x

k

y = (0≠k )的两个不同交点. (1)求k 的取值范围;

(2)是否存在这样k 的值,使得2

1

1221)2)(2(x x x x x x +=

--?若存在,求出这样的k 值;若不存在,请说明理由.

11.已知反比例函数2k

y x

=

和一次函数y =2x-1,其中一次函数图像经过(a ,b),(a+1,b+k)两点.

(1)求反比例函数的解析式;

(2)如图,已知点A 在第一象限,且同时在上述两个函数的图像上,求A 点坐标;

(3)利用(2)的结果,请问:在x 轴上是否存在点P ,使ΔAOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.

B 组

12.反比例函数x

k

y =

的图象上有一点P(m ,n),其中m 、n 是关于t 的一元二次方程032=+-k t t 的两根,且P 到原点O 的距离为13,则该反比例函数的解析式为 .

13.如图,正比例函数x y 3=的图象与反比例函数

x

k

y =

(0>k )的图象交于点A ,若k 取1,2,3…20,对应的Rt △AOB 的面积分别为S 1,S 2,…,S 20,则S 1+S 2+…+S 20= .

14.老师给出一个函数y=f(x),甲、乙、丙、丁四位同学各指出这个函数的一个性质:

甲:函数图像不经过第三象限; 乙:函数图像经过第一象限;

丙:当x <2时,y 随x 的增大而减小; 丁:当x <2时,y >0

已知这四位同学叙述都正确,请构造出满足上述所有性质的一个..函数: . 15.已知反比例函数x

y 12

=

的图象和一次函数7-=kx y 的图象都经过点P(m ,2). (1)求这个一次函数的解析式;

(2)如果等腰梯形ABCD 的顶点A 、B 在这个一次函数的图象上,顶点C 、D 在这个反

比例函数的图象上,两底AD 、BC 与y 轴平行,且A 、B 的横坐标分别为a 和2+a ,

求a 的值.

16.如图,直线经过A(1,0),B(0,1)两点,点P 是双曲线x

y 21

=

(0>x )上任意一点,PM ⊥x 轴,PN ⊥y 轴,垂足分别为M ,N .PM 与直线AB 交于点E ,PN 的延长线与直线AB

交于点F .

(1) 求证:AF ×BE =1;

(2)若平行于AB 的直线与双曲线只有一个公共点,求公共点的坐标.

17.已知矩形ABCD的面积为36,以此矩形的对称轴为坐标轴建立平面直角坐标系

.....................,设点A的坐标为(x,y),其中x>0,y>0.

(1)求出y与x之间的函数关系式,求出自变量x的取值范围;

(2)用x、y表示矩形ABCD的外接圆的面积S,并用下列方法,解答后面的问题:

方法:∵

2

22

2

()2

k k

a a k

a a

+=-+(k为常数且k>0,a≠0),且2

()0

k

a

a

-≥

∴.

2

2

2

2

k

a k

a

+≥.

∴当

k

a

a

-=0,即a=

2

2

2

k

a

a

+取得最小值2k.

问题:当点A在何位置时,矩形ABCD的外接圆面积S最小?并求出S的最小值;(3)如果直线y=mx+2(m<0)与x轴交于点P,与y轴交于点Q,那么是否存在这样的实

数m,使得点P、Q与(2)中求出的点A构成△PAQ的面积是矩形ABCD面积的1

6

?若存在,

请求出m的值;若不存在,请说明理由.

参考答案

2007年全国高中数学联赛(江西赛区)获奖名单

2007年全国高中数学联赛(江西赛区)获奖名单 一等奖 (40名) 范鈺超江西师范大学附属中学熊雪南昌市第二中学 江灏婺源天佑中学宋浩鹰潭市第一中学 钱诚景德镇一中龚铭景德镇一中 张睿景德镇一中罗星晨江西师范大学附属中学 董长光万年中学周逸凡南昌市第二中学 赖俊瑜石城中学王晨广万年中学 郑力玉山县第一中学曹博豪景德镇一中 上官冲余江县第一中学余超旻景德镇一中 卢睿翔景德镇一中吴越南昌市外国语学校 陈理昂南昌市第十中学卢栋才鹰潭市第一中学 周志武抚州市临川第一中学陈思静江西师范大学附属中学 万喆彦南昌市第十中学(高二)许津南昌市第二中学 石彬都昌县第一中学余正雄景德镇一中 胡坤景德镇一中万博闻鹰潭市第一中学 胡宇豪景德镇一中张大峰抚州市临川第一中学(高二)肖涛景德镇二中(高二)邹范卿抚州市临川第二中学 李巍鹰潭市第一中学(高二)刘建辉萍乡莲花中学 谢琛璠吉安白鹭洲中学游简舲赣州市第三中学 毛祖丰上饶县中学彭沛超江西师范大学附属中学 肖涛吉安白鹭洲中学何长伟鹰潭市第一中学 二等奖(124名) 董哲勤乐平中学李殿江景德镇一中 吴泽标鹰潭市第一中学邓晋抚州市临川第二中学 熊曦景德镇一中胡嘉维景德镇一中 邱哲南昌市第十中学郑健上饶市第二中学 杨学轶南昌市第二中学易涛高安市第二中学 邓晖洋江西师范大学附属中学江文哲景德镇一中 赖正首南康中学董南鹏余江县第一中学 蔡势萍乡中学欧阳康 舸吉安白鹭洲中学 袁文刚南昌市第二中学袁典抚州市临川第一中学虞婧九江市第一中学胡玲燕玉山县第一中学

吴承瑶上饶县中学(高二)王铖吉安市第一中学 张越抚州市临川第一中学余慧扬景德镇一中 邓路九江市第一中学李思杨景德镇一中 吴泽慧鹰潭市第一中学(高二)颜楷文九江市第一中学 彭骏涛贵溪市第一中学罗才华吉水中学 陈强赣州市第一中学林城新余市第一中学 刘艺拓景德镇一中曾文俊南昌市第二中学(高二)钟灵煦赣州市第一中学汪非易南昌市第二中学(高二)罗皓抚州市临川第一中学李伏德贵溪市第一中学 陈冲玉山县第一中学(高二)黄俊远樟树中学 高日耀上饶县中学侯剑堃江西师大附属中学 胡辉吉安市第一中学罗勇光泰和中学 刘欣景德镇二中(高二)曹原景德镇一中 陈龙九江市第一中学李珊上饶县中学 邓瑞琛新干中学(高二)宋亮吉安市第一中学 罗寓熹吉安白鹭洲中学宋凡吉安白鹭洲中学(高二)李坤景德镇二中(高二)肖盛鹏万年中学 蒋鑫源景德镇一中胡煜景德镇一中 吴嘉敏余江县第一中学熊志勇樟树中学 万俊杰江西省宜春中学陈德南昌市第二中学 周平南康中学邓奕南昌市第十中学 谭诗羽景德镇二中饶子路景德镇二中 陈文俊南丰县第一中学王云驰鹰潭市第一中学 洪清源婺源天佑中学熊超新余市第四中学 方永聪南昌市第二中学万仁辉南昌市第十中学 蔡政吉安白鹭洲中学(高二)周爱华崇仁县第一中学 吴利平余江县第一中学周宇鑫万载中学 王晔进贤县第一中学吴先斌吉安白鹭洲中学(高二)杨腾飞贵溪市第一中学刘学聪上饶县中学 姚培勇江西师范大学附属中学曾崇翔南昌县莲塘一中 袁勇超吉安市第一中学李长宝上饶县中学(高二) 肖剑炜吉安白鹭洲中学(高二)陈胜万安中学 皮有春新干中学(高二)徐哲南昌市第三中学 张元丰吉安白鹭洲中学骆斌景德镇一中 余文杰景德镇一中童文靖鹰潭市第一中学 汤昌盛万载中学吴根平鹰潭市第一中学(高二)刘超抚州市临川第二中学丘健骢赣州市第一中学

初中数学竞赛专题辅导因式分解一

因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4) =-2x n-1y n[(x2n)2-2x2n y2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5)

初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法] 一、内容提要 1. 配方:这里指的是在代数式恒等变形中,把二次三项式a 2 ±2ab+b 2 写成完全平方式 (a ±b )2. 有时需要在代数式中添项、折项、分组才能写成完全平方式. 常用的有以下三种: ①由a 2 +b 2 配上2ab , ②由 2 ab 配上a 2 +b 2 , ③由a 2 ±2ab 配上b 2 . 2. 运用配方法解题,初中阶段主要有: ① 用完全平方式来因式分解 例如:把x 4 +4 因式分解. 原式=x 4 +4+4x 2 -4x 2 =(x 2 +2)2 -4x 2 =…… 这是由a 2 +b 2配上2ab. ② 二次根式化简常用公式:a a =2,这就需要把被开方数 写成完全平方式. 例如:化简6 25-. 我们把5-2 6写成 2-232+3 =2)2(-232+2)3( =( 2-3) 2 . 这是由2 ab 配上a 2 +b 2 .

③ 求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即∵a 2 ≥0, ∴当a=0时, a 2 的值为0是最小值. 例如:求代数式a 2 +2a -2 的最值. ∵a 2 +2a -2= a 2 +2a+1-3=(a+1)2 -3 当a=-1时, a 2 +2a -2有最小值-3. 这是由a 2 ±2ab 配上b 2 ④ 有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方. 例如::求方程x 2 +y 2 +2x-4y+5=0 的解x, y. 解:方程x 2 +y 2 +2x-4y+1+4=0. 配方的可化为 (x+1)2 +(y -2)2 =0. 要使等式成立,必须且只需? ??=-=+0201y x . 解得 ???=-=2 1 y x 此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.

最全最新初中数学竞赛专题讲解一元二次方程的求解

初中数学竞赛专题讲解一元二次方程的求解 方程是一种重要的数学模型,也是重要的数学思想之一。有关方程的解的讨论问题一直是初中数学竞赛试题的热点与难点。解决有关方程的解的讨论问题往往涉及到分类讨论、数形结合等数学思想。 1.形如方程的解的讨论: ⑴若=0,①当=0时,方程有无数个解; ②当≠0时,方程无解; ⑵若≠0,方程的解为= 。 2.关于一元二次方程()0a ≠根的讨论,一般需应用到根的判别式、根与系数 的关系等相关知识。 ⑴若,则它有一个实数根1x =;若 ,则它有一个实数根1x =-。 ⑵运用数形结合思想将方程()0a ≠根的讨论与二次函数 ()0a ≠的图象结合起来考虑是常用方法。 几个基本模型 (1)设()()2 0f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12,m x x n <<的充要条件是202b m n a b af a ?<-???>?? (2)一般地设m n p <<,设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满 足12,m x n x p <<>的充要条件是()()()000af m af n af p >??? (3)一般地设m n p q <≤<设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x , 满足12m x n p x q <<≤<<的充要条件是()()() ()0000af m af n af p af q >??? (4)一般地设m n ≤设()()2 0f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12x m n x ≤≤≤的充要条件是()()00af m af n ≤???≤??

初中数学竞赛专题选讲《观察法》

初中数学竞赛专题选讲观察法 一、内容提要 数学题可以猜测它的结论(包括经验归纳法),但都要经过严谨的论证,才能确定是否正确. 观察是思维的起点,直觉是正确思维的基础. 观察法解题就是用清晰的概念,直觉的思维,根据题型的特点,得出题解或猜测其结论,再加以论证. 敏锐的洞察力来自对概念明晰的理解和熟练的掌握. 例如:用观察法写出方程的解,必须明确方程的解的定义,掌握方程的解与方程的系数这间的关系. 一元方程各系数的和等于零时,必有一个解是1;而奇次项系数的和等于偶次项系数的和时,则有一个根是-1;n 次方程有n 个根,这样才能判断是否已求出全部的根,当根的个数超过方程次数时,可判定它是恒等式. 对题型的特点的观察一般是注意已知数据,式子或图形的特征,分析题设与结论,已知与未知这间的联系,再联想学过的定理,公式,类比所做过的题型,试验以简单的特例推导一般的结论,并探求特殊的解法. 选择题和填空题可不写解题步骤,用观察法解答更能显出优势. 二、例题 例1. 解方程:x+x 1=a+a 1. 解:方程去分母后,是二次的整式方程,所以最多只有两个实数根. 根据方程解的定义,易知 x=a ;或x= a 1. 观察本题的特点是:左边x 11=? x , 右边a 11=?a . (常数1相同). 可推广到:若方程f(x)+a m a x f m +=)((am ≠0), 则f(x)=a ; f(x)= a m . 如:方程x 2+22255a a x +=, x 2+3x -83202=+x x (∵8=10-1020). 都可以用上述方法解. 例2. 分解因式 a 3+b 3+c 3-3abc. 分析:观察题目的特点,它是a, b, c 的齐三次对称式. 若有一次因式,最可能的是a+b+c ;若有因式a+b -c,必有b+c -a, c+a -b ; 若有因式a+b, 必有b+c, c+a ; 若有因式b -c,必有c -a, a -b. 解:∵用a=-b -c 代入原式的值为零, ∴有因式a+b+c. 故可设 a 3+b 3+c 3-3abc=(a+b+c)[m(a 2+b 2+c 2)+n(ab+bc+ca)]. 比较左右两边a 3的系数,得m=1, 比较abc 的系数, 得 n=-1. ∴a 3+b 3+c 3-3abc=(a+b+c) (a 2+b 2+c 2-ab -bc -ca) 例3. 解方程x x =++++3333.

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

2019年全国高中数学联赛江西省预赛试题

2019年全国高中数学联赛 (考试时间:9月24日上午8:30-11:00) 一.填空题(共2题,每题10分,合计80分) 1.设多项式()f x 满足:对于任意x R ∈,都有2(1)(1)24,f x f x x x ++-=-则()f x 的最小值是______. 2.数列{},{}n n a b 满足:1,1,2, ,k k a b k ==已知数列{}n a 的前n 项和为1 n n A n =+,则数列{}n b 的前n 项和n B =______. 3 .函数()f x =______. 4.过抛物线28y x =的焦点F ,作一条斜率为2的直线l ,若l 交抛物线于,A B 两点,则OAB ?的面积是______. 5.若ABC ?为锐角三角形,满足sin cos()sin A A B B =+,则t a n A 的最大值为______. 6.若正三棱锥的内切球半径为1,则其体积的最小值为______. 7.将1,2,,9随机填入右图正方形ABCD 的九个格子中,则其每行三数,每列三数自上而下、自左而右顺次成等差数列的概率p =______. 8.将集合{1,2,12}M =的元素分成不相交的三个子集:M A B C =??,其中123412341234{,,,}{,,,}{,,,}A a a a a B b b b b C c c c c ===,1c <2c <3c <4c ,且k k k a b c +=,1,2,3,4,k =则集合C 为:______. 二.解答题(共2题,合计70分) 9.(20分)如图,AB 是圆的一条弦,它将圆分成两部分,M 、N 分别是两段弧

初中数学竞赛专题培训

第一讲:因式分解(一) (1) 第二讲:因式分解(二) (4) 第三讲实数的若干性质和应用 (7) 第四讲分式的化简与求值 (10) 第五讲恒等式的证明 (13) 第六讲代数式的求值 (16) 第七讲根式及其运算 (19) 第八讲非负数 (23) 第九讲一元二次程 (27) 第十讲三角形的全等及其应用 (30) 第十一讲勾股定理与应用 (34) 第十二讲平行四边形 (37) 第十三讲梯形 (40) 第十四讲中位线及其应用 (43) 第十五讲相似三角形(一) (46) 第十六讲相似三角形(二) .......................................... 49 第十七讲* 集合与简易逻辑 (52) 第十八讲归纳与发现 (57) 第十九讲特殊化与一般化 (61) 第二十讲类比与联想 (65) 第二十一讲分类与讨论 (68) 第二十二讲面积问题与面积法 (72) 第二十三讲几不等式 (75) 第二十四讲* 整数的整除性 (79) 第二十五讲* 同余式 (82) 第二十六讲含参数的一元二次程的整数根问题 (85) 第二十七讲列程解应用问题中的量 (88) 第二十八讲怎样把实际问题化成数学问题 (92) 第二十九讲生活中的数学(三) ——镜子中的世界 (96) 第三十讲生活中的数学(四)──买鱼的学问 (99) 第一讲:因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决多数学问题的有力工具.因式分解法灵活,技巧性强,学习这些法与技巧,不仅是掌握因式分解容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-… -ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解(1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 w

初中数学竞赛专题选讲《完全平方数和完全平方式》

初中数学竞赛专题选讲 完全平方数和完全平方式 一、内容提要 一定义 1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,25 4,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方. 2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的. 例如: 在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式. 二. 整数集合里,完全平方数的性质和判定 1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数. 2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除.. 若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数. 例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数. 三. 完全平方式的性质和判定 在实数范围内 如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0; 如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式. 在有理数范围内 当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式. 四. 完全平方式和完全平方数的关系 1. 完全平方式(ax+b )2 中 当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数; 当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数. 2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数. 所以,完全平方式和完全平方数,既有联系又有区别. 五. 完全平方数与一元二次方程的有理数根的关系 1. 在整系数方程ax 2+bx+c=0(a ≠0)中 ① 若b 2-4ac 是完全平方数,则方程有有理数根; ② 若方程有有理数根,则b 2-4ac 是完全平方数. 2. 在整系数方程x 2+px+q=0中 ① 若p 2-4q 是整数的平方,则方程有两个整数根; ② 若方程有两个整数根,则p 2-4q 是整数的平方.

超级资源(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富: 它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨: 从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨: 求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨: 因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨: 通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨: 运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注: 一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

初中数学竞赛专题选讲 一元二次方程的根(含答案)

初中数学竞赛专题选讲(初三.1) 一元二次方程的根 一 、内容提要 1.一元二次方程 ax 2 +bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=a ac b b 242-±-. (b 2-4a c ≥0) 2.根的判别式 ①实系数方程 ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是: b 2-4a c ≥0. ②有理系数方程 ax 2+bx+c=0(a ≠0)有有理数根的判定是: b 2-4a c 是完全平方式?方程有有理数根. ③整系数方程x 2+px+q=0有两个整数根?p 2-4q 是整数的平方数. 3.设 x 1, x 2 是ax 2+bx+c=0的两个实数根,那么 ①ax 12 +bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0); ②x 1=a ac b b 242-+-, x 2=a ac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b - , x 1x 2= a c (a ≠0, b 2-4ac ≥0). 4.方程整数根的其他条件 整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0?x 1=0 , a+b+c=0?x 1=1 , a -b+c=0?x 1=-1. 二、例题 例1.已知:a, b, c 是实数,且a=b+c+1.

求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等 的实数根. 证明 (用反证法) 设 两个方程都没有两个不相等的实数根, 那么△1≤0和△2≤0. 即?? ? ??++=≤-≤ ③ ② ①-1040412c b a c a b 由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥4 5 , 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0, 即(a -2)2+1≤0,这是不能成立的. 既然△1≤0和△2≤0不能成立的,那么必有一个是大于0. ∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根. 本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数. 例2.已知首项系数不相等的两个方程: (a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数) 有一个公共根. 求a, b 的值. 解:用因式分解法求得: 方程①的两个根是 a 和 12-+a a ; 方程②两根是b 和1 2 -+b b . 由已知a>1, b>1且a ≠b. ∴公共根是a= 12-+b b 或b=1 2-+a a .

全国高中数学联赛江西省预赛试题及参考答案

2017年全国高中数学联赛江西省预赛试题及参考答案 一、填空题 1、化简 +++ ++ +3 44312 33211 2211…=++ 2016 2017201720161 .2017 11- 解:由 1 11) 1(1) 1).(1(1 )1(11 +- = +-+= +++= +++k k k k k k k k k k k k k k 可得. 2、若sinx+cosx= 22,8 25cos sin 3 3=+x x . 解:4 1 21)cos (sin cos sin 2-=-+= x x x x ,8 2 582342)cos (sin cos sin 3)cos (sin cos sin 333=+= +-+=+x x x x x x x x 3、体积为1的正四面体被放置于一个正方体中,则此正方体体积的最小值是 3 . 解:反向考虑,边长为a 的正方体(体积为a 3 ),其最大内接正四面体顶点,由互不共棱的正方体顶点组 成,其体积为.3a 13 ,333 3==,则令a a 4、若椭圆的一个顶点关于它的一个焦点的对称点恰好在其准线上,则椭圆的离心率= e 2 2 21或. 解:建立坐标系,设椭圆的方程为),0,(),0,(),0(12,12,122 22b B a A b a b y a x ±=±=>>=+则顶点焦点 )0,(2,1c F ±=,准线方程为,,222 2 ,1b a c c a l -=±=其中据对称性,只要考虑两种情况:(1)、 上,的对称点在右准线关于c a x c F a A 221)0,()0,(=-由21 ,22===+ -a c e c c a a 得;(2)、 上,的对称点在右准线关于c a x c F B 2 21)0,()b ,0(=由横坐标.22,202===+a c e c c a 得 5、函数14342++-=x x y 的最小值是5.

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

初中数学竞赛专题选讲-三点共线

初中数学竞赛专题选讲 三点共线 一、内容提要 1. 要证明A ,B ,C 三点在同一直线上, A 。 B 。 C 。 常用方法有:①连结AB ,BC 证明∠ABC 是平角 ②连结AB ,AC 证明AB ,AC 重合 ③连结AB ,BC ,AC 证明 AB +BC =AC ④连结并延长AB 证明延长线经过点C 2. 证明三点共线常用的定理有: ① 过直线外一点有且只有一条直线和已知直线平行 ② 经过一点有且只有一条直线和已知直线垂直 ③ 三角形中位线平行于第三边并且等于第三边的一半 ④ 梯形中位线平行于两底并且等于两底和的一半 ⑤ 两圆相切,切点在连心线上 ⑥ 轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上 二、例题 例1.已知:梯形ABCD 中,AB ∥CD ,点P 是形内的任一点,PM ⊥AB , PN ⊥CD 求证:M ,N ,P 三点在同一直线上 证明:过点P 作EF ∥AB , ∵AB ∥CD ,∴EF ∥CD ∠1+∠2=180 ,∠3+∠4=180 ∵PM ⊥AB ,PN ⊥CD ∴∠1=90 ,∠3=90 ∴∠1+∠3=180 ∴ M ,N ,P 三点在同一直线上 例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直 线上 已知:平行四边形ABCD 中,M ,N 分别是AD 和BC 的中点,O 是AC 和 BD 的交点 求证:M ,O ,N 三点在同一直线上 证明一:连结MO ,NO ∵MO ,NO 分别是△DAB 和△CAB 的中位线 ∴MO ∥AB ,NO ∥AB 根据过直线外一点有且只有一条直线和已知直线平行

∴ M ,O ,N 三点在同一直线上 证明二:连结MO 并延长交BC 于N , ∵MO 是△DAB 的中位线 ∴MO ∥AB 在△CAB 中 ∵AO =OC ,ON ,∥AB ∴BN ,=N ,C ,即N ,是BC 的中点 ∵N 也是BC 的中点, ∴点N ,和点N 重合 ∴ M ,O ,N 三点在同一直线上 例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90 ,M ,N 分别是AB 和CD 的中点,BC ,AD 的延长线相交于P 求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90 , ∠APB =Rt ∠ 连结PM ,PN 根据直角三角形斜边中线性质 PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B ∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上 例4.在平面直角坐标系中,点A 关于横轴的对称点为B ,关于纵轴的对称 点是C ,求证B 和C 是关于原点O 解:连结OA ,OB ,OC ∵A ,B 关于X 轴对称, ∴OA =OB ,∠AOX =∠BOX 同理OC =OA ,∠AOY =∠COY ∴∠COY +∠BOX =90 X ∴B ,O ,C 三点在同一直线上 ∵OB =OC ∴ B 和C 是关于原点O 的对称点 例5.已知:⊙O 1和⊙O 2相交于A ,B O 1 和⊙O 2于E ,F 。 求证:AE ,AF 和⊙O 1和⊙O 2的直径成比例 ,

2009年全国高中数学联赛江西省预赛试题及答案

2009年全国高中数学联赛江西省预赛试题及答案

2009年全国高中数学联赛江西省预赛试题 一、 填空题( 每小题10分,共80分) 1. 某人在将2009中间的两个数码00分别换成两 位数ab 与cd 时,恰好都得到完全平方数:2229,29,(,,) ab n cd m m n m n N ==>∈,则数组(),m n ab cd ++= . 2. 若一个椭圆的焦点和顶点分别是双曲线22 1916y x -=的顶点和焦点,则椭圆的方程为: . 3. 实数,x y 满足22236x y y +=,则x y +的最大值是 . 4. 四面体ABCD 中,,,,1CD BC AB BC CD AC AB BC ⊥⊥===平面BCD 与平面ABC 成0 45的二面角,则点B 到平面ACD 的距离为 . 5. 从集合{}1,2,3,,2009M =中,去掉所有3的倍数以 及5的倍数后,则 M 中剩下的元素个数为 . 6. 函数 322()(1)x x f x x -=+的值域是 . 7. 247cos cos cos cos 15151515 π πππ--+= . 8. 九个连续正整数自小到大排成一个数列

129,,,a a a ,若13579a a a a a ++++的值为一平方数,2468a a a a +++的值为一立方数,则这九个正整数之和的最小值是 . 二、解答题( 共70分) 9. (20分)给定Y 轴上的一点(0,)A a (1a >),对于曲线21 12y x =-上的动点(,)M x y ,试求,A M 两点之间距离AM 的最小值(用a 表示). 10. (25分)如图,AB 、CD 、EF 是一个圆中三条互不相交的弦,以其中每两条弦为一组对边,各得到一个凸四边形,设这三个四边形的对角线的交点分别为,,M N P ;证明:,,M N P 三点共线. D F B A C

全国初中数学联赛试题及详解

2010年全国初中数学联合竞赛试题及详解 第一试 一、选择题:(本题满分42分,每小题7分) 1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( B ) A .1. B .2. C .3. D .4. 解: 由已知可推得011a b b c a c -=??-=±?-=±? 或 110 a b b c a c -=±??-=±?-=?,分别代入即得。 2.若实数,,a b c 满足等式23||6a b =,9||6a b c =,则c 可能取的最大值为 ( C ) A .0. B .1. C .2. D .3. 解:由已知,6492(23)15121512c a b a b b b ==-=-≤,∴2c ≤. 3.若b a ,是两个正数,且 ,0111=+-+-a b b a 则 ( C ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423 a b <+≤. 解:当a b =时,可计算得23a b ==,从而43a b +=。观察4个选项,只能选C. 4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( A ) A .-13. B .-9. C .6. D . 0. 解:由已知:42x ax bx c +++一定能被231x x --整除。 ∵4222(31)(310)[(333)(10)]x ax bx c x x x x a a b x a c +++=--+++++++++ ∴(333)(10)0a b x a c +++++=,故3330213100 a b a b c a c ++=??+-=-?++=? 5.在△ABC 中,已知?=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且?=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( B ) A .15°. B .20°. C .25°. D .30°. 解:如图,由已知,ADE 是正三角形。作BF ∥DE 交 AC 于F ,则BD =EF ,从而EC =DE+BD =AB =BF ,DE =FC , 又∠1=∠2=120○ ,故ΔEDC ≌ΔFCB .故x θ?+=. ∵∠CDB =2?,∠BDE =120○ ,∴40?=,故 40x θ+= 由406020θ?θθ+=+=?=,得:20x =.

相关文档
相关文档 最新文档