文档库 最新最全的文档下载
当前位置:文档库 › 模糊控制系统的Matlab仿真过程

模糊控制系统的Matlab仿真过程

模糊控制系统的Matlab仿真过程
模糊控制系统的Matlab仿真过程

基于Matlab的自动控制系统设计与校正

自动控制原理课程设计设计题目:基于Matlab的自动控制系统设计与校正

目录 第一章课程设计内容与要求分析.................................................... 错误!未定义书签。 1.1设计内容 (1) 1.2 设计要求 (1) 1.3 Matlab软件 (2) 1.3.1基本功能 (2) 1.3.2应用 (2) 第二章控制系统程序设计 (4) 2.1 校正装置计算方法 (4) 2.2 课程设计要求计算 (4) 第三章利用Matlab仿真软件进行辅助分析 (6) 3.1校正系统的传递函数 (6) 3.2用Matlab仿真 (6) 3.3利用Matlab/Simulink求系统单位阶跃响应 (8) 3.2.1原系统单位阶跃响应 (8) 3.2.2校正后系统单位阶跃响应 (8) 3.2.3校正前、后系统单位阶跃响应比较 (8) 3.4硬件设计 (8) 3.4.1在计算机上运行出硬件仿真波形图 (9) 课程设计心得体会 (10) 参考文献 (12)

1 第一章 课程设计内容与要求分析 1.1设计内容 针对二阶系统 )1()(+= s s K s W , 利用有源串联超前校正网络(如图所示)进行系统校正。当开关S 接通时为超前校正装置,其传递函数 11 )(++-=Ts Ts K s W c c α, 其中 1 3 2R R R K c += , 1 ) (13243 2>++ =αR R R R R ,C R T 4=, “-”号表示反向输入端。若Kc=1,且开关S 断开,该装置相当于一个放大系数为1的放大器(对原系统没有校正作用)。 1.2 设计要求 1 1.0)(≤∞e ,开环截止频率ω’≥45°; 2 3) 4)设校正装置网络元件参数R4、5R=100K ,C=1μF 、10μF 若干个); 6)利用Matlab 仿真软件辅助分析,绘制校正前、后及校正装置对数频率特性曲线,并验算设计结果; 7)在Matlab-Simulink 下建立系统仿真模型,求校正前、后系 统单位阶跃响应特性,并进行系统性能比较; 8)利用自动控制原理实验箱完成硬件设计过程,包括:搭建校正前后 c R R

2模糊控制查询表的MATLAB实现

模糊控制查询表的MATLAB 实现 叶高文(厦门海洋职业技术学院,福建厦门361012) MATLAB realization of Fuzzy Control Query Table 在运用模糊控制技术进行工业控制时,为了减少在线计算量,节省内存,提高PLC 等控制器的运行效率,通常根据隶属度函数和模糊控制规则表离线计算对应的模糊控制表,并将该表置于PLC 等控制器中,供实时控制时使用。在实时控制过程中,根据模糊量化后的偏差值e 和偏差变化率ec 直接查询控制表以获得模糊控制输出量,再转换为精确输出控制量。在实际的控制过程中由于微分作用的效果不是很明显,故很多实际情况中只采用PI 控制。本文论述的对象是常用PLC 的模糊PI 控制。不是PLC 的系统,可将积分时间转换为积分系数。 1模糊PI 控制模型说明 本文提供一个实际工业控制的模糊查询表的MATLAB 实 现过程,模糊PI 模型如图1。 图1模糊PI 控制器模型 如图1,模糊控制器的输入量采用实际被控制量与给定量的偏差e 和偏差变化率ec ,参数整定机构采用增量型调整原理,输出为比例系数增量ΔK P 和积分时间增量ΔTi ,再经式K P = K P0+ΔK P 和式T I =T I0+ΔTi 计算得到PI 控制器的比例系数KP 和积分时间值TI 。 2模型输入输出模糊控制规则表 2.1定义输入输出变量的隶属度矢量表 一般情况下,输入量偏差e 和偏差变化率△e 以及输出变量ΔKP 和ΔTi 的离散论域都设定为13个量化等级邀-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6妖。为方便MATLAB 编程,对相关的变量选择进行一些改变。原先的输入变量偏差e 和偏差变化率ec 的量化等级邀-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6妖改写为邀1,2,3,4,5,6,7,8,9,10,11,12,13妖。而输出变量ΔKP 和ΔTi 得量化等 级保持为邀-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6妖。 输入变量偏差e 和偏差变化率ec 和输出变量ΔKP 、ΔTi 的模糊语言值均为邀NB ,NM ,NS ,ZO ,PS ,PM ,PB妖。为了编程方便,将语言值用数字表示为邀1,2,3,4,5,6,7妖,与模糊语言值相对应,比如:模糊语言值NB 的模糊数字值为1,其他类似。根据以上的规定,产生用数字语言值表示输入变量x1及x2的隶属度矢量表,见表1所示。其中,变量x1表示模糊控制器的偏差输入e ,变量x2表示模糊控制器的偏差输入ec ;f1(i )、f2(j )表示第一输入x1和第二输入x2的隶属度,而i 、j 表示语言变量数字值,即为1,2,3,4…7。 表1用数字语言值表示输入变量x1及x2的隶属度矢量表 2.2模糊控制规则表 该控制系统为一实际工业控制模型,其用数字语言值表示的比例系数增量ΔKP 和积分时间ΔTI 模糊控制规则表如表2和表3所示。 表2 用数字语言值表示的ΔKP 模糊控制规则 摘 要 通过建立一个工业自动化控制中经常使用的模糊PI 控制器模型,详细论述了运用MATLAB 语言编写模糊控制查询表的方法,该控制表可以表格形式存放于计算机,从而大大提高了如PLC 等内存小的工业控制器的运行效率,也可实现在线推理控制。 关键词:模糊控制查询表,MATLAB ,PI 控制,在线推理 Abstract Through the establishmengt of Fuzzy-PI controller model which is applied in the industrial automation control,This pa-per describes in detail the way how to get a fuzzy -control-query table by the MATLAB programming.This cotrol-table may be stored in the compute with the form of a table,Which can improe greatly the operational efficiency,Such as PLC controller,etc.whose memory is very little,and on-line reasoning can also be realized. Keywords :fuzzy control query table,MATLAB,PI control,on-line reasoning 模糊控制查询表的MATLAB 实现 64

模糊控制系统及其MATLAB实现

1. 模糊控制的相关理论和概念 1.1 模糊控制的发展 模糊控制理论是在美国加州伯克利大学的L.A.Zadeh 教授于1965 年建立的模糊集合论的数学基础上发展起来的。之后的几年间Zadeh 又提出了模糊算法、模糊决策、模糊排序、语言变量和模糊IF-THEN 规则等理论,为模糊理论的发展奠定了基础。 1975年,Mamdani 和Assilian 创立了模糊控制器的基本框架,并用于控制蒸汽机。 1978年,Holmblad 和Ostergaard 为整个工业过程开发出了第一个模糊控制器——模糊水泥窑控制器。 20世纪80年代,模糊控制开始在工业中得到比较广泛的应用,日本仙台地铁模糊控制系统的成功应用引起了模糊领域的一场巨变。到20世纪90年代初,市场上已经出现了大量的模糊消费产品。 近30 年来, 因其不依赖于控制对象的数学模型、鲁棒性好、简单实用等优点, 模糊控制已广泛地应用到图像识别、语言处理、自动控制、故障诊断、信息检索、地震研究、环境预测、楼宇自动化等学科和领域, 并且渗透到社会科学和自然科学许多分支中去, 在理论和实际运用上都取得了引人注目的成果。 1.2模糊控制的一些相关概念 用隶属度法来定义论域U 中的集合A ,引入了集合A 的0-1隶属度函数,用()A x μ表示,它满足: 1 ()0A x μ?=?? x A x A ∈? 用0-1之间的数来表示x 属于集合A 的程度,集合A 等价与它的隶属度函数()A x μ 模糊系统是一种基于知识或基于规则的系统。它的核心就是由所谓的 IF-THEN 规则所组成的知识库。一个模糊的IF-THEN 规则就是一个用连续隶属度函数对所描述的某些句子所做的IF-THEN 形式的陈述。例如: 如果一辆汽车的速度快,则施加给油门的力较小。 这里的“快”和“较小”分别用隶属度函数加以描述。模糊系统就是通过组合IF-THEN 规则构成的。 构造一个模糊系统的出发点就是要得到一组来自于专家或基于该领域知识的模糊IF-THEN 规则,然后将这些规则组合到单一系统中。不同的模糊系统可采用不用的组合原则。 用隶属度函数表征一个模糊描述后,实质上就将模糊描述的模糊消除了。 模糊控制系统设计的关键在于模糊控制器的设计。模糊控制器的设计主要有三个部分: (1) 输入量的模糊化 所谓模糊化(Fuzzification) 就是先将某个输入测量量的测量值作标准化处理,把该输入测量量的变化范围映射到相应论域中,再将论域中的各输入数据以相应

基于模糊控制的速度跟踪控制问题(C语言以及MATLAB仿真实现)

基于模糊控制的速度控制 ——地面智能移动车辆速度控制系统问题描述 利用模糊控制的方法解决速度跟踪问题,即已知期望速度(desire speed),控制油门(throttle output)和刹车(brake output)来跟踪该速度。已知输入:车速和发动机转速(值可观测)。欲控制刹车和油门电压(同一时刻只有一个量起作用)。 算法思想 模糊控制器是一语言控制器,使得操作人员易于使用自然语言进行人机对话。模糊控制器是一种容易控制、掌握的较理想的非线性控制器,具有较佳的适应性及强健性(Robustness)、较佳的容错性(Fault Tolerance)。利用控制法则来描述系统变量间的关系。不用数值而用语言式的模糊变量来描述系统,模糊控制器不必对被控制对象建立完整的数学模式。 Figure 1模糊控制器的结构图 模糊控制的优点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 简化系统设计的复杂性,特别适用于非线性、时变、模型不完全的系统上。 模糊控制的缺点

实验一--模糊控制器的MATLAB仿真

实验一 模糊控制器的MATLAB 仿真 一、实验目的 本实验要求利用MATLAB/SIMULINK 与FUZZYTOOLBOX 对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则;比较其与常规控制器的控制效果;研究改变模糊控制器参数时,系统响应的变化情况;掌握用 MATLAB 实现模糊控制系统仿真的方法。 实验时数:3学时。 二、实验设备:计算机系统、Matlab 仿真软件 三、实验原理 模糊控制器它包含有模糊化接口、规则库、模糊推理、清晰化接口等部分,输人变量是过程实测变量与系统设定值之差值。输出变量是系统的实时控制修正变量。模糊控制的核心部分是包含语言规则的规则库和模糊推理。模糊推理就是一种模糊变换,它将输入变量模糊集变换为输出变量的模糊集,实现论域的转换。工程上为了便于微机实现,通常采用“或”运算处理这种较为简单的推理方法。Mamdani 推理方法是一种广泛采用的方法。它包含三个过程:隶属度聚集、规则激活和输出总合。模糊控制器的体系结构如图1所示。 图1 模糊控制器的体系结构 四、实验步骤 (1)对循环流化床锅炉床温,对象模型为 ()()1140130120 ++s s 采用simulink 图库,实现常规PID 和模糊自整定PID 。 (2)确定模糊语言变量及其论域:模糊自整定PID 为2输入3输出的模糊控制器。该模糊控制器是以|e|和|ec|为输入语言变量,Kp 、Ki 、Kd 为输出语言变量,其各语言变量的论域如下:

误差绝对值:e={0,3,6,10}; 误差变化率绝对值:ec={0,2,4,6}; 输出Kp:Up={0,0.5,1.0,1.5}; 输出Ki:Ui={0,0.002,0.004,0.006}; 输出Kd:Ud={0,3,6,9}。 (3)语言变量值域的选取:输入语言变量|e|和|ec|的值域取值“大”(B)、“中”(M)、“小”(s)和“零”(Z) 4种;输出语言变量Kp、Ki、Kd的值域取值为“很大”(VB)、“大”(B)、“中”(M)、“小”(s) 4种。 (4)规则的制定:根据PID参数整定原则及运行经验,可列出输出变量Kp、Ki、Kd 的控制规则表。 (5)推理方法的确定 隐含采用“mamdani”方法:max-min; 推理方法,即“min”方法; 去模糊方法:面积中心法; 选择隶属函数的形式:三角型。

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

基于MATLAB的控制系统仿真

科技信息 1.引言 控制系统仿真是指以控制系统的模型为基础,主要用数学模型代替实际的控制系统,以计算机为工具对控制系统进行实验和研究的一种方法。利用仿真工具对控制系统进行设计与仿真,可以有效地对比各种控制模型与方案,选取并优化相关控制参数,从而对整个控制系统的性能进行优化与提高,尤其是对于一些新型控制理论与算法的研究,进行系统仿真更是必不可少的。因此,控制系统仿真是应用现代科学手段对控制系统进行科学研究的十分重要的手段之一。 M ATLAB 是由美国MathWorks 公司于1984年推出的专门用于科学、 工程计算和系统仿真的优秀的科技应用软件。在其发展的过程中,不断溶入众多领域的一些专业性理论知识,从而出现了功能强大的MATLAB 配套工具箱,如控制系统工具箱(Control System Toolbox )、模糊逻辑工具箱(Fuzzy Logic Toolbox)、神经网络工具箱(Neural Network Tool-box),以及图形化的系统模型设计与仿真环境(SIMULINK)。SIMULINK 工具平台的出现,使得控制系统的设计与仿真变得相当容易和直观,成为众多领域中计算机仿真、计算机辅助设计与分析、算法研究和应用开发的基本工具和首选应用软件。 2.基于MATLAB 的控制系统仿真过程 控制系统仿真过程一般可以分为以下几个阶段:控制系统数学模型的建立、控制系统仿真模型的建立、控制系统仿真程序的编写和控制系统仿真实验及结果分析。 2.1控制系统数学模型的建立数学模型是计算机仿真的基础,是指描述系统内部各物理量(或变量)之间关系的数学表达式。控制系统的数学模型通常是指动态数学模型,自动控制系统最基本的数学模型是输入输出模型,包括时域的微分方程、复数域的传递函数和频率域中的频率特性。除了输入输出模型之外,表示控制系统的数学模型还有状态空间模型、结构图模型等。 2.2控制系统仿真模型的建立 控制系统通常由多个元部件相互连接而成,其中每个元部件都可以用一组微分方程或传递函数来表示。控制系统仿真模型的建立主要与各子系统的仿真模型的连接方式有关,主要有三种基本互联模型:串联、并联和反馈连接。在实际的控制系统中,常常采用混合联接方式,既有串联、并联,还有反馈连接。 2.3控制系统仿真的实现 M ATLAB 控制系统工具箱提供了大量的命令用于实现控制系统的仿真,包括模型创建命令、模型变换命令、模型简化命令、模型实现命令、模型特性命令、时域响应命令、频域响应命令等,这些命令涵盖了单变量和多变量控制系统分析、设计的各个方面。其输入方法分别为在SIM ULINK 环境下用仿真模块建模和在命令窗口用仿真命令编程两种方法进行仿真,然后运行仿真系统得到单位阶跃响应图,并根据单位阶跃响应图分析控制系统的动态性能指标,从而评价控制系统性能的优劣。 3.基于MATLAB 的控制系统仿真实例例如,一控制系统由5个子系统组成,其组成结构如图1所示。各 子系统的传递函数分别为:G 1(s)=s 2 +5s+12s 2+15s+6;G 2(s)=4(s+6)(s+2)(s+20) ;G 3(s)= 10;G 4 (s)=s+1;H(s)=0.1。 首先,在SIMULINK 环境下建立控制系统仿真模型,即将所需的仿 真模块按题中的要求连接起来,如图2所示, 并按要求设置好相应的参数,然后运行仿真得到单位阶跃响应图如图3所示。 图1控制系统的结构图 图2控制系统的仿真模型 图3控制系统的阶跃响应 从控制系统的单位阶跃响应曲线可以看出,其超调量为0.32s ,峰值时间为0.8s ,调节时间为3.2s 。 4.结束语 通过M ATLAB 的动态仿真工具箱SIMULINK ,可以方便、快捷地构造各种控制系统的仿真模型,并能直观地观察到其控制性能,是控制系统优化设计的有力工具。 参考文献[1]曹志国,廉小亲.基于MATLAB 的两种模糊控制系统的仿真方法[J ].计算机仿真,2004(3):41-44 [2]张葛祥,李娜.MATLAB 仿真技术与应用[M ].北京:清华大学出版社,2003 [3]来长胜,陈凤兰.基于MATLAB 的控制系统仿真教学研究[J ].机械工程与自动化,2010(2):189-190 [4]黄伟忠.单级倒立摆FUZZY-PD 控制系统的建模与仿真[J ].计算机应用技术,2009(2):40-43 基金项目:本文系海南省教育厅高等学校科学研究项目(Hj2009-134),琼州学院青年教师科研基金项目(QY200913)。 作者简介:孙志雄(1974-),男,副教授,主要研究方向为电子与通信技术。林雄(1962-),男,教授,主要研究方向为神经网络和模糊系统。 基于MATLAB 的控制系统仿真 琼州学院电子信息工程学院 孙志雄 林雄 [摘要]本文介绍了MATLAB 语言和控制系统工具箱(Control System Toolbox )以及如何在SIMULINK 环境下构造控制系统的仿 真模型,并通过实例介绍了控制系统仿真的过程。[关键词]控制系统MATLAB 仿真博士·专家论坛 429——

简易模糊控制器设计及MATLAB仿真

简易模糊控制器的设计及仿真 摘要:模糊控制(Fuzzy Control )是以模糊集理论、模糊语言和模糊逻辑推理为基础的一种控制方法,它从行为上模仿人的模糊推理和决策过程。本文利用MATLAB/SIMULINK 与FUZZY TOOLBOX 对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则,比较其与常规控制器的控制效果,用MATLAB 实现模糊控制的仿真。 关键词:模糊控制 参数整定 MATLAB 仿真 二阶动态系统模型: ()()1140130120 ++s s 采用simulink 图库,实现常规PID 和模糊自整定PID 。 一.确定模糊控制器结构 模糊自整定PID 为2输入3输出的模糊控制器。在MATLAB 的命令窗口中键入fuzzy 即可打开FIS 编辑器,其界面如下图所示。此时编辑器里面还没有FIS 系统,其文件名为Untitled ,且被默认为Mandani 型系统。默认的有一个输入,一个输出,还有中间的规则处理器。在FIS 编辑器界面上需要做一下几步工作。 首先,模糊自整定PID 为2输入3输出的模糊控制器,因此需要增加一个输入两个输出,进行的操作为:选择Edit 菜单下的Add Variable/Input 菜单项。

如下图。 其次,给输入输出变量命名。单击各个输入和输出框,在Current Variable 选项区域的Name文本框中修改变量名。如下图 最后,保存系统。单击File菜单,选择Export下的To Disk项。这里将创建的系统命名为PID_auot.fi。 二.定义输入、输出模糊集及隶属函数

基于matlab的模糊控制器的设计与仿真

基于MATLAB的模糊控制器的设计与仿真 摘要:本文对模糊控制器进行了主要介绍。提出了一种模糊控制器的设计与仿真的实现方法,该方法利用MA TLB模糊控制工具箱中模糊控制器的控制规则和隶属度函数,建立模型,并进行模糊控制器设计与仿真。 关键词:模糊控制,隶属度函数,仿真,MA TLAB 1 引言 模糊控制是一种特别适用于模拟专家对数学模型未知的较复杂系统的控制,是一种对模型要求不高但又有良好控制效果的控制新策略。与经典控制和现代控制相比,模糊控制器的主要优点是它不需要建立精确的数学模型。因此,对一些无法建立数学模型或难以建立精确数学模型的被控对象,采用模糊控制方法,往往能获得较满意的控制效果。 模糊控制器的设计比一般的经典控制器如PID控制器要复杂,但如果借助MATLAB则系统动态特性良好并有较高的稳态控制精度,可提高模糊控制器的设计效率。本文在MATLAB环境下针对某个控制环节对模糊控制系统进行了设计与仿真。 2 模糊控制器简介 模糊控制器是一种以模糊集合论,模糊语言变量以及模糊推理为数学基础的新型计算机控制方法。显然,模糊控制的基础是模糊数学,模糊控制的实现手段是计算机。本章着重介绍模糊控制的基本思想,模糊控制的基本原理,模糊控制器的基本设计原理和模糊控制系统的性能分析。 随着科学技术的飞速发展,在那些复杂的,多因素影响的严重非线性、不确定性、多变性的大系统中,传统的控制理论和控制方法越来越显示出局限性。长期以来,人们期望以人类思维的控制方案为基础,创造出一种能反映人类经验的控制过程知识,并可以达到控制目的,能够利用某种形式表现出来。而且这种形式既能够取代那种精密、反复、有错误倾向的模型建造过程,又能避免精密的估计模型方程中各种方程的过程。同时还很容易被实现的,简单而灵活的控制方式。于是模糊控制理论极其技术应运而生。 3 模糊控制的特点 模糊控制是以模仿人类人工控制特点而提出的,虽然带有一定的模糊性和主观性,但往往是简单易行,而且是行之有效的。模糊控制的任务正是要用计算机来模拟这种人的思维和决策方式,对这些复杂的生产过程进行控制和操作。所以,模糊控制有以下特点: 1)模糊控制的计算方法虽然是运用模糊集理论进行的模糊算法,但最后得到的控制规律是确定

增量式PID控制算法的MATLAB仿真

增量式PID 控制算法的MATLAB 仿真 PID 控制的原理 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID 调节。PID 控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID 控制技术。PID 控制,实际中也有PI 和PD 控制。PID 控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 一、 题目:用增量式PID 控制传递函数为G(s)的被控对象 G (s )=5/(s^2+2s+10), 用增量式PID 控制算法编写仿真程序(输入分别为单位阶跃、正弦信号,采样时间为1ms ,控制器输出限幅:[-5,5],仿真曲线包括系统输出及误差曲线,并加上注释、图例)。程序如下 二、 增量式PID 原理 { U(k)= ?u(k)+ U(k-1) 或 { U(k)= ?u(k)+ U(k-1) 注:U(k)才是PID 控制器的输出 三、 分析过程 1、对G(s)进行离散化即进行Z 变换得到Z 传递函数G(Z); 2、分子分母除以z 的最高次数即除以z 的最高次得到; )]}2()1(2)([)()]1()({[)(-+--++ --=?n n n T T n T T n n K n U D I P O εεεεεε)] 2()1(2)([)(i )]1()([)(-+--++--=?n n n Kd n K n n K n U P O εεεεεε

基于MATLAB的过程控制

摘要 水箱和换热器是过程控制中的典型对象,本设计主要以水箱液位控制系统和换热器温度控制系统为例,通过建立数学模型,确定对象的传递函数。利用Matlab的Simulink 软件包对系统进行了仿真研究,并对仿真结果进行了深入的分析。 在水箱液位控制系统中,通过建立数学模型以及实验中对实验数据的分析,分别确定了单容、双容、三容水箱对象的传递函数。在simulink软件包中建立了各系统的仿真模型。通过对仿真曲线的研究,分析了控制器参数对系统过渡过程的影响。 在换热器温度控制系统中,根据自动控制系统工艺过程,利用降阶法确定了对象的传递函数。在软件包Simulink中搭建了单回路、串级、前馈—反馈控制系统模型,分别采用常规的PID、实际PID和Smith预估器对系统进行了仿真研究,通过仿真曲线的比较,分析了各种控制系统的特点。 关键词:过程控制;MATLAB;仿真;水箱;换热器

Simulation and Research of Process Contro1 System Based on MATLAB Abstract Water tank and Heat exchanger are typical object in the process control in the design,The control system of tank level and heat interchange is used as an example.The transfer function object is defined by setting up the mathematical model.I carry on simulation research on the system by using Matlab’s simulink simulation.and deeply analyze the result of the simulation. In the system, which control the level of the tank. The transfer function of a single-tank, double-tank, three-tank is defined by setting up mathematical model and analyzing date. Simulation model of all system set up simulink simulation. The effect that controller parameter composes on the system is analyzed through the research on the simulation cuvers. In the control system of heat inter change. The design uses reduction method and defines the transfer function of the object.according to the technical process in the automatic system.The control system model of single loop, cascade, feed forward-feedback is established. Simulation research on there system is carried on through using conventional PID, the actual PID and Smith predictor , While the characteristics those control system are compared. Key words: Process Control; Matlab;Simulation; Water tanks; Heat exchanger

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

某温度控制系统的MATLAB仿真

课程设计报告 题目某温度控制系统的MATLAB仿真(题目C)

过程控制课程设计任务书 题目C :某温度控制系统的MATLAB 仿真 一、 系统概况: 设某温度控制系统方块图如图: 图中G c (s)、G v (s)、G o (s)、G m (s)、分别为调节器、执行器、过程对象及温度变送器的传递函数;,且电动温度变送器测量范围(量程)为50~100O C 、输出信号为4~20mA 。G f (s)为干扰通道的传递函数。 二、系统参数 二、 要求: 1、分别建立仿真结构图,进行以下仿真,并求出主要性能指标: (1)控制器为比例控制,其比例度分别为δ=10%、20%、50%、100%、200%时,系统广义对象输出z(t)的过渡过程; (2)控制器为比例积分控制,其比例度δ=20%,积分时间分别为T I =1min 、3min 、5min 、10min 时,z(t)的过渡过程; 0m v o 0f o o =5min =2.5min =1.5(kg/min)/mA =5.4C/(kg/min) =0.8 C C T T K K K x(t)=80f(t)=10; ;;; ;给定值; 阶跃扰动

(3)控制器为比例积分微分控制,其比例度δ=10%,积分时间T I=5min,微分时间T D = 0.2min时,z(t)的过渡过程。 2、对以上仿真结果进行分析比对,得出结论。 3、撰写设计报告。 注:调节器比例带δ的说明 比例控制规律的输出p(t)与输入偏差信号e(t)之间的关系为 式中,K c叫作控制器的比例系数。 在过程控制仪表中,一般用比例度δ来表示比例控制作用的强弱。比例度δ定义为 式中,(z max-z min)为控制器输入信号的变化范围,即量程;(p max-p min)为控制器输出信号的变化范围。 = c p(t)K e(t) max min ( ) =100% ) max min e z z p(p-p δ - ?

基于MATLAB的智能控制系统的介绍与设计实例最新毕业论文

(此文档为word格式,下载后您可任意编辑修改!) 武汉科技大学 智能控制系统 学院:信息科学与工程学院 专业:控制理论与控制工程 学号: 姓名:李倩

基于MATLAB的智能控制系统的介绍与设计实例 摘要 现代控制系统,规模越来越大,系统越来越复杂,用传统的控制理论方法己不能满控制的要求。智能控制是在经典控制理论和现代控制理论的基础上发展起来的,是控制理论、人工智能和计算机科学相结合的产物。MATLAB是现今流行的一种高性能数值计算和图形显示的科学和工程计算软件。本文首先介绍了智能控制的一些基本理论知识,在这些理论知识的基础之上通过列举倒立摆控制的具体实例,结合matlab对智能控制技术进行了深入的研究。 第一章引言 自动控制就是在没有人直接参与的条件下,利用控制器使被控对象(如机器、设备和生产过程)的某些物理量能自动地按照预定的规律变化。它是介于许多学科之间的综合应用学科,物理学、数学、力学、电子学、生物学等是该学科的重要基础。自动控制系统的实例最早出现于美国,用于工厂的生产过程控制。美国数学家维纳在20世纪40年代创立了“控制论”。伴随着计算机出现,自动控制系统的研究和使用获得了很快的发展。在控制技术发展的过程中,待求解的控制问题变得越来越复杂,控制品质要求越来越高。这就要求必须分析和设计相应越来越复杂的控制系统。智能控制系统(ICS)是复杂性急剧增加了的控制系统。它是由控制问题的复杂性急剧增加而带来的结果,其采用了当今其他学科的一些先进研究成果,其根本目的在于求解复杂的控制问题。近年来,ICS引起了人们广泛的兴趣,它体现了众多学科前沿研究的高度交叉和综合。 作为一个复杂的智能计算机控制系统,在其建立投入使用前,必要首先进行仿真实验和分析。计算机仿真(Compeer Simulation)又称计算机模拟(Computer Analogy)或计算机实验。所谓计算机仿真就是建立系统模型的仿真模型进而在计算机上对该仿真模型

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

基于MATLAB的PID控制器设计说明

基于MATLAB的PID 控制器设计

基于MATLAB的PID 控制器设计 一、PID控制简介 PID控制是最早发展起来的经典控制策略, 是用于过程控制最有效的策略之一。由于其原理简单、技术成,在实际应用中较易于整定, 在工业控制中得到了广泛的应用。它最大的优点是不需了解被控对象精确的数学模型,只需在线根据系统误差及误差的变化率等简单参数, 经过经验进行调节器参数在线整定, 即可取得满意的结果, 具有很大的适应性和灵活性。 积分作用:可以减少稳态误差, 但另一方面也容易导致积分饱和, 使系统的超调量增大。 微分作用:可提高系统的响应速度, 但其对高频干扰特别敏感, 甚至会导致系统失稳。 所以, 正确计算控制器的参数, 有效合理地实现 PID控制器的设计,对于PID 控制器在过程控制中的广泛应用具有重要的理论和现实意义。 在PID控制系统中, PID控制器分别对误差信号e(t)进行比例、积分与微分运算, 其结果的加权和构成系统的控制信号u(t),送给对象模型加以控制。 PID控制器的数学描述为 其传递函数可表示为: 从根本上讲, 设计PID控制器也就是确定其比例系数Kp、积分系数T i 和微分系数T d , 这三个系数取值的不同, 决定了比例、积分和微分作用的强弱。控制系统的整定就是在控制系统的结构已经确定、控制仪表和控制对象等处在正常状态的情况下, 适当选择控制器参数使控制仪表的特性和控制对象的特性相配合, 从而使控制系统的运行达到最佳状态, 取得最好的控制效果。 二、MATLAB的 Ziegler-Nichols算法PID控制器设计。 1、PID控制器的Ziegler-Nichols参数整定 在实际的过程控制系统中, 有大量的对象模型可以近似地由一阶模型 来表示。这个对象模型可以表示为 sL - e sT 1 K G(s) + = 如果不能建立起系统的物理模型, 可通过试验测取对象模型的阶跃响应, 从而得到模型参数。当然, 我们也可在已知对象模型的情况下, 利用MATLAB,通过使用step ( ) 函数得到对象模型的开环阶跃响应曲线。在被控对象的阶跃响应中, 可获取K 、L 和T参数, 也可在MATLAB中由dcgain ( ) 函数求取 K值。

相关文档
相关文档 最新文档