文档库 最新最全的文档下载
当前位置:文档库 › 对数平均不等式链高考压轴题中的研究

对数平均不等式链高考压轴题中的研究

对数平均不等式链高考压轴题中的研究
对数平均不等式链高考压轴题中的研究

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

对数平均数

高考又见对数平均数 在历年的高考压轴题中我们总是能见到对数平均数的影子。2018年高考理科数学全国Ⅰ卷的压轴题最后一问,实际上就是对数平均数不等式的应用。加强对对数平均数的理解,无疑能对我们解决压轴题有很大的帮助。 对于a>b>0,我们把 b a b a ln ln --称作a 与 b 的对数平均数,并且有: 算术平均数>对数平均数>几何平均数,即: 2b a +>b a b a ln ln -->a b 证明方法Ⅰ(几何证明):如图,分别过A(a,0)、B(b,0)、C( 2b a +,0)、D(ab ,0)作x 轴的垂线,与函数y=x 1 交于F 、G 、E 、H 四点,过E 作函数的切线,分别与BG 、AF 交于M 、N 两点。 比较曲边四边形GBAF 的面积S 1与梯形MBAN 的面积S 2,得S 1>S 2,其中: S 1=?a b dx x 1 =ln a-ln b ,

S 2= 2AN BM +?AB=CE ?AB=b a +2 ?(a-b) ∴ ln a-ln b>b a +2 ?(a-b) 即:2b a +>b a b a ln ln --……① 比较梯形GBDH 的面积S 3与曲边四边形GBDH 的面积S 4,得S 3>S 4,其中: S 3=21 (GB+HD)?BD=21(b 1+ab 1)(ab -b)=ab b a 2- S 4=?ab b dx x 1=ln ab -ln b= 2ln ln b a +-ln b=2 ln ln b a - ∴ ab b a 2->2ln ln b a - 即: b a b a ln ln -->a b ……② 综合①②,得:2b a +>b a b a ln ln -->a b (a>b>0) 证明方法Ⅱ(函数证明): 令f(x)= 2ln x +1 2 +x -1 (x>1),则有: f`(x)=x 21 -2 )1(1+x =22)1(24)1(+-+x x x x =22)1(2)1(+-x x x >0 ∴ f(x)>f(1)=0,即: 2ln x +1 2 +x -1>0, 令x=b a ,代入整理得: 2ln ln b a ->b a b a +- 即:2b a +>b a b a ln ln --……① 令g(x)=x-2?ln x-x 1 (x>1),则有: g`(x)=1-x 2+21x =22 )1(x x ->0 ∴ g(x)>g(1)=0,即x-2?ln x-x 1 >0, 令x= b a ,代入整理得:ab b a ->ln a-ln b

对数平均不等式学生

对数平均不等式 1.定义:设,0,,a b a b >≠则2ln ln a b a b a b +->>-ln ln a b a b -- 为对数平均数. 2.几何解释: 反比例函数()()10f x x x =>的图象,如图所示,AP BC TU KV ||||||, MN CD x ||||轴, (),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,,T 作()f x 在点2,2a b K a b +?? ?+?? 处的切线分别与,AP BQ 交于,E F ,根据左图可知, 变形公式: )0.()(2ln ln >≥+-≥-b a b a b a b a 3.典例剖析 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. (一) ()0ln ln b a b a a b a ->>>-的应用 例1 (2014年陕西)设函数 )1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n +++L 与()n f n -的大小,并加以证明. . (二) ()0ln ln b a b a b a ->>-的应用 例 2 设数列{} n a 的通项n a =,其前n 项的和为n S ,证明:()ln 1n S n <+.

(三) ()02ln ln a b b a b a b a +->>>-的应用 例3. 设数列{}n a 的通项111123n a n =++++L ,证明:()ln 21n a n <+. (四) ()2011ln ln b a b a b a a b ->>>-+的应用 例4. (2010年湖北)已知函数()()0b f x ax c a x =++>的图象在点()()1,1f 处的切线方程为1y x =-.(1)用a 表示出,b c ;(2)(略) (3)证明:()() ()1111ln 11.2321n n n n n ++++>++?+L (五) )0ln ln b a b a b a ->>>-的应用 例5. (2014福建预赛)已知1()ln(1)311f x a x x x =++ +-+. (1)(略) (2)求证:()222223411ln 21411421431414 n n n +++++>+?-?-?-?-L 对一切正整数n 均成立. 强化训练 1. (2012年天津)已知函数()()()ln 0f x x x a a =-+>的最小值为0. (1)(2)(略)(3)证明:()()12ln 212*.21 n i n n N i =-+<∈-∑ 2.(2013年新课标Ⅰ)已知函数()()()1ln 11x x f x x x λ+=+-+.

证明n元均值不等式

学习好资料 欢迎下载 证明n 元均值不等式 1212n n n a a a n a a a +++≥证明: 首先证明,23n 2,222当,,,,时,不等式成立。 显然,12122a a a a +≥, 又因为412341234123412342+2222=4a a a a a a a a a a a a a a a a +++≥≥?, 同理可以证明得到n 2也成立。 再证明,当k k+1n 22∈(,) 也成立。 k k n=2+i 1i 2-1≤≤不妨设 ,其中,则有k k k k 21212 222a a a a a a ++ +≥, k+1k+1k+1k+121212 222a a a a a a ++ +≥ 则k k k 121222+12+i =++ +n a a a a a a a a +++++ +(), k k k k k k k k k k k k k k k k+1212 22k 2+i 1212 22+12+i 1222+1k 2+i 12 22+1 2++1 2+i i 2+2-i =++++2-i 2i i n a a a a a a a a a a a a a a a a a a a a a a a +++++++ ?+≥? (则()()) k k k k k k k k k 2+i 12 22+1 2+i k 2+i 12 22+1 2+i 2-2i i -a a a a a a a a a a 其中可以看成是()个相()加所得。 k k k k k k k k k k k k 2+i 12 22+12+i k 2+i 1212 22+12+i 22+1 2+i 2-i ++ +2+i a a a a a a a a a a a a a a a ?++ +≥()最后,在式两边同时减去就得到了()() 1212 n n n a a a n a a a ++ +≥即:得证。

对数平均数的不等式链的几何解释及应用

对数平均数的不等式链的几何解释及应用 中学数学教育专家安振平先生在剖析2014年陕西高考数学试题时指出,其压轴题的理论背景是: 设,0,,a b a b >≠则2ln ln a b a b ab a b +->>-,其中ln ln a b a b --被称之为对数平均数. 童永奇老师构造函数,借助于导数证明了对数平均数的上述不等式,难度较大,为此,我作了深入地 探讨,给出对数平均数的不等关系的几何解释,形象直观,易于理解. 1 对数平均数的不等关系的几何解释 反比例函数()()1 0f x x x = >的图象,如图所示,AP BC TU KV ||||||,MN CD x ||||轴,(),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,1,,T ab ab ?? ???作()f x 在点2,2a b K a b +?? ?+?? 处的切线分别与,AP BQ 交于,E F ,根据左图可知, 因为ABNM ABQP ABFE S S S >=矩形曲边梯形梯形, 所以 ()12 ln ln ,b a dx b a b a x a b =->-+ò ① 又1 ln ln ab AUTP a S dx ab a x = =-ò 曲边梯形, ()11 ln ln 22ABQP b a S = -=曲边梯形, () 11111 222AUTP ABCD b a S ab a S a ab ab 骣-÷?=+ -=?÷?÷?桫梯形梯形,

根据右图可知,AUTP AUTP S S <曲边梯形梯形 ,所以ln ln b a b a ab --<, ② 另外,ABQX ABYP ABQP ABQP S S S S <<<矩形矩形曲边梯形梯形,可得: ()()()11111 ln ln ,2b a b a b a b a b a b a 骣÷?-<-<+-<-÷?÷?桫 ③ 综上,结合重要不等式可知: ()()()()211111 ln ln 2b a b a b a b a b a b a b a b a b a ab 骣--÷?-<<-<<+-<-÷?÷?桫+, 即()2011 2ln ln a b b a b ab a b a b a a b +-> >>> >>>-+. ④ 2 不等式链的应用 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. 2.1 ()0ln ln b a b a a b a -> >>-的应用 例1(2014年陕西)设函数)1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n +++ 与()n f n -的大小,并加以证明. 解析(3)因为()1x g x x = +, 所以()()()121111223123 1n g g g n n n n ??+++= +++=-+++ ?++?? , 而()()ln 1n f n n n -=-+,因此,比较()()()12g g g n +++ 与()n f n -的大小,即只需比较 1 1 3121++++n 与()ln 1n +的大小即可. 根据0b a >>时,ln ln b a b b a ->-,即()1ln ln , b a b a b -<- 令,1,a n b n = =+则 ()1 ln 1ln ,1 n n n <+-+ 所以1ln 2ln1ln 22<-=,1ln 3ln 23<-,1 , ln(1)ln 1 n n n <+-+ ,

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

对数平均数的不等式链的几何解释及应用

对数平均数的不等式链的几何解释及应用 [文档副标题] [日期] [公司名称] [公司地址]

对数平均数的不等式链的几何解释及应用 中学数学教育专家安振平先生在剖析2014年陕西高考数学试题时指出,其压轴题的理论背景是: 设,0,,a b a b >≠则2ln ln a b a b a b +->>-ln ln a b a b --被称之为对数平均数. 童永奇老师构造函数,借助于导数证明了对数平均数的上述不等式,难度较大,为此,我作了深入地 探讨,给出对数平均数的不等关系的几何解释,形象直观,易于理解. 1 对数平均数的不等关系的几何解释 反比例函数()()1 0f x x x = >的图象,如图所示,AP BC TU KV ||||||,MN CD x ||||轴, () ,0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???, ,T 作()f x 在点2,2a b K a b +?? ?+??处的切线分别与,AP BQ 交于,E F ,根据左图可知, 因为ABNM ABQP ABFE S S S 矩形曲边梯形梯形, 所以 1 2ln ln ,b a dx b a b a x a b ① 又1ln ln ab AUTP a S dx ab a x 曲边梯形, 1 1 ln ln 2 2 ABQP b a S 曲边梯形, 1111 222 AUTP ABCD S ab a S a ab ab 梯形梯形,

根据右图可知, AUTP AUTP S S 曲边梯形梯形 ,所以ln ln b a ab , ② 另外,ABQX ABYP ABQP ABQP S S S S 矩形矩形曲边梯形梯形,可得: 11111ln ln ,2b a b a b a b a b a b a ③ 综上,结合重要不等式可知: 211111ln ln 2b a b a b a b a b a b a b a b a ab , 即20112 ln ln a b b a b ab a b a b a a b . ④ 2 不等式链的应用 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. 2.1 0ln ln b a b a a b a 的应用 例1,,(2014年陕西)设函数)1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n ++ +与()n f n -的大小,并加以证明. 解析,,(3)因为()1x g x x =+, 所以()()()121111223 123 1n g g g n n n n ?? ++ += +++ =-+++ ?++?? , 而()()ln 1n f n n n -=-+,因此,比较()()()12g g g n +++与()n f n -的大小,即只需比较 1 13121++++n 与()ln 1n +的大小即可. 根据0b a 时, ln ln b a b b a ,即1ln ln , b a b a b 令,1,a n b n 则 1 ln 1 ln ,1 n n n 所以 1ln 2ln1ln 22<-=,1 ln 3ln 23 <-,1 , ln(1)ln 1 n n n <+-+,

对数平均不等式 - 学生

对 数平均不等式 1.定义:设,0,,a b a b >≠则2ln ln a b a b a b +->>-ln ln a b a b -- 为对数平均数. 2.几何解释: 反比例函数()()10f x x x = >的图象,如图所示,AP BC TU KV ||||||,MN CD x |||| 轴, (),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,,T 作()f x 在点2,2a b K a b +?? ?+??处的切线分别与 ,AP BQ 交于,E F ,根据左图可知, 变形公式: )0.()(2ln ln >≥+-≥-b a b a b a b a 3.典例剖析 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. (一) ()0ln ln b a b a a b a ->>>-的应用 例1 (2014年陕西)设函数 )1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n +++L 与()n f n -的大小,并加以证明. . (二)()0ln ln b a b a b a ->>-的应用 例2 设数列{} n a 的通项n a =,其前n 项的和为n S ,证明:()ln 1n S n <+. (三) ()02ln ln a b b a b a b a +->>>-的应用

指数函数和对数函数历年高考题汇编附答案

历届高考中的“指数函数和对数函数”试题汇编大全 一、选择题 1、已知???≥<+-=1,log 1 ,4)13()(x x x a x a x f a 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1 (0,)3 (C )11[,)73 (D )1[,1)7 2.、函数y=㏒2 1 -x x (x ﹥1)的反函数是 =122-x x (x >0) = 122-x x (x <0) =x x 212- (x >0) D. .y =x x 2 12- (x <0) 3、设f(x)=x x -+22lg ,则)2 ()2(x f x f +的定义域为 A. ) ,(),(-4004Y B.(-4,-1)Y (1,4) C. (-2,-1)Y (1,2) D. (-4,-2)Y (2,4) 4、函数y =( ) A.(3,+∞) B.[3, +∞) C.(4, +∞) D.[4, +∞) 5、与方程221(0)x x y e e x =-+≥的曲线关于直线y x =对称的曲线的方程为( ) A.ln(1y =+ B.ln(1y = C.ln(1y =-+ D.ln(1y =-- 6、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x =>g C .()22()x f x e x R =∈ D .()2ln ln 2(0)f x x x =+> 7、已知函数()ln 1(0)f x x x =+>,则()f x 的反函数为 (A )1()x y e x R +=∈ (B )1()x y e x R -=∈ (C )1(1)x y e x +=> (D ) 1 (1)x y e x -=> 8、函数y =f (x )的图像与函数g (x )=log 2x (x >0)的图像关于原点对称,则f (x )的表达式为 (A )f (x )=1 log 2x (x >0) (B )f (x )=log 2(-x )(x <0) (C )f (x )=-log 2x (x >0) (D )f (x )=-log 2(-x )(x <0) 9、函数y=1+a x (0

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

(完整版)极值点偏移问题专题——对数平均不等式

极值点偏移——对数平均不等式(本质回归) 笔者曾在王挽澜先生的著作《建立不等式的方法》中看到这样一个不等式链: , 不曾想,其中一部分竟可用来解极值点偏移问题. 对数平均不等式:对于正数,,且,定义为,的对数平均值,且 ,即几何平均数<对数平均数<算术平均数,简记为. 先给出对数平均不等式的多种证法. 证法1(对称化构造) 设 ,则, ,构造函数,则.由得,且在上,在上,为的极大值点.对数平 ,等价于,这是两个常规的极值点偏移问题,留给读者尝试. 证法2(比值代换) 令,则 ,构造函数可证. 证法3(主元法) 不妨设 , 1 1 1ln 2e e 2ln b a b a a a b b ab ab b a b a b a b a b b b a a a ---??-+?? < <<<<< ? ?+ -?? ??a b a b ≠ln ln a b a b --a b ln ln 2 a b a b a b -+< -()()(),,,G a b L a b A a b <<0 ln ln a b R a b -= >-ln ln k a k b a b -=-ln ln k a a k b b -=-()ln f x k x x =-()()f a f b =()1k f x x '= -()0f k '=()f x ()0,k Z (),k +∞]x k =()f x 2a b k +<< 2 2a b k ab k +>??()()11ln ln 2ln 2 b t b t a b a b a b t -+-+<

对数平均数不等式链的几何证明及变式探究

对数平均数不等式链的几何证明及变式探究 中学数学教育专家安振平在剖析2013年陕西高考数学压轴题时指出,其理论背景是: 设0b a >>,则211 2ln ln a b b a b ab a b a a b +-> >>> >-+,其中 ln ln a b a b --被称为“对数 平均数”. 安振平老师通过构造函数,借助导数,证明了上述对数平均数不等式链,难度较大.基于此,笔者进行了深入的探讨,给出对数平均数不等式链的几何证明,形象直观,易于理解. 1 对数平均数不等式链的几何证明 如图,先画反比例函数()()1 0f x x x = >的图象,再画其他的辅助线,其中AP BC TU KV ||||||,MN CD x ||||轴,(),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,1,T ab ab ?? ? ? ?.设函数()f x 在点2,2a b K a b +?? ?+?? 处的切线分别与直线,AP BQ 交于点,E F ,则根据左图可知: 因为ABNM ABQP ABFE S S S >=矩形曲边梯形梯形, 所以 ()12 ln ln b a dx b a b a x a b =->-+ò . ① 因为1 ln ln ab AUTP a S dx ab a x = =-ò 曲边梯形()11ln ln 22ABQP b a S =-=曲边梯形, () 11111 222AUTP ABCD b a S ab a S a ab ab 骣-÷?=+ -=?÷?÷?桫梯形梯形,

而根据右图可知:AUTP AUTP S S <曲边梯形梯形,所以ln ln b a b a ab --<. ② 另外,根据ABQX ABYP ABQP ABQP S S S S <<<矩形矩形曲边梯形梯形,可得: ()()()11111 ln ln 2b a b a b a b a b a b a 骣÷?-<-<+-<-÷?÷?桫 . ③ 综上,结合重要不等式可知: ()()()()211111 ln ln 2b a b a b a b a b a b a b a b a b a ab 骣--÷?-<<-<<+-<-÷?÷?桫+, 即()2011 2ln ln a b b a b ab a b a b a a b +-> >>> >>>-+. ④ 2 对数平均数不等式链的变式探究 近年来,以对数平均数不等式链为落点的压轴试题层出不穷,如2010年湖北卷、2012年天津、2013年新课标Ⅰ、2014年陕西卷、2014福建预赛、2014年绵阳一、三诊、2015合肥最后一卷等等,因此关注对数平均数不等式链的变式探究是十分必要的. 为了行文叙述的方便,将对数平均数不等式链中的不等式 2ln ln a b b a b a +->-,记为①式;将ln ln b a ab b a -> -,记为②式;将2 11 ln ln b a b b a a b -> >-+,记为③式. 变式探究1:取12,a x b x ==,则由①知: 1221 21 2ln ln +-> -x x x x x x .于是,可编制如下试题:已知210>>x x ,求证:212112 2()ln ln --> +x x x x x x . 变式探究2:取12,a x b x ==,则由②知: 21 1221 ln ln ->-x x x x x x .于是,可编制如下试题:已知 210>>x x ,求证:21 2112 ln ln --< x x x x x x . 变式探究3:取12,a x b x ==,则由③知:2122112 2 11 ln ln -> > -+x x x x x x x .于是,可编制如下试题:已知210>>x x ,求证:22 12121212 1ln ln 2--<-< x x x x x x x x .

最新高考数学压轴题秒杀

秒杀压轴题第五章关于秒杀法的最难掌握的一层,便是对于高考数很多朋友留言说想掌握秒杀的最后一层。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多学压轴题的把握。很多很多人。出题人很怕很怕全省没多少做出来的,相反,压轴题并不是那般神秘难解,不过,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。想领悟、把握压轴题的思路,给大家推荐几道题目。 08的除山东的外我都没做过,所以不在推荐范围内)。09全是数学压轴题,且是理科(全国一07山东,08江西,07全国二,08全国一, 可脉络依然清晰。虽然一年过去了,做过之后,但这几道题,很 多题目都忘了,一年过去了,都是一些可以秒杀的典型压轴 题,望冲击清华北大的同学细细研究。记住,压轴题是出题人在微笑着和你对话。会在以后的视频里面讲以及怎么发挥和压榨 一道经典题目的最大价值,,”精“具体的题目的解的很清楚。 \ 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)尤其推荐通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。:1 )我押题的第一道 数列解答题。裂项相消(各种形式的都要会)、迭加、迭乘、错 位相减求和(这几个是最基本和简:2. 单的数列考察方式,一 般会在第二问考)数学归纳法、不等式缩放:3 基本所有题目都 是这几个的组合了,要做到每一类在脑中都至少有一道经典题想 对应才行哦。开始解答题了哦,先来一道最简单的。貌似北 京的大多挺简单的。意义在只能说不大。这道题意义在什么呢? 对于这道题在高考中出现的可能性我不做解释,于,提醒大家 四个字,必须必须必须谨记的四个字:分类讨论!!!!!!! 年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参 考性,类似的题目07下面年高考题中见了很多。10、09、08在 )

(完整版)常用均值不等式及证明证明

2 常用均值不等式及证明证明 Hn n 概念: 1、调和平均数: 1 1 1 a 1 a 2 a n 2、几何平均数: Gn a 1 a 2 1 a n n 3 、算术平均数: An a 〔 a ? a n n 4 、平方平均数: Qn 2 2 a 1 a 2 2 a n n 这四种平均数满足 Hn Gn An Qn 1 r 0 时); D x a i a ; a n n (当 r 0 时)(即 i D 0 a i a ; a n n 则有:当 r=-1、1、0、2 注意到 Hn w Gn< An w Qn 仅是上述不等式的特殊情 形,即 D(-1) w D(0) w D(1) w D(2) 由以上简化,有一个简单结论,中学常用 2 、ab 1 1 a b 均值不等式的变形: (1)对实数a,b ,有a 2 b 2 2ab (当且仅当a=b 时取“=”号),a 2,b 2 0 2ab 对非负实数a,b ,有a a 1> a 2、 、a n R ,当且仅当 a 1 a 2 a n 时取“=”号 均值不等式的一般形式:设函数 D x a i r a ; a n a b a 2 b 2 2 \ 2

⑶ 对负实数a,b ,有 a b -^ ab 0 ⑷ 对实数a,b ,有 a a - b b a - b 2 2 ⑸ 对非负实数a,b ,有 a b 2ab 0 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳) 、拉格朗日乘数 法、琴生不等式 法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设 A >0, B >0,则 A B n A n nA n-i B 注:引理的正确性较明显,条件 A > 0, B > 0可以弱化为 A > 0, A+B> 0 (用数学归纳法)。 当n=2时易证; 假设当n=k 时命题成立,即 ⑹ 2 . 2 对实数a,b ,有a b a b 2 2 ⑺ 2 对实数a,b,c ,有a b 2 2 c (8) 2 对实数a,b,c ,有 a b 2 c 2 (9) 2 对非负数a,b ,有a ab b 2 a b c (i0) 对实数a,b,c ,有 3 2ab abc 2 ab bc ac 3a b 2 3 abc 原题等价于: n a n a i a 2 a n k a k a i a 2 a k 那么当n=k+i 时,不妨设 a k i 是a i , a 2, ,a k i 中最大者, 则 ka k i a k 1 设 s a i a 2 a k

极值点偏移问题专题(五)——对数平均不等式(本质回归)

极值点偏移(5)——对数平均不等式(本质回归)笔者曾在王挽澜先生的著作《建立不等式的方法》中看到这样一个不等式链: 1 1 1 ln 2 e e 2 ln b a b a a a b b ab ab b a b a b a b a b b b a a a - - - ?? -+ ?? <<<<<< ? ? +- ???? , 不曾想,其中一部分竟可用来解极值点偏移问题. 对数平均不等式:对于正数a,b,且a b≠,定义 ln ln a b a b - - 为a,b的对数平均值,且 ln ln2 a b a b a b -+ << - ,即几何平均数<对数平均数<算术平均数,简记为 ()()() ,,, G a b L a b A a b <<. 先给出对数平均不等式的多种证法. 证法1(对称化构造)设0 ln ln a b R a b - => - ,则l n l n k a k b a b -=-, ln ln k a a k b b -=-,构造函数()ln f x k x x =-,则()() f a f b =.由()1 k f x x '=-得 ()0 f k '=,且() f x在() 0,k 上,在() ,k+∞ 上,x k =为() f x的极大值点.对数 平均不等式即 2 a b k + <,等价于 2 2 a b k ab k +> ? ?< ? ,这是两个常规的极值点偏移问题, 留给读者尝试. 证法2(比值代换)令1 a t b => ,则 ()() 11 ln ln2ln2 b t b t a b a b a b t -+ -+ <

相关文档
相关文档 最新文档