文档库 最新最全的文档下载
当前位置:文档库 › 概率统计在日常生活中的应用举例

概率统计在日常生活中的应用举例

概率统计在日常生活中的应用举例
概率统计在日常生活中的应用举例

《应用概率统计》复习题及答案

工程硕士《应用概率统计》复习题 考试要求:开一页;题目类型:简答题和大题;考试时间:100分钟。 1. 已知 0.5,)( 0.4,)( 0.3,)(===B A P B P A P 求)(B A P ?。 解:因为 0.7,0.3-1)(-1(A)===A P P 又因为, ,-- A B A B A A B A AB ?== 所以 0.2,0.5-7.0)( -(A))(A ===B A P P B P 故 0.9.0.2-0.40.7P(AB)-P(B)(A))(A =+=+=?P B P 2.设随机变量)1(,9 5 )1(),,4(~),,2(~≥=≥Y P X P p b Y p b X 求并且。 解: . 8165 31-1-10)(Y -11)(Y ),3 1,4(~,31,94-1-1-10)(X -1)1(,9 5)1(),,2(~422 ====≥=====≥=≥)(故从而解得)所以() (而且P P b Y p p p P X P X P p b X 3.随机变量X 与Y 相互独立,下表中给出了X 与Y 的联合分布的部分数值,请将表中其

4.设随机变量Y 服从参数2 1=λ的指数分布,求关于x 的方程0322 =-++Y Yx x 没有实根的概率。 解:因为当时没有实根时,即0128Y -Y 03)-4(2Y -Y 2 2 <+<=?,故所求的概率为}6Y P{20}128Y -P{Y 2 <<=<+,而Y 的概率密度 ?? ???≤>=0,00 ,21f(y)21-y y e y ,从而36221 -621-1dy 21f(y)dy 6}Y {2e e e P y ===<

《应用概率统计》张国权编课后答案详解习题一解答

习 题 一 解 答 1. 设A、B、C表示三个随机事件,试将下列事件用A、B、C及其运算符号表示出来: (1) A发生,B、C不发生; (2) A、B不都发生,C发生; (3) A、B中至少有一个事件发生,但C不发生; (4) 三个事件中至少有两个事件发生; (5) 三个事件中最多有两个事件发生; (6) 三个事件中只有一个事件发生. 解:(1)C B A (2)C AB (3)()C B A ? (4)BC A C AB ABC ?? (5)ABC (6)C B A C B A C B A ?? ――――――――――――――――――――――――――――――――――――――― 2. 袋中有15只白球 5 只黑球,从中有放回地抽取四次,每次一只.设Ai 表示“第i 次取到白球”(i =1,2,3,4 ),B表示“至少有 3 次取到白球”. 试用文字叙述下列事件: (1) 41 ==i i A A , (2) A ,(3) B , (4) 32A A . 解:(1)至少有一次取得白球 (2)没有一次取得白球 (3)最多有2次取得白球 (4)第2次和第3次至少有一次取得白球 ――――――――――――――――――――――――――――――――――――――― 3. 设A、B为随机事件,说明以下式子中A、B之间的关系. (1) A B=A (2)AB=A 解:(1)A B ? (2)A B ? ――――――――――――――――――――――――――――――――――――――― 4. 设A表示粮食产量不超过500公斤,B表示产量为200-400公斤 ,C表示产量低于300公斤,D表示产量为250-500公斤,用区间表示下列事 件: (1) AB , (2) BC ,(3) C B ,(4)C D B )( ,(5)C B A . 解:(1)[]450,200; (2)[]300,200 (3)[]450,0 (4)[]300,200 (5)[]200,0 ――――――――――――――――――――――――――――――――――――――― 5. 在图书馆中任选一本书,设事件A表示“数学书”,B表示“中文版”, C表示“ 1970 年后出版”.问: (1) ABC表示什么事件? (2) 在什么条件下,有ABC=A成立? (3) C ?B表示什么意思? (4) 如果A =B,说明什么问题? 解:(1)选了一本1970年或以前出版的中文版数学书 (2)图书馆的数学书都是1970年后出版的中文书 (3)表示1970年或以前出版的书都是中文版的书 (4)说明所有的非数学书都是中文版的,而且所有的中文版的书都不是数学书 ――――――――――――――――――――――――――――――――――――――― 6. 互斥事件与对立事件有什么区别?试比较下列事件间的关系. (1) X < 20 与X ≥ 20 ; (2) X > 20与X < 18 ;

【免费下载】概率论与数理统计案例

实例1 发行彩票的创收利润某一彩票中心发行彩票 10万张, 每张2元. 设头等奖1个, 奖金 1万元, 二等奖2个,奖金各 5 千元;三等奖 10个, 奖金各1千元; 四等奖100个, 奖金各100元; 五等奖1000个, 奖金各10 元.每张彩票的成本费为 0.3 元, 请计算彩票发行单位的创收利润.解:设每张彩票中奖的数额为随机变量X , 则X 10000 5000 1000 100 10 0p 51/1052/10510/105100/1051000/100p 每张彩票平均能得到奖金 05512()10000500001010E X p =? +?++? 0.5(),=元每张彩票平均可赚20.50.3 1.2(), --=元因此彩票发行单位发行 10 万张彩票的创收利润为:100000 1.2120000().?=元实例2 如何确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为 30%,可得利润8万元 , 失败的机会为70%,将损失 2 万元.若存入银行,同期间的利率为5% ,问是否作此项投资?解:设 X 为投资利润,则 X 8 -2p 0.3 0.7()80.320.71(),E X =?-?=万元存入银行的利息:故应选择投资.1050.5(),%?=万元实例3 商店的销售策略某商店对某种家用电器的销售采用先使用后付款的方式,记使用寿命为X (以年计),规定1,1500;12,2000;23,2500; 3,3000.X X X X ≤<≤<≤>一台付款元一台付款元一台付款元一台付款元10,1e ,0,()100, 0.x X x f x x Y -?>?=??≤? 设寿命服从指数分布概率密度为试求该商店一台家用电器收费的数学期望定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术、电气课校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料、电气设备调试高中中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 (6) 甲乙二人下棋一局,观察棋赛的结果。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 (10) 测量一汽车通过给定点的速度。 (11) 将一尺之棰折成三段,观察各段的长度。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 (2) A 与B 都发生,而C 不发生。 (3) A ,B ,C 都发生。 (4) A ,B ,C 中至少有一个发生。 (5) A ,B ,C 都不发生。 (6) A ,B ,C 中至多于一个发生。 (7) A ,B ,C 中至多于二个发生。 (8) A ,B ,C 中至少有二个发生。 3. 设{}10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,??????≤<=121x x A ,? ?????<≤=234 1x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,81)(=AC P ,求A , B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算)? (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少?

(完整版)北邮研究生概率论与随机过程2012-2013试题及答案

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

应用概率统计期末复习题及答案

第七章课后习题答案 7.2 设总体X ~ N(12,4), X^XzJII’X n 为简单随机样本,求样本均值与总体均值之 差的绝对 值大于1的概率. X 解:由于 X ~ N(12,4),故 X 一 ~ N(0,1) /V n 1 ( 2 0.8686 1) 0.2628 10 7.3 设总体X ?N(0,0.09),从中抽取n 10的简单随机样本,求P X : 1.44 i 1 X i 0 X i 0 X i ~N(0,°.09),故亠-X0r~N(0,1) X 所以 ~ N(0,1),故U n P{ X 1} 1 P{ X 1} 解: 由于X ~ N (0,0.09),所以 10 所以 X i 2 2 是)?(10) 所以 10 10 X : 1.44 P i 1 i 1 X i 2 (倉 1.44 P 0.09 2 16 0.1 7.4 设总体 X ~ N( , 2), X 1,X 2,|||,X n 为简单随机样本 2 ,X 为样本均值,S 为样 本方差,问U n X 2 服从什么分布? 解: (X_)2 2 ( n )2 X __ /V n ,由于 X ~ N( , 2), 2 ~ 2(1)。 1 —n

7.6 设总体X ~ N( , 2), Y?N( , 2)且相互独立,从X,Y中分别抽取 m 10, n215的简单随机样本,它们的样本方差分别为S2,M,求P(S2 4S ; 0)。 解: S2 P(S24S2 0) P(S24S;) P 12 4 由于X ~ N( , 2), Y~ N( , 2)且相互独立S2 所以S12~ F(10 1,15 1),又由于F°oi(9,14) 4.03 S2 即P F 4 0.01

概率统计补充案例

补充案例:概率部分: 案例1、“三人行必有我师焉” 案例2、抓阄问题 案例3、贝叶斯方法运用案例介绍 案例4、化验呈阳性者是否患病 案例5、敏感性问题的调查 案例6、泊松分布在企业评先进中的应用 案例7、碰运气能否通过英语四级考试 案例8、检验方案的确定问题 案例9、风险型决策模型 案例10、一种很迷惑游客的赌博游戏 案例11、标准分及其应用 案例12、正态分布在人才招聘中的应用 案例13、预测录取分数线和考生考试名 统计部分: 案例14、随机变量函数的均值和标准差的近似计算方法案例15、如何表示考试成绩比较合理 案例16、如何估计湖中黑、白鱼的比例 案例17、预测水稻总产量 案例18、工程师的建议是否应采纳 案例19、母亲嗜酒是否影响下—代的健康 案例20、银行经理的方案是否有效 案例21、一元线性回归分析的Excel实现 案例22、方差分析的Excel实现 案例23、预测高考分数 案例24、两次地震间的间隔时间服从指数分布

案例1、“三人行必有我师焉” 我们可以运用概率知识解释孔子的名言“三人行必有我师焉”. 首先我们要明确一个问题,即只要在某一方面领先就可以为师(韩愈说“术业有专攻”). 俗语说“三百六十行,行行出状元”,我们不妨把一个人的才能分成360个方面。孔子是个大圣人,我们假设他在一个方面超过某个人的概率为99%,那么孔子在这方面超过与他“同行”的两个人的概率为99% ×99% =98.0l %,在360个方面孔子总比这两人强的概率为 (98.01%)360=0.07% ,即这两个人在某一方面可以做孔子老师的概率为99.93%.从数学角度分析,孔子的话是很有道理的. 案例2、抓阄问题 一项耐力比赛胜出的10人中有1 人可以获得一次旅游的机会,组织者决定以抓阄的方式分配这一名额. 采取一组10人抓阄,10张阄中只有一张写“有”. 每个人都想争取到这次机会,你希望自己是第几个抓阄者呢? 有人说要先抓,否则写有“有”的阄被别人抓到,自己就没有机会了;有人说不急于先抓,如果前面的人没有抓到写有“有”的阄,这时再抓抓到“有”的机会会大一些. 为了统一认识,用概率的方法构造一个摸球模型来说明问题. 摸球模型:袋中装有1 个红球和9 个黄球除颜色不同外球的大小、形状、质量都相同. 现在10 人依次摸球(不放回),求红球被第 k 个人摸到的概率( k = 1, 2, ?, 10). 解决问题 :设 k A = “ { 第 k 个人摸到红球 }, k = 1, 2, ? , 10. 显然,红球被 第一个人摸到的概率为 101 )(1= A P . 因为 12A A ?,于是红球被第二个人摸到的概率为 101 91109)()()()(121212= ?===A A P A P A A P A P . 同样,由 213A A A ?知红球被第三个人摸到的概率为 1018198109)()()()()(2131213213= ??= ==A A A P A A P A P A A A P A P . 如此继续,类似可得 )(4A P = ==ΛΛ)(5A P 101 )(10=A P . 由此可见,其结果与 k 无关,表明10 个人无论摸球顺序如何,每个人摸到红球的机 会相等. 这也说明10 个人抓阄,只要每个人在抓之前不知道他前边那些已经抓完的结果,无论先后, 抓到的机会是均等的. 在现实生活中单位分房、学生分班、短缺物品的分配等,人们常常乐于用抓阄的办法来解决,其合理性保证当然得归功于“概率”. 通过上面的摸球模型,我们总结出分配中的“抓阄”问题,无论先抓后抓, 结果是一样的.学完概率之后再遇到抓阄问题时不必争先恐后,我们要发扬风格让他人先抓. 案例3、贝叶斯方法运用案例介绍 什么是贝叶斯过滤器? 垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户。 正确识别垃圾邮件的技术难度非常大。传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等。前者的过滤依据是特定的词语;后者则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比。它们的识别效果都不理想,而且很容易规避。

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1.写出下列随机试验的样本空间。 (1)记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。 (4)生产产品直到得到10件正品,记录生产产品的总件数。 (5)一个小组有A,B,C,D,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。 (6)甲乙二人下棋一局,观察棋赛的结果。 (7)一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9)有A,B,C三只盒子,a,b,c三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。 (10)测量一汽车通过给定点的速度。 (11)将一尺之棰折成三段,观察各段的长度。 2.设A,B,C为三事件,用A,B,C的运算关系表示下列事件。 (1)A发生,B与C不发生。 (2)A与B都发生,而C不发生。 (3)A,B,C都发生。 (4)A,B,C中至少有一个发生。 (5)A,B,C都不发生。 (6)A,B,C中至多于一个发生。 (7)A,B,C中至多于二个发生。 (8)A,B,C中至少有二个发生。

3. 设{ }10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,?????? ≤<=121x x A ,? ?????<≤=2341x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,1)(=AC P ,求A ,B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算) (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少 8. 一盒子中有4只次品晶体管,6只正品晶体管,随机地抽取一只测试,直到4只次品管子都找到为止。求 第4只次品管子在下列情况发现的概率。 (1) 在第5次测试发现。 (2) 在第10次测试发现。 9. 甲、乙位于二个城市,考察这二个城市六月份下雨的情况。以A ,B 分别表示甲,乙二城市出现雨天这一 事件。根据以往的气象记录已知4.0)()(==B P A P ,28.0)(=AB P ,求)/(B A P ,)/(A B P 及)(B A P ?。 10. 已知在10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概 率。 (1) 二只都是正品。 (2) 二只都是次品。 (3) 一只是正品,一只是次品。 (4) 第二次取出的是次品。 11. 某人忘记了电话号码的最后一个数字,因而随意地拨号,求他拨号不超过三次而接通所需的电话的概率

05-06概率论与随机过程试题(A卷)

05-06概率论与随机过程试题(A ) 一、选择题 1.设0

2. 设随机变量X 的密度函数为, 0 1, ()0, .ax x f x <

应用概率统计期末复习题及答案

第七章课后习题答案 7.2 设总体12~(12,4),,,,n X N X X X L 为简单随机样本,求样本均值与总体均值之 差的绝对值大于1的概率. 解:由于~(12,4)X N , ~(0,1)X N {1}1{1}1P X P X P μμ?->=--≤=-≤ 112(11(20.86861)0.262822P ??=-≤=-Φ-=-?-=?????? 7.3 设总体~(0,0.09),X N 从中抽取10n =的简单随机样本,求1021 1.44i i P X =?? >???? ∑. 解:由于~(0,0.09),X N 所以~(0,0.09),i X N 故 ~(0,1)0.3 i i X X N σ --= 所以 10 2 21 ( )~(10)0.3 i i X χ=∑ 所以{}1010222 11 1.441.44()160.10.3 0.09i i i i X P X P P χ==????>=>=>=????????∑∑ 7.4 设总体2 ~(,),X N μσ12,,,n X X X L 为简单随机样本, X 为样本均值,2 S 为样 本方差,问2 X U n μσ?? -= ??? 服从什么分布? 解: 2 2 2 X X X U n μσ????-=== ???,由于2 ~(,)X N μσ, ~(0,1)N ,故2 2 ~(1)X U χ??=。

7.6 设总体2 ~(,),X N μσ2 ~(,)Y N μσ且相互独立,从,X Y 中分别抽取1210,15n n ==的简单随机样本,它们的样本方差分别为22 12,S S ,求2212(40)P S S ->。 解: 22 22211 2 1 2 22(40)(4)4S P S S P S S P S ?? ->=>=> ??? 由于2 ~(,),X N μσ2 ~(,)Y N μσ且相互独立 所以2 122 ~(101,151)S F S --,又由于0.01(9,14) 4.03F = 即()40.01P F >=

第3章-概率统计实例分析及MatlAb求解

第3章概率统计实例分析及MatlAb求解 第3章概率统计实例分析及MatlAb求解 (1) 3.1 随机变量分布与数字特征实例及MA TLAB求解 (1) 3.1.1 MATLAB实现 (1) 3.1.2 相关实例求解 (2) 3.2 数理统计实例分析及MATLAB求解 (4) 3.1.1 MATLAB实现 (4) 3.1.2 相关实例求解 (4) 3.3参数估计与假设检验实例分析及MATLAB求解 (5) 3.1.1 MATLAB实现 (5) 3.1.2 相关实例求解 (5) 3.4 方差分析实例求解 (10) 3.1.1 MATLAB实现 (10) 3.1.2 相关实例求解 (10) 3.5 判别分析应用实例及求解 (14) 3.1.1 MATLAB实现 (14) 3.1.2 相关实例求解 (14) 3.6 聚类分析应用实例及MATLAB求解 (16) 3.1.1 MATLAB实现 (16) 3.1.2 相关实例求解 (16) 3.1 随机变量分布与数字特征实例及MATLAB求解 3.1.1 MATLAB实现 用mvnpdf和mvncdf函数可以计算二维正态分布随机变量在指定位置处的概率和累积分布函数值。 利用MATLAB统计工具箱提供函数,可以比较方便地计算随机变量的分布律(概率密度函数)、分布函数及其逆累加分布函数,见附录2-1,2-2,2-3。 MATLAB中矩阵元素求期望和方差的函数分别为mean和var,若要求整个矩阵所有元素的均方差,则要使用std2函数。 随机数生成函数:rand( )和randn( )两个函数 伪随机数生成函数: A=gamrnd(a,lambda,n,m) % 生成n*m的 分布的伪随机矩阵 B=raylrnd(b,n,m) %生成rayleigh的伪随机数

《概率论与随机过程》课程自学内容小结

大学2015~2016学年秋季学期本科生 课程自学报告 课程名称:《概率论与随机过程》 课程编号:07275061 报告题目:大数定律和中心极限定理在彩票选号的应用学生: 学号: 任课教师: 成绩: 评阅日期:

随机序列在通信加密的应用 2015年10月10日 摘 要:大数定律与中心极限定理是概率论中很重要的定理,较多文献给出了不同条件下存在的大数定律和中心极限订婚礼,并利用大数定律与中心极限定理得到较多模型的收敛性。但对于他们的适用围以及在实际生活中的应用涉及较少。本文通过介绍大数定律与中心极限定理,给出了其在彩票选号方面的应用,使得数学理论与实际相结合,能够让读者对大数定律与中心极限定理在实际生活中的应用价值有更深刻的理解。 1. 引言 在大数定律与中心极限定理是概率论中很重要的定理,起源于十七世纪,发展到现在,已经深入到了社会和科学的许多领域。从十七世纪到现在,很多国家对这两个公式有了多方面的研究。长期以来,在大批概率论统计工作者的不懈努力下,概率统计的理论更加完善,应用更加广泛,如其在金融保险业的应用,在现代数学中占有重要的地位。 本文主要通过对大数定律与中心极限定理的分析理解,研究探讨了其在彩票选号中的应用,并给出了案例分析,目的旨在给出大数定律与中心极限定理应用对实际生活的影响,也对大数定律与中心极限定理产生更深刻的理解。 2. 自学容小结与分析 2.1 随机变量的特征函数 在对随机变量的分析过程中,单单由数字特征无法确定其分布函数,所以引入特征函数。特征函数反映随机变量的本质特征,可唯一的确定随机变量的分布函数、随机变量X 的特征函数定义为: 定义1 ][)()(juX jux e E dx e x p ju C ==? +∞ ∞ - (1) 性质1 两两相互独立的随机变量之和的特征函数等于各个随机变量的特征函数之积。 性质1意味着在傅立叶变换之后,时域的卷积变成频域的相乘,这是求卷积的简便方法。类比可知求独立随机变量之和的分布的卷积,可化为乘法运算,这样就简便了计算,提高了运算效率。 性质2 求矩公式:0)(|) ()(][=-=u n u x n n n du C d j X E (2) 性质3 级数展开式:!)(][!|)()()(0 00n ju X E n u du u C d u C n n n n n n n n X ∑∑∞ ==∞ === (3) 2.2 大数定律与中心极限定理 定义2 大数定律:设随机变量相互独立,且具有相同的μ=)(k X E 和,...2,1,)(2 ==k X D k σ, 则0∈>?,有

应用概率统计试卷

062应用数学 一、 填空题(每小题2分,共2?6=12分) 1、设服从0—1分布的一维离散型随机 变量X 的分布律是:011X P p p -, 若X 的方差是1 4,则P =________。 2、设一维连续型随机变量X 服从正态分布()2,0.2N ,则随机变量21Y X =+ 的概率密度函数为______________。 3、设二维离散型随机变量X 、Y 的联合分布律为:则a , b 满足条件:___________________。 X Y 11 2 3 1115 6 9

4、设总体X 服从正态分布()2 ,N μσ , 12,,...,n X X X 是它的一个样本,则样本均 值X 的方差是________。 5、假设正态总体的方差未知,对总体均值 μ 作区间估计。现抽取了一个容量 为n 的样本,以X 表示样本均值,S 表示样本均方差,则μ 的置信度为1-α 的置信区间为:_______________________。 6、求随机变量Y 与X 的线性回归方程 Y a b X =+ ,在计算公式 xy xx a y b x L b L ?=-? ?=?? 中,() 2 1 n xx i i L x x == -∑,xy L = 。

二、单项选择题(每小题2分,共2?6=12分) 1、设A ,B 是两个随机事件,则必有( ) ()()()()()()()()A P A B P A P B B P A B P A P A B -=--=- ()()()() ()()()()()C P A B P A P B D P A B P A P A P B -=-=- 2、设A ,B 是两个随机事件, ()()() 524,,556 P A P B P B A === ,( ) () ()()1 1()()()232 12 ()()3 25 A P A B B P AB C P AB D P AB === = 3、设X ,Y 为相互独立的两个随机变量,则下列不正确的结论是( )

2015春《应用概率统计》试卷A

浙江农林大学 2014 - 2015 学年第 二 学期考试卷(A 卷) 课程名称 概率论与数理统计(A )课程类别:必修 考试方式:闭卷 注意事项:1、本试卷满分100分.2、考试时间 120分钟. 学院: 专业班级: 姓名: 学号: 装 订 线 内 不 要 答 题

一、选择题(每小题3分,共24分) 1.随机事件A 或B 发生时,C 一定发生,则C B A ,,的关系是( ) . A. C B A ?? B.C B A ?? C.C AB ? D.C AB ? 2.()()4, 1, 0.5XY D X D Y ρ===,则(329999)D X Y -+=( ). A .28 B .34 C .25.6 D .16 3.对于任意两个随机变量X 和Y ,若()()()D X Y D X D Y -=+,则有( ). A .()()()D XY D X D Y = B .()()()E XY E X E Y = C .X 和Y 独立 D .X 和Y 不独立 4. 设随机变量X 的概率密度为()2 21 x x p x -+-= ,则()D X =( ). A B . 2 C . 1 2 D .2 5. 设)(),(21x f x f 都是密度函数,为使)()(21x bf x af +也是密度函数,则常数b a ,满足( ). A. 1=+b a B. 0,0,1≥≥=+b a b a C. 0,0>>b a D. b a ,为任意实数 6.在假设检验中,当样本容量确定时,若减小了犯第二类错误的概率,则犯第一类错误的概率会( ). A. 不变. B. 不确定. C. 变小. D. 变大. 7. 设321,,X X X 4X 来自总体),(2 σμN 的样本,则μ的最有效估计量是 ( ) A . )(31 321X X X ++ B . )(4 1 4321X X X X +++ C . )(2143X X + D .)(5 1 4321X X X X +++

《概率论与随机过程》第1章习题答案

《概率论与随机过程》第一章习题答案 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 解: ? ??????=n n n n S 100 , ,1,0 ,其中n 为小班人数。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 解:{}18,,4,3 =S 。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 解: {}10,,4,3 =S 。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 解: { } ,11,10=S 。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。 (6) 甲乙二人下棋一局,观察棋赛的结果。 解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 解: {}Ca Bb Ac Cc Ba Ab Cb Bc Aa Cb Ba Ac Ca Bc Ab Cc Bb Aa S ,,;,,;,,;,,;,,;,,=其中,Aa 表示球a 放 在盒子A 中,余者类推。 (10) 测量一汽车通过给定点的速度。 解:{}0>=v v S (11) 将一尺之棰折成三段,观察各段的长度。 解: (){}1,0,0,0,,=++>>>=z y x z y x z y x S 其中,z y x ,,分别表示第一段,第二段,第三段的 长度。# 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 解:C A (2) A 与B 都发生,而C 不发生。 解: C AB (3) A ,B ,C 都发生。 解: ABC (4) A ,B ,C 中至少有一个发生。 解: C B A ?? (5) A ,B ,C 都不发生。 解: C B A (6) A ,B ,C 中至多于一个发生。 解: A C C A ?? (7) A ,B ,C 中至多于二个发生。 解: C B A ?? (8) A ,B ,C 中至少有二个发生。 解: CA BC AB ??. # 3. 设{ }10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 解: {}5=B A ; (2)B A ?。 解: { }10,9,8,7,6,5,4,3,1=?B A ; (3)B A 。 解:{}5,4,3,2=B A ;

工程数学 应用概率统计习题九答案

习题9答案 9.1 假定某厂生产一种钢索,其断裂强度5(10)X Pa 服从正态分布2(,40),N μ从中抽取容量为9的样本,测得断裂强度值为 793, 782, 795, 802, 797, 775, 768, 798, 809 据此样本值能否认为这批钢索的平均断裂强度为580010Pa ??(0.05α=) 解:00:800H μμ== 10:H μμ≠ 选取检验统计量~(0,1)Z N =, 对于0.05α=,得0H 的拒绝域2 1.96W z z α? ?=>=???? 计算得7918000.675 1.96403 z -==< 所以接受0H ,拒绝1H .即可以认为平均断裂强度为580010Pa ?. 9.3 某地区从1975年新生的女孩中随机抽取20个,测量体重,算得这20个女孩的平均体重为3160g ,样本标准差为300g ,而根据1975年以前的统计资料知,新生女孩的平均体重为3140g ,问1975年的新生女孩与以前的新生女孩比较,平均体重有无显著性的差异?假定新生女孩体重服从正态分布,给出0.05α=. 解:00:3140H μμ== 10:H μμ≠ 选取检验统计量~(1)T t n =-, 对于0.05α=,得0H 的拒绝域2 (19) 2.0930W T t α? ?=>=???? 计算得 0.298 2.0930T ===<

故接受0H ,拒绝1H .即体重无明显差异. 9.5 现要求一种元件的使用寿命不得低于1000h ,今从一批这种元件中随机的抽取25件,测定寿命,算得寿命的平均值为950h ,已知该种元件的寿命2~(,),X N μσ已知100σ=,试在检验水平0.05α=的条件下,确定这批元件是否合格? 解:00:1000H μμ≥= 10:H μμ< 选取检验统计量~(0,1)Z N =, 对于0.05α=,得0H 的拒绝域{}1.645W Z z α=<-=- 计算得 9501000 2.5 1.6451005 Z -==-<- 所以拒绝0H ,接受1H . 即认为这批元件不合格. 9.8 某厂生产的铜丝,要求其拉断力的方差不超过216()kg ,今从某日生产的铜丝中随机的抽取9根,测得其拉断力为(单位:kg ) 289 , 286 , 285 , 284 , 286 , 285 , 286 , 298 , 292 设拉断力总体服从正态分布,问该日生产的铜丝的拉断力的方差是否合乎标准?(0.05α=). 解: 2200:16H σσ≤= 2210:H σσ> 选取检验统计量2 2220(1)~(1)n S n χχσ-=- 对于0.05α=,得0H 的拒绝域{} 22(8)15.507W αχχ=>= 计算得 2 220(1)820.3610.1815.50716 n S χσ-?==≈< 所以接受0H , 拒绝1H ,即认为是合乎标准的。

《概率与统计》教学案例

“统计与概率”教学案例 南昌市洪都小学谭琴 教材内容:人教版义务教育课程标准实验教科书数学三年级下册第38页内容及练习十第1题。 教材分析 统计最基础的知识是比较、排列和分类。对现实生活中一类物体根据其不同的标准进行比较,从中分辨出异同,并按一定的顺序进行排列,这些都是统计的萌芽思想,而分类则是在比较、排列的基础上,进一步划分不同标准的结果。 本课在学生认识了一格代表2个单位、5个单位的纵向条形统计图的基础上,通过两个例题继续介绍一些常见的条形统计图:一种是横向条形统计图,另一种是起始格与其他格表示不同单位量的条形统计图。让学生根据统计图表进行初步的数据分析,通过分析寻找信息,并根据这些信息作出进一步的判断和决策。学生通过这一阶段的学习,对条形统计图的结构、数据的表示方式,以及条形统计图的作用,都有了一个基本的了解,为下一阶段学习折线统计图打下坚实的基础。练习十中的习题除了让学生根据统计图进行简单的数据分析以外,还注意加强对学生进行提出问题、解决问题能力的培养,让学生根据统计图寻找信息,提出问题并加以解决的要求。 设计思路 1. 数学生活化,让学生学习现实的数学。围绕新课标的这一具体要求,力图让学生在熟悉、亲切的生活背景素材中提出数学问题,让学生感到生活中处处有统计,处处有数学。 2.数学活动化,让学生学习动态的数学。为了让学生真正投入到统计的过程中,为此创设了画一画、议一议的活动氛围,从活动中初步感受数据收集、整理、分析的全过程,从而形成统计观念。 3.数学问题化,让学生学习思考的数学。注意在课中引导学生用精确的数学语言描述数据,根据数据提出问题并解决问题,充分拓展思维,深化对统计意义的理解。 学情分析 在前几册的教材中,学生已经学会了收集和整理数据的方法,会用统计表(包括单式统计表和复式统计表)和条形统计图(一格表示一个或多个单位)来表示统计的结果,并能根据统计图表提出问题加以解决。学生已经掌握基本的统计方法,建立了初步的统计观念。这是本节课的基础和起点。这节课进一步学习统计知识,通过有限样本的数据分析来推断总体样本的大致情况,有些学生在课前已经试着进行了分析,有一定基础,但有一些学生动手能力较弱,推理能力不强,对学生这部分内容会产生一定的困难。主要的难点是在“分析数据”和“合理推断上。 教学目标 1、引导学生自主探索、合作交流,学会看横向条形统计图和起始格与其他格代表的单位量不一致的条形统计图,并能根据统计表中的数据完成统计图。 2、初步学会简单的数据分析,进一步感受到统计对于决策的作用,体会统计在现实生活中的作用,理解数学与生活的紧密联系。 3、加强学生提出问题、解决问题能力的培养。

相关文档
相关文档 最新文档