文档库 最新最全的文档下载
当前位置:文档库 › 基于BQ76PL536的锂电池管理系统

基于BQ76PL536的锂电池管理系统

基于BQ76PL536的锂电池管理系统
基于BQ76PL536的锂电池管理系统

基于BQ76PL536的锂电池管理系统

去年电动汽车项目在国资委吵得火热,我们便计划开发一款关于电动汽车用的BMS。经过多方考察,我们做了如下的方案。

二、BMS方案

结合国内锂电池现状以及一些国内主流的BMS做法,BMS采用外部主动均衡技术来实现。BMS主要有三个部分组成:

1、模拟前端(AFE)部分

模拟前端主要实现电池组的串联,单组电池电压的采集,单组电池温度采集,单组电池过压欠压报警,主回路电流监控(包括放电和充电)。

2、主动均衡部分

主动均衡部分主要通过超级电容对过压的单组电池进行电量泄放,对欠压的单组电池进行电量补充。防止过充和过放对锂电池本身造成伤害,也避免了因发热造成的火花、燃烧甚至爆炸。

3、主控部分

主控制器负责信号的收集与整理、均衡策略调整以、控制各个均衡电路工作、以及与充电机和汽车管理系统进行通信。

BMS系统框图如图2。

三、BMS具体实施

1、模拟前端(AFE)部分

AFE部分主要芯片使用TI的BQ76PL536A,主要负责单组电池电压的采集,单组电池温度采集,单组电池过压欠压报警。BQ76PL536A 可以最多实现32组串联完全满足电动汽车需求。

BQ76PL536A利用差分输入方式,实现对单组电池进行电压采样并通过SPI总线将各个电池组的电压信息以及报警信息传送到主控单元,完成AFE的工作。其具体电路如图3所示。

AFE另一部分用来实现主回路的电流采样,通过监测主回路的电流对电池组、充电机、汽车动力驱动电路进行保护。当电流大小超过设定值主控单元通过CAN总线通知充电机和汽车管理系统进而可以切断电源对汽车电源系统起到保护作用。

采样电阻使用锰铜丝绕制,信号经过精密仪表用放大器(AD8230)隔离放大再到AD采集器(AD7170),AD采集器通过SPI总线将电流信息传输给主控单元。或者用隔离放大器直接将信号传输到主控芯片,利用主控芯片集成的AD进行测量。隔离放大器价格偏高,基本在20美金以上,所以暂不考虑。

其具体实施电路如图4所示。

D1-D4,R2和R4为均衡电路提供保护。C2、C3为普通滤波电容,分别连接在AFE的差分信号输入端Cn、Cn-1之间以及Cn-1、Cn-2之间。C2、R1和C3、R3对差分信号起抗混叠作用,增加测量精度。

1、主控单元和均衡算法的实现

主控单元主要实现信号的采集整理和对均衡电路控制,以及通信功能,均衡的算法通过主机控制器来完成。目前主控制器准备使用DSP来完成,为了保证均衡电路的级联串行通信SPI接口需要扩展。

均衡算法通过主控制器完成,根据不同的充、放电状态,根据从AFE得到的电池信息,比较电池电压,决定实现上行均衡、下行均衡及最大差值单体均衡等多种灵活的控制策略。

上行均衡方法是从最高单元电压电池开始,始终以最高电压单元电池与邻近电池进行均衡,常用于充电均衡;下行均衡是始终以最低电压电池单元与邻近的电池单元之间进行均衡,常用于放电均衡;最大差值均衡是始终搜索、比较电池组中相邻的电池单元压差最大的两

组进行均衡,常用于放电或者空闲状态下的均衡;在不采用上述算法的情况下,可采取全局同步脉冲均衡法,即不比较个电池单元电压,主控制器通过控制所有的MOSFET输出同步的脉冲序列,在一系列循环后使电池组实现均衡。

突出创新点:本设计增加了对任意单体电池的温度监控功能,每一个电池单元组使用一片MAX6581

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

锂电池管理系统(BMS)项目商业计划书(模板)

某锂电池管理系统(BMS)项目 商业计划书 项目名称:某锂电池管理系统(BMS)项目商业计划书

【引言】 《某锂电池管理系统(BMS)项目商业计划书》充分地展示了公司的基本情况、产品与技术、行业及市场分析、竞争对手分析、商业模式、运营策略、公司战略、公司管理、融资计划、财务预测与分析、风险分析及控制等内容。该商业计划书无论是用于寻找战略合作伙伴、寻求风险投资资金或其他任何投资信贷来源均能够做到内容完整、意愿真诚、基于事实、结构清晰、通俗易懂。该商业计划书准确把握行业市场现状和发展趋势、项目商业模式、项目运营策略、公司战略规划、财务预测等基本内容,深度分析了项目的竞争优势、盈利能力、生存能力、发展潜力等,充分体现项目的投资价值。 【项目简介】 某锂电池管理系统(BMS)项目,项目提供动力锂电池系统全面管理解决方案,目前已形成新能源汽车动力电池管理系统和传统燃油汽车启停电源管理系统两大系列产品。拥有绝缘检测技术、继电器控制及诊断技术、均衡技术、SOC算法技术、SOP算法技术、其他算法技术等核心技术,本项目本轮融资1000万元,项目预计于2015年6月开始实施。

【市场行业分析】 根据中国汽车工业协会、工信部机动车整车出厂合格证统计数据分析,新能源汽车的产销量从2014年开始便体现出快速增长的势头。据中国汽车工业协会统计,2014年我国新能源汽车产销量分别为7.85万辆和7.48万辆,分别同比增长3.5倍和3.2倍;2015年6月,我国新能源汽车生产2.50万辆,同比增长3倍。其中,纯电动乘用车生产1.05万辆,同比增长2倍,插电式混合动力乘用车生产6663辆,同比增长7倍;纯电动商用车生产6218辆,同比增长5倍,插电式混合动力商用车生产1645辆,同比增长148%。 2012年全球电池管理系统(BMS)市场产值成长逾10%,2013年至2015年成长幅度将大幅跃升至25-35%。现阶段不论是整车厂、电池厂、还是相关车电零组件厂均投入电池管理系统(BMS)研发,以求掌握新能源汽车产业的关键技术,由于车厂是电池管理系统的使用

电动汽车电池组热管理系统的关键技术

第22卷 第3期 2005年3月 公 路 交 通 科 技 Journal of Highway and T ransportation Research and Development V ol 122 N o 13 Mar 12005 文章编号:1002Ο0268(2005)03Ο0119Ο05 收稿日期:2004Ο03Ο16 基金项目:国家高技术研究发展计划(863计划)重大专题项目(2003AA501100) 作者简介:付正阳(1978-),男,北京人,清华大学汽车工程系硕士研究生,主要从事电动汽车方面的研究1 电动汽车电池组热管理系统的关键技术 付正阳,林成涛,陈全世 (清华大学 汽车安全与节能国家重点实验室,北京 100084) 摘要:电池组热管理系统的研究与开发对于电动汽车的安全可靠运行有着非常重要的意义。本文分析了温度对电池组性能和寿命的影响,概括了电池组热管理系统的功能,介绍了电池组热管理系统设计的一般流程,并对设计热管理系统提出了建议。文章重点分析了设计电池组热管理系统过程中的关键技术,包括电池最优工作温度范围的确定、电池生热机理研究、热物性参数的获取、电池组热场计算、传热介质的选择、散热结构的设计等。关键词:电动汽车;电池组;热管理系统 中图分类号:T M911141 文献标识码:A K ey Technologie s of Thermal Management System for EV Battery Packs FU Zheng Οyang ,LIN Cheng Οtao ,CHEN Quan Οshi (S tate K ey Laboratory of Autom otive Safety and Energy ,Tsinghua University ,Beijing 100084,China ) Abstract :Research and development of battery thermal management system (BT MS )is very im portant for the operation safety and relia 2bility of electric vehicle (E V )1In this paper ,by analyzing the in fluence of tem perature on the per formance and service life of batteries ,the desired function of a BT MS was outlined ,a procedure for designing BT MS was introduced 1Several key technologies during designing a BT MS were introduced and analyzed ,including optimum operating tem perature range of a battery ,heat generation mechanism ,ac 2quisition of the therm odynamic parameters ,calculation of tem perature distribution ,selection of heat trans fer medium ,design of cooling structure and s o on 1 K ey words :E lectric vehicle ;Battery pack ;Thermal management system 0 引言 能源与环境的压力使传统内燃机汽车的发展面临前所未有的挑战,各国政府、汽车公司、科研机构纷纷投入人力物力开发内燃机汽车的替代能源和动力,这大大促进了电动汽车的发展。 电池作为电动汽车中的主要储能元件,是电动汽车的关键部件[1,2],直接影响到电动汽车的性能。电池组热管理系统的研究与开发对于现代电动汽车是必需的,原因在于:(1)电动汽车电池组会长时间工作 在比较恶劣的热环境中,这将缩短电池使用寿命、降 低电池性能;(2)电池箱内温度场的长久不均匀分布将造成各电池模块、单体性能的不均衡;(3)电池组的热监控和热管理对整车运行安全意义重大。 清华大学从承担国家“八五”电动汽车攻关项目以来,在电动汽车、混合动力汽车和燃料电池汽车关键技术的研究中,积极开展了电池组热管理系统的研究,并在样车上进行了道路试验,目前电池组热管理系统的优化设计与改进工作正在进行中。本文是对前阶段研究工作的总结和今后工作的展望。

我们对动力锂电池组的管理系统

第12届中国北京国际科技产业博览会节能、环保、新能源汽车技术及配套产品推介会报告稿 我们对动力锂电池组的管理系统(BMS) 的认识与看法 公司:深圳市安泰佳科技有限公司 作者:李金印 日期:2009年5月20日

我们对动力锂电池组的管理系统(BMS)认识与看法 (“科博会”报告稿) 一、概述 众所周知,锂电池作动力使用需十几节至几百节的大容量电池串联,其中一节电池若有问题,因安全原因整组电池则不能继续工作,故没有一个功能很强的管理系统是无法推广使用的。但因种种原因,目前国内外市场上尚未见到能达到使用要求满意的产品,故影响锂电池作为动力能源的推广应用。 2006年春我们与国外某知名厂家作该产品的实际演示测试对比,结果该公司的产品远无法达到原订的使用指标要求,在事后交谈中他们也坦诚其无耐。 锂电池虽在特殊条件下有燃烧、爆炸不安全特性存在,但循环使用寿命应是为优的,可是目前国内影响其使用推广的关键问题是使用寿命太短,有的说“低于普通铅酸电池”。如果真是这样,锂电池即危险又短命且价格贵,那还有什么推广价值。我们认为此状况绝非仅是锂电池质量原因,而管理系统功能不完善、不准确及充电技术和充电设备不适应、不配套是关键因素,这也说明管理系统的重要性。我们认为蓄电池中锂电池在目前是最有推广应用价值的,所以,自1999年至今我们投入了大量资金与人力,专门对动力锂电池的管理系统进行研究开发,先后用国内七家多批次电池做了大量的实验。现将我们对管理系统BMS的认识作为意见提供讨论与参考。 二、管理系统BMS应能对每节电池的特征参数进行测算 这项工作确实是困难和复杂的,但应该去做,不了解怎能“管理”。所以,国外对蓄电池机理研究的人至今还很多,他们也给出了一些非常复杂而又不完全相同的数学模型,但采用“类比原理”都可简化成大家熟知的相同“等效”电路

智能型锂电池管理系统(BMS)

智能型锂电池管理系统(BMS) 产品简介 【系统功能与技术参数】 晖谱智能型电池管理系统(BMS),用于检测所有电池的电压、电池的环境温度、电池组总电流、电池的无损均衡控制、充电机的管理及各种告警信息的输出。特性功能如下: 1.自主研发的电池主动无损均衡专利技术 电池主动无损均衡模块与每个单体电芯之间均有连线,任何工作或静止状态均在对电池组进行主动均衡。均衡方式是通过一个均衡电源对单只电芯进行补充电,当某串联电池组中某一只单体电芯出现不平衡时对其进行单独充电,充电电流可达到5A,使其电压保持和其它电芯一致,从而弥补了电芯的不一致性缺陷,延长了电池组的使用时间和电芯的使用寿命,使电池组的能源利用率达到最优化。 2.模块化设计 整个系统采用了完全的模块化设计,每个模块管理16只电池和1路温度,且与主控制器间通过RS485进行连接。每个模块管理的电池数量可以从1~N(N≤16)只灵活设置,接线方式采用N+1根;温度可根据需要设置成有或无。 3.触摸屏显示终端 中央主控制器与显示终端模块共同构成了控制与人机交互系统。显示终端使了带触摸按键的超大真彩色LCD屏,包括中文和英文两种操作菜单。实时显示和查看电池总电压、电池总电流、储备能量、单体电池最高电压、单体电池最低电压、电池组最高温度,电池工作的环境温度,均衡状态等。 4.报警功能 具有单只电芯低电压和总电池组低电压报警延时功能,客户可以根据自己的需求,在显示界面中选择0S~20S间的任意时间报警或亮灯。 5.完善的告警处理机制 在任何界面下告警信息都能以弹出式进行滚动显示。同时,还可以进入告警信息查询界面进行详细查询处理。 6.管理系统的设置 电池电压上限、下限报警设置,温度上限报警设置,电流上限报警设置,电压互差最大上限报警设置,SOC初始值设置,额定容量,电池自放电系数、充电机控制等。 7.超大的历史数据信息保存空间 自动按时间保存系统中出现的各类告警信息,包括电池的均衡记录。 8.外接信息输出 系统对外提供工业的CANBUS和RS485接口,同时向外提供各类告警信息的开关信号输出。 9.软件应用 根据需要整个系统可以提供PC管理软件,可以将管理系统的各类数据信息上载到电脑,进行报表的生成、图表的打印等。 10.参数标准 电压检测精度:0.5% 电流检测精度:1% 能量估算精度:5%

国内外汽车动力电池管理系统(BMS)发展概况

引言 电池的性能和使用寿命直接决定了电动汽车的性能和成本,因此,如何提高电池的性能和寿命得到了各方面的重视。电动汽车上使用的动力电池是由多个电池单体通过串并联方式组成电池组,电池单体都紧密地布置在一起,在进行充放电时,各个电池单体所产生的热量互相影响,如果散热不均匀,将造成电池组局部温度快速上升,使电池的一致性恶化,使用寿命大大缩短,严重时会造成某些电池单体热失控,产生比较严重的事故。当动力电池处于低温环境中,电池的充放电性能会大大降低,导致电池无常工作。为了使动力电池组保持在合理的温度围工作,电池组必须拥有科学和高效的热管理系统。目前,国外的许多研究人员对电池组的热管理系统做了大量的研究,进行了一些新的探索,以期提高热管理系统的控制效果,从而提高电动汽车电池组的性能和使用寿命。 国外汽车动力电池管理系统(BMS)发展概况 目前,影响电动汽车推广应用的主要因素包括动力电池的安全性和使用成本问题,延长电池的使用寿命是降低使用成本的有效途径之一为确保电池性能良好,延长电池使用寿命,必须对电池进行合理有效的管理和控制,为此,国外均投入大量的人力物力开展广泛深入的研究。 日本青森工业研究中心从1997年开始至今,持续进行(BMS)实际应用的研究,丰田、本田以及通用汽车公司等都把BMS纳入技术开发的重点;美国Villanova大学和USNanocorp公司已经合作多年对各种类型的电池SOC进行基于模糊逻辑的预测;国Ajou大学和先进工程研究院开发的BMS系统的组成结构及其相互逻辑关系。该系统在上述结构中进行功能扩展,即增设热管理系统、安全装置、充电系统以及与PC机的通信联系。另外还增加与电动机控制器的通信联系,实现能量制动反馈和最大功率控制。 我国在十二五期间设立电动汽车重大专门研究项目,经过几年的发展之后,在BMS方面取得很大的突破,与国外水平也较为接近。在国家863计划2005年第一批立项研究课题中,就分别有理工大学承担的EQ7200HEV混合动力轿车用镍氢

动力电池热管理系统性能试验方法

动力电池热管理系统性能试验方法 1 范围 本标准规定了动力电池热管理系统性能的试验方法。 本标准适用于乘用车用动力电池热管理系统,商用车用动力电池热管理系统可以参考。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2900.41-2008 电工术语原电池和蓄电池 GB/T 19596-2017 电动汽车术语(ISO 8713:2002,NEQ) GB/T 31467.2电动汽车用锂离子动力蓄电池包和系统第2部分:高能量应用测试规程QC/T 468-2010 汽车散热器 GB/T 18386-2017 电动汽车能量消耗率和续驶里程试验方法 GB 18352.6-2016 轻型汽车污染物排放限制及测量方法(中国第六阶段) 3 术语和定义 GB/T 2900.41-2008、GB/T 19596-2017中界定的以及下列术语和定义适用于本文件。 3.1 动力电池热管理系统 battery thermal management system 综合运用各种技术手段,具备动力电池冷却、加热、保温和均温等功能,保证动力电池在不同环境下正常工作的系统。同时,该系统可以在动力电池发生热失控时提供报警信号,具备安全防护功能。通常,动力电池热管理系统包括主动式热管理系统和被动式热管理系统两种。 3.2 被动式热管理系统 passive thermal management systems 基于热传导、热辐射、热对流等热量传输原理,只依靠冷却或加热流体因为温度因素缓慢流动自然完成热量输入输出交换的热管理系统。该类系统通常适用于单体产热量小于 5W的电池。 3.3 主动式热管理系统 active thermal management systems 基于热传导、热辐射、热对流等热量传输原理,使用耗能部件消耗能量完成热量输入输出交换的系统。主动式热管理系统包括主动空气冷却加热系统和主动液体冷却加热系统两种,根据需要采用流体串行流动和并行流动两种方式实现热交换。 3.4 主动式空气冷却加热系统 Active Air Cooling and Heating Systems 又称风冷系统,利用空气作为热量交换载体控制分配动力电池系统内部温度的系统。该系统通常使用风扇和管道完成空气在电池系统内的流动,分为直接接触式和间接接触式两种。空气可以从电池系统外部进入并排出电池系统外,也可以在电池系统内部循环实现电池冷却或加热功能;若空气仅在电池内部循环,则电池系统内部通常需要有空气冷却装置(通常为空调蒸发器)、空气加热装置和空气循环风扇。该类系统通常适用于单体产热量

电池热管理系统

电池热管理 电池热管理概述 电池热管理系统 (Battery Thermal Management System, BTMS)是电池管理系统(Battery Management System, BMS)的主要功能(电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等)之一,通过导热介质、测控单元以及温控设备构成闭环调节系统,使动力电池工作在合适的温度范围之内,以维持其最佳的使用状态,用以保证电池系统的性能和寿命。 电池热管理重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。 1)电池能量与功率性能:温度较低时,电池的可用容量将迅速发生衰减,在过低温度 下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部短路。 2)电池的安全性:生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部 过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件。 3)电池使用寿命:电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起 电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命。 电池热管理系统是应对电池的热相关问题,主要功能包括: 1)散热:在电池温度较高时进行有效散热,防止产生热失控事故; 2)预热:在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性 能和安全性;

3)温度均衡:减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电 池过快衰减,以提高电池组整体寿命。 电池热管理方案 电池热管理方案主要分为风冷与液冷两大类,主要侧重于防止电池过热方面: 1.风冷 该技术利用自然风或风机,在电池包一端加装散热风扇,另一端留出通风孔,使空气在电芯的缝隙间加速流动,带走电芯工作时产生的高热量。风冷方案设计主要考虑电池系统结构的设计,风道,风扇的位置及功率的选择,风扇的控制策略等。风冷是以低温空气为介质,利用热的对流,降低电池温度的一种散热方式,分为自然冷却和强制冷却(利用风机等)。 整车中的电池风冷流道

锂电池管理系统功能介绍

1.ABMS-EV系列电池管理系统 概述: ABMS-EV系列锂电池管理系统应用于纯电动大巴、混合动力大巴、纯电动汽车、混合动力汽车。采用层级设计,严格执行汽车相关标准,硬件平台全部采用汽车等级零部件,软件符合汽车编程规范。 2、ABMS-EV01电池管理系统: 2.1)概述: ABMS-EV01系列锂电池管理系统主要用于低速电动车,物流车,环卫车等,采用一体化设计,集电池电压温度检测,SOC估算,绝缘检测,均衡管理,保护,整车通信,充电机通信,及交流充电桩接口检测为一体,结构紧凑,功能完善。 2.2) 选型号说明: 2.3)技术参数: 2.4)产品外观:

3、ABMS-EV02电池管理系统: 3.1)概述: ABMS-EV02系列锂电池管理系统主要用于电动叉车,电动搬运车等快速充放电场合,采用一体化设计,集电池电压温度检测与保护,SOC估算,均衡管理,通信等功能。 3.2) 选型号说明: 3.3)技术参数:

3.4)产品外观:

4、ABMS-EV03电池管理系统: 4.1)概述: ABMS-EV03系列锂电池管理系统主要用于电动叉车,电动搬运车等需要快速充放电场合,采用一体化设计,集电池电压温度检测,SOC估算,均衡管理,保护,通信,LED电量指示,制热,制冷管理,双电源回路设计,充电机,车载电源独立供电。 4.2) 选型号说明:

4.3)技术参数: 4.4)产品外观: 5、ABMS-EK01电池管理系统:

5.1)概述: ABMS-EK01系列锂电池管理系统主要用于电动自行车,电动摩托车等,采用软硬件多重冗余保护等,充电MOS控制,放电继电器控制,实现慢充快放,一体化设计,集电池检测,SOC估算,保护,通信为一体。 5.2)选型说明: 5.3)技术参数:

动力电池能量管理系统

动力电池能量管理系统 检测时间:2016-05-23 09:39:53 摘要 近年来,由于日益严重的环境污染问题和日益增长的石油和能源消耗,新能源汽车的发展,越来越多的政府和世界主要汽车制造商的关注。三个电动汽车的发展。 本文介绍了电动汽车电池管理系统的主要功能和开发国内外介绍问题的根源,介绍了铅酸蓄电池工作原理和关键的操作特性,描述铅酸电池剩余量预测几个模型的设计和项目的特点,基于大量的电池充电和放电的实验数据,提出了这种设计方法来估计剩下的电池供电。 上述功能需求,设计提出使用主芯片单片机,分散的集合和集中控制的解决方案结合硬件、单片机的选择,电池参数收集,平衡和保护电路、功率转换电路和外部通信和其他主要模块硬件设计详细描述和基于C51单片机凯尔软件开发和设计环境软件解决方案设计的电池管理系统3主要流程:充电、放电和静态软件设计。最后,整个硬件和软件系统充电和放电的疲劳试验通过收集大量的实验数据,验证了硬件和软件设计的可行性和稳定性 关键词电动汽车; 电池管理系统;电池SOC估算;单片机;充电均衡控制

ABSTRACT In recent years, due to the increasingly serious problem of environmental pollution and the increasing consumption of oil and energy, new energy vehicles

Development, more and more governments and the world's major carmakers attention. Develop three electric vehicles The key technology is the motor drive system consists of three parts, the vehicle control system and power management systems, steam current Automotive battery life is short-range, low battery life, high maintenance costs and popular, therefore, Power management technology for energy management and vehicle power battery protection control is becoming increasingly important. This article describes the electric vehicle battery management system The main function of the system and the development of domestic and foreign presentation Root of the problem, and introduces the principle of lead-acid batteries and key operating characteristics described Lead-acid battery remaining amount prediction model design and features of several projects, based on a lot of battery Charging and discharging of the experimental data, this design method is proposed to estimate the remaining battery power. The above functional requirements, the design proposed to use the main chip microcontroller, decentralized collection And centralized control solutions combine hardware, MCU selection,

动力锂电池综合管理系统―机械科学研究总院.

国际石油价格一直在高位运行, (2008年5月16日每桶超过127美元; 美国高盛预计下半年油价将突破140美元)生态环境的日益恶化,推动了包括电动汽车在内的节能与新能源汽车的发展。 发展电动汽车的首要技术关键,仍是高性能新型动力电池系统。

新型动力锂电池的优良性能已经初步展现,并得到电动汽车产业界的高度关注。 在国家重点支持和市场双重推动下,动力锂电池关键技术和产业发展都取得了重大进展。 单体动力锂电池的性能,已经基本能够满足设计要求。 新型动力锂电池的 高功率密度、高能量密度,和长使用寿命等显著优势, 给纯电动汽车、Plug-IN HEV、发展注入了新的活力。 当前,动力锂电池成组应用技术和设备研究严重滞后的问题已经突显出来。 动力锂电池管理系统研究已经引起广泛关注。 清楚认识当前研究工作存在的主要问题、对正确把握研究方向,制定科学的研究目标致关重要。 当前,用户对新型动力锂电池

安全性、经济性、均衡性 的忧虑,是动力锂电池和电动汽车产业的发展急需解决的首要技术关键。 由此,提出了动力电池管理系统关键技术研究课题。 主要问题 对动力锂电池的安全性、经济性和均衡性的认识,是正确制定研究方向和目标的基础。 下面就普遍关注的动力锂电池系统的安全性、经济性、均衡性问题发表一点看法,供参考; 并简要介绍当前动力锂电池综合管理系统研究的最新进展。 要 点 一、动力锂电池组的安全性、经济性、和均衡性问题; 二、电动汽车动力锂电池综合管理系统研究的最新进展。

单体动力锂电池的 安全性和主要技术指标 已经基本能够满足设计要求。 动力锂电池成组后 安全性和使用寿命大幅下降主要是问题所致。 安全性问题 试验证明,当充电电压超过6V , 电池外壳已发生破裂。 400AH 锂电池组实际状态(均衡性良好)51%的电池单体有过充电的危险

动力锂离子电池智能管理系统数据采集单元设计_张华锋

Vol.33 No.4 2013.4 船电技术|应用研究 37 动力锂离子电池智能管理系统 数据采集单元设计 张华锋1,廖菲2,管道安1,彭元亭1 (1. 武汉船用电力推进装置研究所,武汉 430064 ;2. 武汉电信网络监控部, 武汉 430030) 摘 要:分析了锂电池各运行参数的特点,设计了一种用于锂电池智能管理系统的数据采集方法,通过改进的测量方法实时测量锂电池组的单体电池电压、温度及充放电电流,并通过CAN 总线传至上层节点,为锂电池的智能管理提供现场数据。着重介绍了该数采单元的设计原理以及软硬件设计。 关键词:锂离子电池 数据采集 CAN 总线 智能管理系统 中图分类号:TP302.1 文献标识码:A 文章编号:1003-4862(2013)04-0037-03 The Design of Data Acquisition System for SMBS Based on CAN Bus Zhang Huafeng 1 , Liao Fei 2 , Guan Dao’an 1,Peng Yuanting 1 (1.Wuhan Institute of Marine Electric Propulsion, CSIC , Wuhan 430064 , China; 2. Chinatelecom Wuhan Branch, Wuhan 430030, China ) Abstract: This paper analyzes the characteristics of working parameters for lithium ion batteries, and designs a kind of data acquisition method for SMBS. It provides field data acquisition for the intelligent management system of lithium ion batteries by measuring the voltage and temperature of single cell, charge current and discharge current in real time, and transmits data upward with CAN bus. It introduces the principles, hardware and software design of data acquisition in detail . Keywords: lithium ion battery; data acquisition; CAN Bus; intelligent management system 1 引言 锂离子电池由于具有电压高、能量密度高、无 “记忆效应”、放电曲线平缓,绿色环保等优点逐步 在动力电池方面获得应用。锂电池过充、过放电、短路、温度、单体电压不一致性等都会对使用效率、使用寿命及使用安全产生影响。因此,获得锂电池的运行参数从而对其进行实时监控是非常必要的。 在研制的锂电池智能管理系统中,通过实时测量锂电池组的单体电池电压、单体电池温度、及充放电电流,实现对锂电池组运行参数的实时监测,并通过总线将数据传至上层节点进行分析处理,据此对锂电池系统进行相关控制,实现锂电池系统的高效,高寿命运行。本文重点对锂电池智能管理系 收稿日期:2012-08-24 作者简介:张华锋(1979-),男,工程师。研究方向:化学电源测控技术及船舶电力推进系统监控技术。 统的数据采集方法进行研究,通过CAN(Controller Area Network)总线为锂电池智能管理系统实时提供电池各运行参数。 2 电池运行参数测量 2.1 单体电池电压测量 单节锂电池电压较低,很多场合需要串联使用,而电池组的性能取决于最差的那节电池。因此 测量串联电池组单节电池的电压成为必要而又关键的技术。 共模测量[1]和差模测量是测量串联电池组各节电池电压的两种方法。当串联电池数较多而且对测量精度要求较高时,只能采用差模测量。由于两个测量端存在较高的共模电压,所以不能采用模拟开 关选通,也不能直接测量。工业上广泛采用机械继 电器实现多路电压选通,通过隔离放大器隔离共模电压;这种方法在使用寿命,精度,抗干扰等方面

动力锂离子电池管理系统设计方案

动力锂离子电池管理系统设计方案 摘要:本文讨论了动力锂电池管理系统的设计方案,以实现对锂电池动力电池组的过充电保护、过放电保护、过流保护和均衡充电等功能。 关键词:锂离子动力电池组;管理系统;过流;过放电;过充电;均衡控制 引言 锂离子电池的广泛应用已有十多年,但早期主要用于手机、笔记本电脑、摄像机、DVD 等一系列小型移动式电子产品,这些场合往往都单串使用,负载电流较低,安全系数高。最近两年来,锂离子电池以其轻便、高能量密度、无污染等特点,已经开始在电动自行车、电动工具和动力玩具领域上得到快速应用,并逐步应用于混合动力车和电动车辆领域。但动力锂离子电池的安全性仍是人们目前最为关注的问题,所以对其的保护就非常重要。除了确保锂离子电池自身安全性的持续改进,必须同时研究电池的管理系统,使电池及其应用能均衡发展。锂离子电池的保护主要包括过充电保护、过放电保护、过电流及短路保护等。 1保护电路的功能 1.1过充电保护 对锂离子电池来说,其充电后单节电芯最高电压不得超过规定值,否则电池内的电解质会被分解,使得温度上升并产生气体,降低电芯的使用寿命,严重时甚至会引起爆炸,所以保护电路一定要保证绝对不可过度充电,必须对电池组中每一节电池的端电压进行监控,当电芯的电压超过设定值时,即激活过充电保护功能,由保护电路切断充电回路,中止充电。在电芯电压回归到允许的电压并解除过充锁定模式时,才能停止保护。不同材料的锂离子电池其保护电压和释放电压都有其不同的规定值。 另外,还必须注意因噪声所产生误动作,为了防止误判和误操作,还要设置过充保护延时,并且延迟时间不能短于噪声的持续时间。当电压持续超过过充检测电压一定时间以上才会触发过充保护。 1.2过放电保护 锂离子电池的过度放电,也会缩短其使用寿命,而且对电池造成的损害往往是不可逆的。为了防止锂离子电池的过放电状态,当锂离子电池电压低于其过放电电压检测点时,即激活过放电保护,中止放电,并将电池保持在低静态电流的待机模式,参数设置类似过充保护。 1.3过电流/短路保护 锂离子电池的最大放电电流有一定限制,过大的放电电流同样会引起锂电池的不可恢复的损坏,影响其使用寿命。 短路保护这个功能其实是过流保护的扩展,若由于外部短路等原因引起的大电流放电时要立刻停止放电,否则对锂电池本身和外部设备都可能会造成严重的损害。 过流保护的延时时间一般至少要几百微秒至毫秒,而短路保护的延时时间是微秒级的,几乎是短路的瞬间就切断了回路,可以避免短路对电池带来的巨大损伤。 就电动工具而言,保护电流值和延时时间的设置还必须和电动工具本身的参数结合起来,否则会影响工具的输出扭矩和电机的寿命。 相关关键字:锂离子动力电池组均衡控制过流管理系统 1.4电池均衡 动力锂离子电池一般都要几串、几十串甚至几百串以上,由于电池在生产过程中,从涂膜开始到成为成品要经过很多道工序,即使经过严格的检测程序,使每组电源的电压、电阻、容量一致,但使用一段时间以后,电池内阻、电压、容量等参数产生波动,形成不一致的状态,就会产生这样或那样的差异。这种差异体现为电池组充满或放完时串联电池芯之间的电压不相同。这种情况下导致电池组充电的过程中,电压过高的电池芯提早触发电池组过充电

动力电池热管理系统组成及设计流程

动力电池热管理系统组成及设计流程 动力电池是电动汽车的能量来源,在充放电过程中电池本身会伴随产生一定热量,从而导致温度上升,而温度升高会影响电池的很多工作特性参数,如内阻、电压、SOC、可用容量、充放电效率和电池寿命。 电池热效应问题也会影响到整车的性能和循环寿命,因此,做好热管理对电池的性能、寿命至整车行驶里程都十分重要。接下来,就从电池热管理系统及设计流程、零部件类型及选型、热管理系统性能及验证等几个方面来和大家聊一聊: 动力电池热管理必要性 1、电池热量的产生 由于电池阻抗的存在,在电池充放电过程中,电流通过电池导致电池内部产生热量。另外,由于电池内部的电化学反应也会造成一定的生热量。 2、温度升高对电池寿命的影响 温度的升高对电池的日历寿命和循环寿命都有影响。 从上面两个图可以看出,温度对电池的日历寿命有很大的影响。同样的电芯,在环境温度23℃,6238天后电池的剩余容量为80%,但是电池在55℃的环境下,272天后电池的剩余容量已经达到80%。温度升高32℃,电芯的日历寿命下降了95%以上。因此,温度对日历寿命的影响极大,温度越高日历寿命衰退越严重。

从上面两个图可以看出,温度对电池的循环寿命也有很大的影响。同一款电芯,当剩余容量为90%,25℃温度下输出容量为300kWh,而35℃温度下的输出容量仅为163kWh。温度上升10℃,电芯的循环寿命下降了近50%。由此可见,温度对电池的循环寿命有很大的影响。 因此,为了电池包性能的最优化,需要设计热管理系统确保各电芯工作在一个合理的温度范围内。 02 热管理系统的分类及介绍 不同的热管理系统,零部件类型的结构不同、重量不同以及系统的成本不同和控制方式不同,使得系统所达到的性能也不相同。主要有如下五大类:

设计动力锂电池组的的智能管理系统

动力锂电池组智能管理系统设计 锂电池由于具有体积小、质量轻、电压高、功率大、自放电少以及使用寿命长等优点,逐渐成为动力电池的主流。但是由于锂离子电池具有明显的非线性、不一致性和时变特性,因此在应用时需要进行一定的管理。另外锂电池对充放电的要求很高,当出现过充电、过放电、放电电流过大或电路短路时,会使锂电池温度上升,严重破坏锂电池性能,导致电池寿命缩短。当锂电池串联使用于动力设备中时,由于各单节锂电池间内部特性的不一致,会导致各节锂电池充、放电的不一致。一节性能恶化时,整个电池组的行为特征都会受到此电池的限制,降低整体电池组性能。为使锂电池组能够最大程度地发挥其优越性能,延长使用寿命,必须要对锂电池在充、放电时进行实时监控,提供过压、过流、温度保护和电池间能量均衡。 本文设计的动力锂电池组管理系统安装在锂电池组的内部,以单片机为控制核心,在实现对各节锂电池能量均衡的同时,还可以实现过充、过放、过流、温度保护及短路保护。通过LCD显示电池组的各种状态,并可以通过预留的通信端口读取各节锂电池的历史性能状态。 系统总体方案设计 动力锂电池智能管理系统主要由充电模块、数据采集模块(包括电压、电流、温度数据采集)、均衡模块、电量计算模块、数据显示模块和存储通信模块组成。系统框图如图1所示。 图1 管理系统结构框图 整个系统以单片机为主控制器,通过采集电流信息,判断出电池组是在充电、放电还是在闲置状态及是否有过流现象,并对其状态做出相应处理。对各节电池电压进行采集分析后,系统决定是否启动均衡模块对整个电池组进行能量均衡,同时判断是否有过充或过放现象。温度的采集主要用于系统的过温保护。整个系统的工作状态、电流、各节电压、剩余电量及温度信息都会通过液晶显示模块实时显示。下面对其各个模块的实现方法进行介绍。 微控制器ATmega8

锂动力电池管理系统基本原理

锂动力电池管理系统基本原理: JH2010-1锂动力电池管理系统为每只单体电池配置一套动态的稳压稳流源,当串联电池组在充、放电过程中,某只单体电池的电压有高于或低于平均电压倾向时,系统将自动将从其他电能较高的电池中吸收能量转移到电能较低的电池中,始终使各单体电池电能处于平均状态。 本系统是无损能量自由双向转移,根本不同于传统的将高电压电池强制放电的所谓“保护板”,充、放电均衡电流可达到数十安培,其中放电均衡更是世界首创。它将彻底解决串联蓄电池因容量差异而造成的单体电池过放或反充的现象。为各种串联蓄电池的安全、长寿、高效使用提供了保证。整个寿命期将基本不需任何维护,直到设计寿命的终结。减少大量检测维护费用,提高服务设备的可靠性! 大大延长蓄电池组的使用寿命,免除更换蓄电池组的高额费用。 基本参数: 均衡充电能力:0.2C、0.5C、1C等。根据需要 均衡放电能力:0.2C、0.5C、1C等。世界首创,可彻底解决串联电池组因单体落后而导致的整组失效的世界性难题。 电池组范围:300V、600V系统; 二、蓄电池应用现状 1、串联电池组的应用特点介绍 由于单体蓄电池的端电压较低,锂电池为3.2/3.6V。而电动汽车系统的工作电压一般都较高300-600V,因而必须将多只单体电池串联起来才能满足需要。串联电池组的特点是流过电池组本身的电流完全相等。由于各单体电池的电气参数应材料、工艺等原因,不可能绝对完全相同,出厂时一般采用参数接近配组的方式,使蓄电池组中的各单体电池参数尽可能一致。串联电池组的使用特点之一就是每次充放电时都会放大上述单体电池间细微的差距,容量较少者每次充电时都存在过充电,而每次放电又存在过放电,久而久之,这种较差的电池就会加速损坏形成落后电池,从而导致整个蓄电池组性能下降或提前失效。具体表现为,单体电池质量好,参数一致性好,配组严格,使用环境好(一般浅充浅放)的电池组寿命就长些。而单体电池质量一般,参数一致性一般,配组不太严格,使用环境较差(经常深充深放)的电池组寿命就短。虽然性能下降或失效的电池组仅是一个或数个单体电池首先损坏引起的,也容易进行更换修复,但及时的检查与更换,需要大量维护人员,同时在维护一段时间后还会出现新的落后电池。如果不及时检查、发现并更换落后电池,轻则严重降低电池组服务时间,重则会造成落后电池严重的过充或过放甚至反充,危及安全(漏液或燃爆)。 2、锂电池串联电池组的应用介绍

动力电池热管理及其系统开发

动力电池热管理及其系统开发 2012年03月06日 15:10 来源:《汽车纵横》2011年12月刊文王泰华 新能源汽车的关键技术之一是动力电池,电池的好坏一方面决定着电动汽车的成本, 另一方面决定着电动汽车的续驶里程,这两项也是新能源汽车是否能为广大消费者接受和迅速得到普及的关键因素。所以,围绕动力电池及其应用的研究显得特别有意义。 本文从动力电池的种类和应用入手,分别介绍了它的产热行为和各种热管理方式,然后通过一款混合动力汽车的磷酸铁锂电池应用,对其热管理系统、运行特性等进行分析和探讨,最后提出了后续热管理开发中需要进一步研究的问题。 动力电池种类及应用 作为新能源汽车上的动力电池必须具备一定的条件,首先是安全性,只有安全性达到了一定的标准才能得到应用;其次是制造成本,那些制造成本低且寿命长的电池才有机会作为动力电池;再次,动力电池还要具有高的能量密度和功率密度,这些是电动汽车是否具有高的续驶里程、加速性及爬坡度的一个衡量标准;动力电池还必须能够回收,尽量减小对环境的污染。 根据动力电池的使用特点、要求、应用领域不同, 国内外动力电池的研发种类大致为: 铅酸蓄电池、镍镉电池、镍氢电池、锂离子电池、燃料电池等,其中以锂离子电池的发展最值得关注。 锂离子电池具有电压高、比能量高、充放电寿命长、无记忆效应、对环境污染小、快速充电、自放电率低等优点,其发展势头极为迅猛,已广泛应用笔记本电脑、移动电话、录像机、小型医疗保健设备、摩托车、自行车等领域,而在航空、航天、航海和军事领域的应用研究也正在积极开展和深入,在电动汽车领域目前已成为主要的动力源。 锂离子电池的技术发展呈现出多方向并举的局面,主要在于所采用的正极材料的不同。因为正极材料的性能将很大程度地影响电池的性能。同时正极材料也直接决定电池成本的高低。目前已批量应用于锂电池的正极材料主要有钴酸锂、镍酸锂、锰酸锂以及磷酸铁锂。但由于钴金属储量少、价格昂贵,而且作为动力电池其安全也存在问题, 目前应用最为广泛的是锰酸锂电池和磷酸铁锂电池。

相关文档
相关文档 最新文档