文档库 最新最全的文档下载
当前位置:文档库 › 常见心脑血管疾病的动物模型选择与建立

常见心脑血管疾病的动物模型选择与建立

常见心脑血管疾病的动物模型选择与建立
常见心脑血管疾病的动物模型选择与建立

常见心脑血管疾病的动物模型选择与建立

学号:11311032 姓名:钱江平 班级:11中药(1)班

摘要:目的:探讨常见心脑血管疾病的动物模型及其建立。方法:通过查

阅资料,了解常见心脑血管疾病的类型,进而再通过查阅论文等,理出常见心

脑血管疾病模型的建立方法。结论:通过对各种心脑血管疾病的动物模型的研究,可以看出不同动物在面对不同心脑血管疾病是,他们各有优缺点。我们在

选择动物时,应具体考虑。

关键词:心脑血管疾病 动物模型 动物模型建立

我国老龄化的加快老年人心血管疾病日益突出其发病率和死亡率日趋升高,提高心血管疾病的防治水平刻不容缓"随着现代医学的快速发展心血管疾病的预防!诊断和治疗等方面都取得一定的进展。我国每年因心脑血管疾病而死亡的人数大约为260万,约占总死亡比例的45%。实验动物作为生命科学研究的基础和重要的支撑条件,广泛应用于临床医学和实验医学研究[2],通过建立实验动物模型,能为临床应用提供很多理论指导。

一、高血脂及动脉粥样硬化症动物模型

(一)概述

腹腔注射蛋黄乳液造成小鼠高血脂模型是一种适合于药物大面积初筛的高血脂

动物模型。通过在动物饲料中加入过量的胆固醇和脂肪,饲养一定时间后,它

的主动脉及冠状动脉处会逐渐形成粥样硬化斑块,并出现高血脂症。

高胆固醇和高脂饮食,加入少量胆酸盐,可增加胆固醇的吸收,如再加入甲状

腺抑制药--甲基硫氧嘧啶或丙基硫氧嘧啶可进一步加速病变的形成。

(二)方法:

1.小型猪:

猪在许多生物学指标上与人类非常相似,被认为是研究人类疾病最合适的实验动物模型,既经济实用,又克服了同种器官的短缺。如在比较医学中,科学家根据猪自身生理病理发生的过程研究人类衰老的机理,根据猪与人共同感染的疾病研究人的疾病在猪中的发生发展规律,从而为人类疾病的诊断、防治和治疗提供理论依据。

小型猪建高血脂模型,一般选用选用Gottigen系小型猪较为理想,用

1%~2%高脂食物饲喂6个月即可形成动脉粥样硬化病变。形成动脉粥样硬化

病变特点及分布都与人类近似。

2. 兔:

选用2kg左右体重,每天胆固醇0.3g,4个月后形成主动脉粥样硬化斑块;剂量增至0.5g,3个月出现斑块;增至1.0g,可缩为2个月。在饲料中加人15%蛋黄粉、0.5%胆固醇和5%猪油,3周后,将胆固醇减去再喂3周,可使斑块发生率达100%,血清胆固醇可升高至2000mg。

评价:兔是最早用于制造高脂血症模型的动物!具有成模速度快,重复性好,成本低等优点。但是兔是草食性动物!长期喂以动物脂肪!不但动物拒食!增加了操作的难度!而且食物成分难以控制!动物不能耐受!容易出现腹泻&皮肤

病等不良反应!容易出现兔死亡现象。兔虽然容易形成高血脂症和AS,但兔是食

草动物,对脂类比较敏感,其脂质代谢过程与人类有所区别,所以渐渐被淘汰。[5]

3.大鼠:

造模常用高脂饲料的改进 建立大鼠高脂血症动物模型, 采用的高脂饲料通

常是在基础饲料基础上根据不同配方再掺入甲状腺抑制药物、胆固醇、猪油等

物质。但这些高脂饲料脂肪含量高、不易储存、易氧化变质, 且动物易出现

“厌食”情况, 故不易掌握每只大鼠每天高脂饲料的精确用量。有作者在正常

饮食的基础上给 Wistar 大鼠灌胃脂肪乳, 配方为 1%胆固醇、20%猪油、1%甲

基硫氧嘧啶, 10 d 可形成高脂血症动物模型, 其造模效果比较理想。直接灌胃脂肪乳一定时期停止灌胃后, 为了改善模型存在血清总胆固醇波动性下降等不

稳定情况, 有研究者采取延长建立模型周期、改变一味直接增加大鼠外源性血

脂负荷的方法, 取得了一定的效果。[6]

缺点是,大鼠是啮齿类动物,其对胆固醇有先天耐受力,不易自发形成动脉粥样硬化。[7]

评价:饲养方便、抵抗力强、食性与人相近。所形成的病理改变与人早期者相似,不易形成似人体的后期病变,较易形成血栓。

总结:要建立合理且实用的高脂血症动物模型, 在模型动物的选择上, 首

先要考虑造模动物脂质代谢、对膳食脂质调节、生理功能反应等应尽可能与人

类相似,能较准确的反映人类高脂血症的各种变化, 从而为人类高脂血症的预防、治疗提供思路。其次动物应较容易饲养、取材方便、指标检测简便易行, 此外

还应充分考虑实验目的、实验条件、实验经费等客观条件。[6]

二、高血压动物模型

(一)概述

高血压是我国最常见的心血管疾病,其发生率在成年人中高达20%。[9]是遗传因

素和环境因素相互作用而形成的多因疾病。常见有以下几种类型。

(二)

1、神经源性高血压动物模型

1973年Jannetta在手术观察基础上提出脑干左侧两个颅神经根入脑区(Root

entry zone,REZ)被血管压迫是原发性高血压的原因,即/神经源性高血压0假说.

在此基础上,许多学者从临床及实验研究证实了Jannetta的假说.最初采用脉动

球囊法,即有大小两个橄榄球囊,中间细管相连,内充液体,大囊置于主动脉内,小囊置于延髓左侧来建立高血压动物模型. [10]

本动物模型为高血压的病因研究提供了接近生理状态的动物模型。但是需要先

进的设备和技术。

2、应激性高血压动物模型

可以采用刺激脉冲随机变动的足底电

也可用用低频、低压交流电电击足底,连续刺激4周,但每周刺激参数不同。[12]

亦可用固定悬吊法,即将清醒状态的大鼠四肢

固定于离地90 cm高的木架上,模拟情绪紧张状态,每天固定悬吊9 h,连续2 d,

击结合噪音的复合刺激对大鼠进行应激刺激[13] 3、肾性高血压动物模型

目前各种肾性高血压动物模型多建立在小动物上,且常以大鼠为实验动物。

方法:两肾一夹法用丝线或银夹狭窄左侧肾动脉,狭窄程度在50%一80%之间,此方法复制率高,术后2周血压开始升高,至4—5周可形成稳定高血压,并长期维持下去。[14] 肾源性高血压在高血压的发病中占有比例相当高,且肾素

血管紧张素系统的激活引发高血压中的发病机制已得到举世公认。实验性肾动

脉狭窄,能非常相似地复制出高血压模型,为临床高血压的研究奠定了基础。

三、心肌梗死

(一)概述

世界卫生组织预测到 2020 年冠心病将成为人类的第一大杀手。快速、准确地

诊断急性心肌梗死并予以及时、有效的治疗对预后至关重要。[15]但心肌梗死的

研究及治疗由于没有合适的动物模型一直受到很大限制。因此就迫切地需要研

制出一种与人类心肌梗死非常相似的动物模型。[16]制

作结扎冠状动脉在体大鼠心梗模型,制作初期发现用复合麻醉及经口气管插管法制作的模型可以提高初学者模型制作的成功率. [17]一个理想的!与临床心肌

梗死病理生理过程相似的动物模型将为心肌梗死机制探究以及有效药物的研发

提供更为可靠地支持. [18]

(二)方法

常见的模型建立方法有三种。

1、结扎冠状动脉法

结扎冠状动脉制作的在体大鼠心肌梗死( 简称心梗) 模型,在血流动力学和心

肌代谢等方面的改变与临床上冠心病患者心肌缺血及心梗时有某些相似之处。[19]但由于模型制作过程中需麻醉、人工呼吸、开胸手术及心肌梗死自身的病理

特点,存在造模成功率低、大鼠存活时间过短等问题,给试验研究工作造成很

多困扰。[20]结扎冠状动脉法 结扎冠状动脉法是通过对麻醉犬!小型猪!兔!大鼠

等结扎冠状动脉左前降支造成局限性心肌梗死模型,有利于定位!定性!定量,

有利于形态!功能!化学等指标观测动态研究,是目前应用比较广泛的心肌梗死

模型研究方法。[21]

2、介入法

Terp等应用小型猪,选择含Sephadex G25光滑微球(直径20~80Lm)的生理

盐水溶液,浓度为215 g#L-1,利用介入技术,经皮穿刺导管经主动脉根部进入

LAD和LCX,注入该溶液2 m,l观察左心室射血分数,超声心动图及心肌病理组织学指标,2-3 wk后可见模型动物左心室射血分数减少,左心室容积缩小,出现心

肌梗死灶。[22]

具体方法:应用带球囊导管经颈内动脉插入犬主动脉根部冠脉起始部水平,扩张球囊完全封闭主动脉,然后经导管迅速注入混有不同直径微球的混悬液,

可以使微球随心脏搏动进入冠状动脉

四、心力衰竭动物模型

心力衰竭是泛指心脏在有适量静脉血回流的情况下,不能维持足够心排血量,以致组织灌注量减少了以循环障碍为主的综合征的是多种严重心脏疾病的

最终转归! [23]

目前研究者多选用个体适中、价格相对便宜的大鼠和兔。[24]

心血管系统较为发达的神经体液调节较为完善的操作及观察较容易。是较

理想的试验材料。但价格较贵!

目前研究者多选用个体适中"价格相对便宜的大鼠和兔! 而大鼠中又常选用 Sprauge2Daw ley大鼠,及wistar大鼠[25]

五、心率失常

(一)心律失常的动物模型建造方法

1.乌头碱

通过舌下为大鼠快速静脉注射乌头碱29ug/kg,5s内注射完,后观察心律失常情况,并记录室早的潜伏期及持续时间.乌头碱致心律失常的机理为乌头碱能激活心肌细胞的快Na+通道,开放,加速心肌细胞内流,促使细胞膜去极化,加速起搏点的自律性; 还能够提高心房传导组织和房室束 - 浦肯野系统等快反应细胞的自律性,从而形成一源性或多源性异位节律,缩短心肌不应期,导致心律失常。[26]

2. 氯化钙

大鼠舌下静脉注射140mg/kg 氯化钙可诱发产生多种心律失常,如室性早搏%室性心动过速%室颤直至死亡。氯化钙诱发心律失常的作用机理较为复杂,主要与钙离子对心脏心肌细胞的直接作用有关。[27]

3.氯仿

将小鼠仰卧固定于鼠板上,接体表多导联电生理仪,显示,导联心电图,置于有3—4ml氯仿棉球的500ml倒置烧杯内(换只老鼠加氯仿1ml) ,直至呼吸停止,立即打开胸腔,观察小鼠心脏活动节律及室颤情况,记录发生室颤动物氯仿的致室颤机理可能与植物神经及其释放介质或肾上腺髓质释放去甲肾上腺素和肾上腺素增加有关而氯仿本身对心肌的直接作用则是不规则地延长心室不应期,导致复极不均一性增加,上述两者的相互作用导致室颤发生[28]

4.强心苷类药物

中毒量的强心苷类药物会引起各类心律失常,可抑制心肌细胞膜上Na+—K+—ATP酶,从而减少K+向细胞内的主动转运,导致细胞内缺K+,使心肌的最大舒张电位降低,舒张期自动除极速度加快,自律性升高,发生心律失常。[29]

参考文献:

[2]梁力均,石晶,张纯等.实验动物在综合医院科研工作中的使用情况[J].实验动物科学,2009,26(6):48

[5]倪鸿昌,李俊. 高血脂症实验性动物模型的研究进展[J]. 安徽医药,2004,06:401-403.

[6] 李大伟, 张 玲, 夏作理。建立高脂血症模型的动物选择与常用造模方法分析及改进中国临床康复2006第 10 (48) :145

[7]郭金英,李华,谢人明.金黄地鼠高血脂模型的建立[J] 中国实验动物学

报,2007,1(15):5-7

[9]吴金珊,李佳.抗高血压药物的研究进展和临床应用[J].中国实用医

药,2009,23(4) :231

[10] 史衍杰,陈建光.高血压动物模型的建立与应用[J]. 北华大学学报(自然科学版) 2006,7(6) :501

[11] 郑庆玲,白玉山.应激性高血压动物模型的建立[J].福建医学院学报,1994,28(4):424 -425.

[12]董艳芬,梁燕玲,李坚.中枢细胞外Ca2+对应激性高血压降压作用的实验研究[J].医学理论与实践,2000,13(2):71-73.

[13]严米娅,余上斌,金咸.肺心营养合剂预防大鼠应激性高血压的研究[J].同济医科大学学报,1998,27(4):313—315

[14]张艳荣,张连峰,杨志伟.高血压动物模型[J].中华高血压杂志,2008,16(3):205

[15] 林荣.急性心肌梗死心电图进展[J].临床心电学杂志 2007 ,16(3): 161

[16] 范江霖,孙慧君.心肌梗死动物模型研究的最新进展[J]. 中国动脉硬化杂志2005 13(1): 113

[17]李贻奎,宁可永,梁嵘,等 复合麻醉及经口气管插管法在大鼠冠状动脉结扎心肌缺血模型中的应用[J].中国药理学通报,2005,21(5):635

[18]李峰杰,李贻奎. 心肌梗死动物模型研究进展[J]. 中国药理学通报,2013,01:5-10.

[19] 李贻奎,赵乐,何萍等.提高结扎冠状动脉在体大鼠心肌梗死模型制作速度和质量的实验研究[J] .中国中西医结合杂志,2012,7

[20]徐铭.大鼠心肌梗死模型制作的影响因素[J].上海畜牧兽医通讯,2012,(2):48

[21] 李峰杰,李贻奎.心肌梗死动物模型研究进展中国药理学通报[J]. 2013,29(1)5-10

[22]于震,刘建勋.慢性心肌缺血动物模型制备方法[J].中国药理学报 2005 273—6

[23] 张郑乐.简述心力衰竭动物模型研究进展[J]. 医疗临床 2009,(7): 364

[24]张郑乐.简述心力衰竭动物模型研究进展[J].科技信息,2009,(7):364

[25]郭豫涛"谭毅等"充血性心力衰竭的动物模型【J】0042844,

(2001),022*******

[26]朱明军,孙彦琴,王永霞,等, 桂甘龙牡汤抗室性心律失常的实验研究[J]. 世界中西医结合杂志,2009,4(5):315-317

[27]尹克春,刘淑娟,陈力,等.当归颗粒对抗氯化钙引起实验性心律失常的作用[J]. 广东医学 2008,29(11):1785-1786

[28]朱明军,孙彦琴,王永霞,等, 桂甘龙牡汤抗室性心律失常的实验研究[J]. 世界中西医结合杂志,2009,4(5):315-317

[29]王和平,韩艳艳,王建明,等3.苦参总碱贴片抗心律失常作用的实验研究[J].中医药信息,2008,25(5):80-81

二十种常见实验动物模型

二十种常见实验动物模型 一、缺铁性贫血动物模型 缺铁性贫血(iron deficiency anemia,IDA)是体内用来合成血红蛋白(HGB)的贮存铁缺乏,HGB合成减少而导致的小细胞低色素性贫血,主要发生于以下情况:(1)铁需求增加而摄入不足,见于饮食中缺铁的婴幼儿、青少年、孕妇和哺乳期妇女。(2)铁吸收不良,见于胃酸缺乏、小肠粘膜病变、肠道功能紊乱、胃空肠吻合术后以及服用抗酸和H2受体及抗剂等药物等情况。(3)铁丢失过多,见于反复多次小量失血,如钩虫病、月经量过多等。 IDA是一种多发性疾病,据报道,在多数发展中国家,约2/3的儿童和育龄妇女缺铁,其中1/3患IDA,因此,研究IDA的预防和治疗具有重要的意义。在这些研究中,缺铁性贫血的动物模型(Animal model of IDA),又是实施研究的基础工具。常见的IDA动物模型的构建技术如下: 实验动物:一般选用SD大鼠,4周龄,雌雄不拘,体重65g左右,HGB≥130g/L。 建模方法:低铁饲料加多次少量放血法。低铁饲料一般参照AOAC 配方配制,采用EDTA浸泡处理以去除饲料中的铁,饲料中的含铁量是诱导SD大鼠形成缺铁性贫血模型的关键,现有研究表明,饲喂含铁量<15.63mg/Kg的饲料35天,SD大鼠出现典型IDA表现,而饲喂

含铁40.30mg/Kg的饲料SD大鼠出现缺铁,但并不表现贫血症状。建模时一般采用去离子水作为动物饮水,以排除饮水中铁离子的影响。少量多次放血主要用于模拟反复多次小量失血导致的铁丢失,还可以加速贫血的形成。放血一般在低铁饲料饲喂2周后进行,常用尾静脉放血法,1~1.5ml/次,2次/周。 模型指标:(1)HGB≤100g/L;(2)血象:红细胞体积较正常红细胞偏小,大小不一,中心淡染区扩大,MCV减小、MCHC降低;(3)血清铁(SI)降低,常小于10μmol/L,血清总铁结合力(TIBC)增高,常大于60μmol/L。 需要指出的是,以上模型不能用于铁吸收不良相关IDA的防治研究。根据具体的研究需要,也可以适当调整建模方法。 二、白血病动物模型 用免疫耐受性强的人类胎儿骨片植入重症联合免疫缺陷病(SCID)小鼠皮下,出于人类造血细胞与造血微环境均植入小鼠,建立具有人类造血功能的SCID小鼠模型称为SCID-hu小鼠。再将髓系白血病患者的骨髓细胞植入SCID-hu小鼠皮下的人类胎儿骨片内,植入的髓系白血病细胞选择性生长在SCID-hu小鼠体内的人类造血微环境中,即为人类髓系白血病的小鼠模型。SCID小鼠是由于其scid所致。T、B淋巴细胞功能联合缺陷,这种小鼠能接受人类器官移植物。 造模方法:

动物实验方法总结:组织研磨管的使用方法 临床样本或动物取材注意事项 动物模型

组织研磨管的使用方法 1.作用:只适用于蛋白提取、RNA提取、基因组DNA提取时的组 织裂解,不做他用; 2.组织研磨管:容量为1.5ml, 里面已经提前放置了研磨珠(有时也 不放置),研磨液(Trizol或RIPA裂解液,有时也不放置)一般在取回后才加入,如果已经加入了研磨液,请离心后才拧开管盖,以免研磨液溢出,对皮肤造成伤害,所以操作时,要小心注意! 3.组织:把收取的组织分切,用生理盐水或PBS缓冲液把分切的组 织上的血液漂洗干净,然后用医用纱布或滤纸把组织表面的水分吸干,然后放入研磨管(组织体积大小为1颗绿豆至2颗黄豆,根据实际情况决定)中,然后把放入的组织尽量剪碎; 4.存放:上述过程应尽量在最短的时间内操作完毕,立即用液氮冻 结,然后置于液氮或-80℃保存; 5.操作事项:操作时间尽可能短,做好一个,立马放置一个;

实验方法总结(3):动物模型部分 1、研究肿瘤细胞增殖 (2) 2、研究肿瘤细胞转移 (3) 2.1. 体外(浸润模型) (3) 2.2. 体内(转移模型) (3) 3、研究肿瘤细胞耐药 (5) 3.1. 耐药细胞株的建立 (5) 3.2. 裸鼠移植瘤耐药模型的建立 (6) 从肿瘤起源分,肿瘤动物模型的分类如下: 从研究目的来分,可以从增殖、转移、耐药三个角度来分析: 1、研究肿瘤细胞增殖 细胞准备:GeneA敲减慢病毒感染细胞扩增至需要的细胞量。分为:空白对照组、阴性对照组、实验组。 取Balb/c裸鼠,雄性,6周龄,每组10只,适应一周后进行肿瘤细胞注射。

XXX细胞消化离心后制成单细胞悬液,计数后取适量的细胞用PBS悬浮,在Balb/c裸鼠侧腹部皮下接种。每只接种2×106个细胞,注射体积为100 μL。此后,每隔5天测量注射部位肿瘤的体积。30天后裸鼠小鼠腹腔注射80 mg/kg 戊巴比妥钠,小鼠麻醉后置蓝色背景布上拍照(侧卧位,接种部位朝上),小鼠颈椎脱臼处死,取出肿瘤称重,将肿瘤置蓝色背景布上拍照,肿瘤一分为二,一份4%多聚甲醛固定,待后续病理分析,一份-80℃冻存。 2、研究肿瘤细胞转移 肿瘤转移的模型包括两大类:体外(浸润模型)和体内(转移模型)。体外(浸润模型):了解肿瘤细胞对周围相连组织的侵润性。体内模型主要研究肿瘤细胞的转移性即肿瘤细胞在远端组织形成病灶的能力。 2.1. 体外(浸润模型) 例:浸润型脑胶质瘤动物模型的建立 方法:取若干只Balb/c免疫缺陷裸鼠,将分离和鉴定并转染携带绿色荧光蛋白的脑胶质瘤干细胞立体定向法行小鼠颅内接种,每组10只。小鼠麻醉后头部正中切口,剥离骨膜后钻孔(坐标是冠状缝后0.5 cm,矢状缝右侧2.5 cm) 。取2 μL胶质瘤干细胞以1×104 cells /只小鼠的剂量,经微量注射器缓慢注射入鼠脑纹状体内(深度是2.5 ~3 mm) 。在确定的时间点处死一部分动物进行荧光( 立体荧光显微镜下) 病理证实和比较,同时检查脑胶质瘤干细胞的体内生长特征以及干细胞标志物等。 2.2. 体内(转移模型)

实验方法总结:动物模型部分

实验方法总结:动物模型部分 1、研究肿瘤细胞增殖 (1) 2、研究肿瘤细胞转移 (2) 2.1. 体外(浸润模型) (2) 2.2. 体内(转移模型) (2) 3、研究肿瘤细胞耐药 (4) 3.1. 耐药细胞株的建立 (4) 3.2. 裸鼠移植瘤耐药模型的建立 (5) 从肿瘤起源分,肿瘤动物模型的分类如下: 从研究目的来分,可以从增殖、转移、耐药三个角度来分析: 1、研究肿瘤细胞增殖 细胞准备:GeneA敲减慢病毒感染细胞扩增至需要的细胞量。分为:空白对照组、阴性对照组、实验组。 取Balb/c裸鼠,雄性,6周龄,每组10只,适应一周后进行肿瘤细胞注射。

XXX细胞消化离心后制成单细胞悬液,计数后取适量的细胞用PBS悬浮,在Balb/c裸鼠侧腹部皮下接种。每只接种2×106个细胞,注射体积为100 μL。此后,每隔5天测量注射部位肿瘤的体积。30天后裸鼠小鼠腹腔注射80 mg/kg 戊巴比妥钠,小鼠麻醉后置蓝色背景布上拍照(侧卧位,接种部位朝上),小鼠颈椎脱臼处死,取出肿瘤称重,将肿瘤置蓝色背景布上拍照,肿瘤一分为二,一份4%多聚甲醛固定,待后续病理分析,一份-80℃冻存。 2、研究肿瘤细胞转移 肿瘤转移的模型包括两大类:体外(浸润模型)和体内(转移模型)。体外(浸润模型):了解肿瘤细胞对周围相连组织的侵润性。体内模型主要研究肿瘤细胞的转移性即肿瘤细胞在远端组织形成病灶的能力。 2.1. 体外(浸润模型) 例:浸润型脑胶质瘤动物模型的建立 方法:取若干只Balb/c免疫缺陷裸鼠,将分离和鉴定并转染携带绿色荧光蛋白的脑胶质瘤干细胞立体定向法行小鼠颅内接种,每组10只。小鼠麻醉后头部正中切口,剥离骨膜后钻孔(坐标是冠状缝后0.5 cm,矢状缝右侧2.5 cm) 。取2 μL胶质瘤干细胞以1×104 cells /只小鼠的剂量,经微量注射器缓慢注射入鼠脑纹状体内(深度是2.5 ~3 mm) 。在确定的时间点处死一部分动物进行荧光( 立体荧光显微镜下) 病理证实和比较,同时检查脑胶质瘤干细胞的体内生长特征以及干细胞标志物等。 2.2. 体内(转移模型)

常用实验动物

常用实验动物 1、小鼠 喜欢群居,怕热,高温容易中暑 雌雄性小鼠交配后10~12小时,在雌性小鼠阴道口会形成白色的阴道栓 主要解剖学特性 消化系统:食管内壁有角质化鳞状上皮,利于灌胃;有胆囊;胰腺分散,色淡红,似脂肪组织。 生殖系统:雌性小鼠为双子宫型,呈“Y”形,卵巢不予腹腔相通,无宫外孕。 骨髓为红骨髓,无黄骨髓,终身造血。 皮肤无汗腺。 小鼠常用品种、品系 1. 近交系小鼠 C3H:1975年从美国引进,野生色毛; ? C57BL/6:1975年从日本引进,黑色毛; ? BALB/c:Bagg1913年获得小鼠白化株,经近亲繁殖20代以上育成,毛色为白色; ? DBA:分为DBA/1和DBA/2两个品系,1977年由美国实验动物中心引进,毛色均为浅灰色。 2、封闭群小鼠 ①KM小鼠:我国使用量最大的远交种小鼠,白色,抗病、适应力强,繁殖、成活率高。 ②ICR:1973年由日本国立肿瘤研究所引入我国,白色,其显著特点是繁殖

力强。 ③LACA :1973年由英国实验动物中心引入我国,白色。其实是小鼠改名而成。 ④NIH :由美国国立卫生研究院培育,白色,繁殖力强,幼仔成活率高,雄性好斗 3、突变系 1、裸鼠:第11对染色体上的裸基因(nu)导致无毛裸体、无胸腺 2、SCID小鼠:第16对染色体上的Scid隐性基因突变基因导致T、B淋巴细胞联合免疫缺陷.外观与普通小鼠差别不大,被毛白色,体重发育正常 3、快速老化模型小鼠:4~6月龄以前与普通小鼠的生长一样,4~6月龄以后迅速出现老化症状。如心、肺、脑、皮肤等器官老化,出现骨质疏松和老化淀粉样变。侏儒症:比正常小鼠体型小,缺少生长素和促甲状腺素,用于内分泌研究。小鼠在医学、生物学的应用 1、重组近交系小鼠将双亲品系的基因自由组合和重组产生一系列的子系,是遗传分析的重要依据,用作基因定位及其连锁关系的研究 2、提供自然的动物模型 2、大鼠染色体数2n=42 喜独居,喜啃咬,性情较凶猛、抗病力强,对新环境适应力强,但对环境刺激、炎症反应敏感。强烈噪音可引起食仔或抽搐;湿度低于40%易发生环尾巴症。行为表现多样,情绪反应敏感,易接受通过正负强化进行的多种感觉指令的训练雌性2.5月龄达到性成熟,具有产后发情、产后妊娠的特点。寿命2.5~3年。解剖学特征

动物试验模版

一. 背景: 本次动物实验相关疾病介绍、国内外相关治疗及研究的现状及结果(含临床、基础)、相关引文摘要等。 二、实验所用器械简介: 三、实验目的 1、使用猪或其他适宜动物为实验模型, 按照临床要求对产品进行模拟 使用,对* *器械的* *性能、* *效应进行测试。 2、通过动物实验取得数据和经验, 以便为产品的临床使用撰写详尽的使 用指南。 3、确定* * 器械置入猪后的最长可回收天数, 以便为临床使用的最长 可回收时间提供参考。 4、研究* *器械置入* *天后的可回收性, 以回答以往实验中未能解决 的* * 器械在置入* * 天后是否可取出的问题。 四、实验模型和材料 1、实验模型 (1).动物模型:猪,体重:25?35KG (2).体外模型:拟采用透明塑料软管作成的20mm 25mm两 种直径的下腔静脉模型。 2、材料: (1)* *器械采用XX公司研发生产的器械。 (2)其他手术配套器械采用临床通用器械。 3.过程要求:

本实验开始前必须取得动物道德委员会的许可(注:国外 有此要求,国内仅少数几家大医院有动物伦理委员会) 五.实验设计 动物数量及分组方法:实验动物共22头,在置入器械后分为A和B两组.A组动物采用介入方法取出滤器,B组动物采用外科方法经腹切开方法取出滤器.下腔静 脉滤器置入后饲养观察时间为7、10、12、14、16、20、30、60和90天,具体分组方法见下表。 分组(头) 时间(天)- A B 7 1 1 10 1 1 12 3 1 14 3 1 16 1 1 20 3 1 30 0 2 60 0 1 90 0 1 六、实验方法: 1、随机选取实验动物以1:1的比例进行* *实验,并记录* * 总结出的操作要求。7?20天实验用以观察器械置入后的可回收期,30、60、90天实验用以观察器械置入后的长期通畅情况。 2、所有动物器械取出前应造影复查,并与器械置入时的资料进行对比,判断器

呼吸系统疾病动物模型

呼吸系统疾病动物模型 (一)慢性支气管肺炎模型 常选用大鼠、豚鼠或猴吸入刺激性气体(如二氧化硫、氯、氨水、烟雾等)复制人类慢性气管炎。现发现猪粘膜下腺体与人类相似,且经常发生气管炎及肺炎,故认为是复制人类慢性气管炎较合适的动物。用去甲肾上腺素可以引起与人类相似的气管腺体肥大。 (二)肺气肿模型 给兔等动物气管内或静脉内注射一定量木瓜蛋白酶、菠罗蛋白酶(Bromelin)、败血酶(Alcalas)、胰蛋白酶(Trypsin)、致热溶解酶(Thermolysin),以及由脓性痰和白细胞分离出来的蛋白溶解酶等,可复制成实验性肺气肿。以木瓜蛋白酶形成的实验性肺气肿病变明显而且典型,或用瓜蛋白酶基础上再加用气管狭窄方法复制成肺气肿和肺心病模型,其优点是病因病变更接近于人。猴每天吸入一定深度的SO2和烟雾(烟草丝50g,持续2.5小时),一年后,可出现不同程度的肺气肿。这种模型比较符合人的临床发病规律,有利于进行肺气肿的病理生理及药物治疗研究。还可用1%三氯化铁水溶液1~3ml,自兔耳静脉注入,每周2~3次,可在短期内造成肺心病模型。 (三)肺水模肿型 用氧化氮吸入可造成大鼠和小鼠中毒性肺水肿,或用气管内注入50%葡萄糖液(家兔及狗分别为1及10ml)引起渗透性肺气肿。麻醉下用37~38℃生理盐水注入兔颈外静脉或股静脉使血液总量增加0.6~1倍(血液总量相当体重1/12),可形成稀血性多血症肺水肿。切断豚鼠、家兔、大鼠颈部两则迷走神经可引起肺水肿。家兔(1.5~2kg)耳静脉注入1:1000肾上腺素0.54~0.6毫克,可使动物发生肺水肿并在5~15分钟死亡,肺系数自4.1~5g/kg 增至6.3~12.5g/kg;5mg肾上腺素肌注,8分钟左右大鼠死亡,肺系数20g/kg,静脉注入10%氯仿(兔0.1ml/kg,狗0.5ml/kg)也可引起急性肺水肿。腹腔注入6%氯化铵水溶液可引

实验动物心肌肥厚模型

III.实验动物心肌肥厚模型 A、压力超负荷/主动脉缩窄 压力超负荷引起的心脏肥厚常用的手术方法是主动脉缩窄(i.e.缩窄升主动脉)。 小鼠行主动脉缩窄(TAC)可以引起心脏机械性的压力超负荷,最终导致心肌肥厚、心衰(20,84)。TAC通常诱导方法采用在近胸骨端行小切口, 缩窄主动脉的这样的开胸手术。TAC模型虽然不能完全模拟人类的心室重构,但该模型可以用于肥厚发病过程中多种基因学的研究。主动脉缩窄模型能很好的模拟血流动力学超负荷引起左心室肥厚的发生发展。该动物模型在主动脉缩窄造成心肌肥厚几个月后会导致心衰。 B、容量超负荷 在静脉回流适当的情况下,心脏不能排出足够的血液满足全身组织代谢的需要就会引起CHF(充血性心力衰竭)。心内檐沟血或回心血量增加导致瓣膜闭锁不全就会引起心室容量超负荷。在慢性动脉和/或二尖瓣瓣膜回流疾病中的容量超负荷,我们会观察到“舒张期压力-容积曲线”整体右移,说明心脏僵硬度增加,即发生LVH (可见于主动脉瓣狭窄、高血压、肥厚性心肌病)(36)。通常情况下,容量超负荷CHF模型制备方法是腹主动脉-下腔静脉分流术。即于肾动脉上方分离出下腔静脉和腹主动脉,用血管夹在近肾动脉端夹闭主动脉阻断血流;用0.6-mm的针头由主动脉远端刺入,继续进针刺入下腔静脉,使动静脉联合。退针后,缝合血管壁伤口。4-5周后,就能复制出心肌肥厚模型,并具有左心室收缩力增强、舒张末期压力增加的特点(257)。 C、冠状动脉结扎 冠状动脉结扎常用于复制心衰动物模型。冠脉左前降枝(LAD)结扎后会阻断心脏的供养和营养输送,这种情况类似于人类心脏病发作时伴随的症状。血氧和营养供输阻断后,心肌细胞死亡,心脏整体功能受影响,最终导致心功能紊乱。由于这种动物模型非常接近临床心衰疾病的发生发展,研究证明该模型是心衰发病机制研究的重要手段(13)。 D、转基因型心脏肥大模型 几十年以来,一些心脏肥大和心力衰竭的转基因小鼠模型被学者们用于心肌肥厚和心衰这些致命疾病的可能的分子机制研究。受条件限制,在此不能针对于所有模型作一全面的综述,但在此文中,我们介绍一种转基因小鼠模型,该模型能成功模拟心肌肥厚的发生发展以及最终演变为心衰的过程。表1列举的是截止目前,研究学者们发现的较成熟的心肌肥厚/心衰模型。 表1:小鼠心衰模型 转基因小鼠模型代谢转变模型ECM紊乱转基因模型 肌侵蛋白,TNFα,G i,Gαq,PKCβ,PKA,β1AR, 磷酸化蛋白, 肌集钙蛋白, 钙调磷酸酶, L-型Ca2+ 通道 线粒体功能紊乱 氧化应激 脂肪酸氧化(FAO) 通路的受损 基质金属蛋白酶2/MMP2 基质金属蛋白酶9/MMP9 组织金属蛋白酶抑制剂 1/TIMP1

实验动物模型的制备

病理生理学实习指导 一、缺氧模型的实验性复制 ㈠目的与原理 通过给动物低氧环境,影响Hb的带氧能力及使组织不能利用氧等方法,复制不同类型缺氧模型,经呼吸、机能状态、皮肤粘膜颜色等指标,显示了其不同症状与特征,同时对复制模型的方法及原理又有大概的了解,有利于深入和研究各缺氧症的发生、发展和转归的规律。 ㈡实验对象 小白鼠。 ㈢器材与药品 缺氧瓶(装有管道瓶塞的250ml广口瓶),酒精灯,一氧化碳发生器,1ml注射器,5ml 和2ml刻度吸管,粗天平(附砝码),剪刀,普通镊。 钠石灰(氢氧化钠、氧化钙),甲酸,浓硫酸,0.125%氰化钾溶液,1%亚硝酸钠溶液,10%硫代硫酸钠溶液。 ㈣步骤与观察 表8-3-1观察指标 呼吸机能状态皮肤粘膜颜色类型(频率、幅度)(活动度) –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 低张性缺氧 一氧化碳中毒 氰化钾中毒 ⒈低氧性缺氧 ⑴将小白鼠至于250ml广口瓶(内装钠石灰吸收二氧化碳)中观察上述指标。 ⑵将瓶塞紧,同时记录时间,每5min重复观察上述指标一次(如有变化则随时记录)直到动物死亡为止。 ⒉一氧化碳中毒性缺氧 ⑴如图8-3-1装好一氧化碳发生装置。 ⑵将小白鼠一只放入瓶中,观察上述指标。 ⑶取甲酸3ml放入试管内,加入浓硫酸2ml,塞紧。如气泡产生较少,可用酒精灯加热,加速一氧化碳的产生(但不可过热以至液体连续沸腾,因一氧化碳产生过快,动物迅速死亡,血液颜色改变不明显)。 ⑷在整个过程中,注意观察上述指标。 (注):一氧化碳产生原理: H2SO4 HCOOH CO↑+H2O △ ⒊氰化钾中毒性缺氧 ⑴称小白鼠体重,观察上述指标,预先准备1%亚硝酸钠及10%硫代硫酸钠各10ml·Kg-1,以备急救用。

常用实验动物的种类与应用

常用实验动物的种类与应用 了解常用的实验动物的种类与应用范围,对组织实施实验研究有着不可低估的作用。当确立了实验研究题目及目标后,选择合适的实验动物对进行必要的研究是一项重要的工作。现将机能学实验教学中常用的动物用途简介如下: 一、家兔 家兔品种很多,目前我国实验用的家兔主要有以下三种。 1.中国本兔又称白家兔,毛色多为纯白,红眼睛,是我国长育的一种品种,成年兔体重1.5~3.5 kg。 2.青紫兰兔(山羊青兔或金基拉兔)毛色银灰色,成年兔体重2.5~3.5 kg. 3.大耳白兔(日本大耳白兔)毛色纯白,红眼睛,两耳长大,血管清晰,便于静脉注射和采血,成年兔体重4~5 kg. 家兔常用于机能学实验教学的各项实验中,如直接记录呼吸、血压、泌尿调节、减压神经放电、膈神经放电、观察药物对心脏的影响、了解心电图的变化、中枢神经兴奋药实验、药物对肠平滑肌的影响、药物中毒及解毒,复制许多病理过程和疾病,如水肿、炎症、电解质紊乱、酸碱平衡紊乱、失血、出血性休克、DIC、肺癌、动脉粥样硬化、高脂血症、心律失常、慢性肺心病、慢性肺动脉高血压、肺水肿、肝炎、胆管炎、阻塞性黄疸、肾性肾小球肾炎、急性肾功能衰竭。由于家兔体温变化比较敏感,也常用于研究发热、解热药和检查致热源等。 二、小白鼠: 小白鼠能用于药物的筛选,半数致死量的测定,复制许多病理过程和疾病,如水肿、炎症、缺氧、多种癌、肉瘤、白血病、多种传染病、慢性气管炎、心室纤颤等。 小白鼠做实验动物有以下特点: 1.小白鼠是实验室最常用的一种动物,价格低廉,便于大量繁殖,对动物实验同种、纯种、性别和年龄的要求,比较容易满足,生活条件也容易控制。因而只要符合实验要求,应尽量采用。它特别适用于需要大量动物的实验,容易满足统计学的要求。如药物的筛选,半数致死量的测定和安全实验,用于药物的效价比较及抗癌药的研究等。小白鼠也适用于避孕药的实验。 2.小白鼠对许多疾病有易感性,因而适用于研究下列疾病。如血吸虫病、疟疾、流感、脑炎等病。小白鼠的纯种品系很多,每系有其独特性,对某些疾病易感。如C1HA系,对癌瘤敏感,C5a系则抗癌;因此,纯系小白鼠广泛应用于各种肿瘤的研究。 3.当研究指标主要是观察组织学,特别是观察电镜下的结构时,应用小白鼠的器官较小,可节省人力、物力。如用于研究慢性气管炎时肺的变化。 4.小白鼠具有发达的神经系统,能应用于复制神经官能症模型。 5.小白鼠对外界环境适应性较差,不耐冷热,经不起饥饱,比较娇嫩;因此,做实验时要耐心细致,动作要轻,不然会干扰实验结果。 三、大白鼠: 大白鼠常用于复制许多病理过程和疾病,如水肿、炎症、缺氧、休克、DIC、胆固醇、肉芽肿、心肌梗塞、肝炎、肾性高血压、各种肿瘤等。 大白鼠做实验动物有以下特点: 1.大白鼠与小白鼠相似,便于大量繁殖,对动物实验同种、纯种、性别和年龄的要求,比较容易满足,生活条件也容易控制,适合于需要大量动物,而当小白鼠不能满足实验要求时。如:不对称亚硝酸胺口服和胃肠道外给药,能诱发大白鼠食道癌,而在小白鼠则很少引起食道癌;因而,在这种情况下,采用大白鼠较为适合。

实验方法总结(3):动物模型部分

实验方法总结(3):动物模型部分 1、研究肿瘤细胞增殖 (1) 2、研究肿瘤细胞转移 (2) 2.1. 体外(浸润模型) (2) 2.2. 体内(转移模型) (2) 3、研究肿瘤细胞耐药 (4) 3.1. 耐药细胞株的建立 (4) 3.2. 裸鼠移植瘤耐药模型的建立 (5) 从肿瘤起源分,肿瘤动物模型的分类如下: 从研究目的来分,可以从增殖、转移、耐药三个角度来分析: 1、研究肿瘤细胞增殖 细胞准备:GeneA敲减慢病毒感染细胞扩增至需要的细胞量。分为:空白对照组、阴性对照组、实验组。 取Balb/c裸鼠,雄性,6周龄,每组10只,适应一周后进行肿瘤细胞注射。

XXX细胞消化离心后制成单细胞悬液,计数后取适量的细胞用PBS悬浮,在Balb/c裸鼠侧腹部皮下接种。每只接种2×106个细胞,注射体积为100 μL。此后,每隔5天测量注射部位肿瘤的体积。30天后裸鼠小鼠腹腔注射80 mg/kg 戊巴比妥钠,小鼠麻醉后置蓝色背景布上拍照(侧卧位,接种部位朝上),小鼠颈椎脱臼处死,取出肿瘤称重,将肿瘤置蓝色背景布上拍照,肿瘤一分为二,一份4%多聚甲醛固定,待后续病理分析,一份-80℃冻存。 2、研究肿瘤细胞转移 肿瘤转移的模型包括两大类:体外(浸润模型)和体内(转移模型)。体外(浸润模型):了解肿瘤细胞对周围相连组织的侵润性。体内模型主要研究肿瘤细胞的转移性即肿瘤细胞在远端组织形成病灶的能力。 2.1. 体外(浸润模型) 例:浸润型脑胶质瘤动物模型的建立 方法:取若干只Balb/c免疫缺陷裸鼠,将分离和鉴定并转染携带绿色荧光蛋白的脑胶质瘤干细胞立体定向法行小鼠颅内接种,每组10只。小鼠麻醉后头部正中切口,剥离骨膜后钻孔(坐标是冠状缝后0.5 cm,矢状缝右侧2.5 cm) 。取2 μL胶质瘤干细胞以1×104 cells /只小鼠的剂量,经微量注射器缓慢注射入鼠脑纹状体内(深度是2.5 ~3 mm) 。在确定的时间点处死一部分动物进行荧光( 立体荧光显微镜下) 病理证实和比较,同时检查脑胶质瘤干细胞的体内生长特征以及干细胞标志物等。 2.2. 体内(转移模型)

常见动物实验中实验动物的选择

常见动物实验中实验动物的选择 一、药理学研究中的选择 1、临床药物代谢动物学研究:首选动物及性别,应尽量与药效量或毒理学研究所用动物一致。 药物动力学参数测定:最好使用犬、猴子等大动物,可在同一动物上多次采样。药物分布实验:大、小鼠较方便。药物排泄试验:一般首选大鼠,胆汁采集可在乙醚麻醉,胆管插管引流。 2、一般药理研究 主要药效作用以外广泛药理作用的研究。动物:小鼠、大鼠、猫、犬等性别不限。 3、作用于神经系统的药物研究: 促智药:成年大小鼠一般应用幼年、老年鼠。 镇静催眠药:成年小鼠便于分组。 抗痛药:成年大小鼠,以雄性为宜。 镇痛药:需在整体动物上进行,常用成年小鼠、兔,也可用豚鼠、犬等,雌雄兼用。 中枢性肌松药:小鼠、猫。 解热药:首选兔。兔:品种、年龄、室温、动物活动情况等不同,对发热反应速度和程度有明显影响,应按药典规定进行。 神经节传导阻滞影响药物:首选猫,最常用的是颈神经节,因其前后部易于区分。 4、心血管系统的药物研究: 抗心肌缺血药:狗、猫、兔、大小鼠。 抗心率失常药:豚鼠。小鼠不便操作。 降压药:狗、猫、大鼠。不宜用兔:外周循环对外界环境刺激极敏感,血压变化大。 治疗心功能不全药:狗、猫、豚鼠、兔。一般不用大鼠。 降血压药:大鼠、兔。模型动物:遗传性高脂血症WHHL兔。 抗动脉粥样硬化药:一般用兔、鹌鹑。 抗血小板聚集药、抗凝血药:大鼠、兔,个别也可用小鼠。 5、呼吸系统药物: 镇咳药筛选:首选豚鼠,对化学刺激或机械刺激都很敏感。猫:生理条件下很少咳嗽,可用于刺激喉上神经诱发咳嗽,在初筛基础上进一步肯定药物的镇咳作用。犬:适用于观察药物的镇咳作用持续时间。 兔:对化学、电刺激不敏感。大小鼠:实验可靠性差。 支气管扩张药:常用豚鼠:气道平滑肌对致痉剂药物反应敏感。大鼠:某些免疫和药理学特点与人类较近。 祛痰药:一般用雄性小鼠,兔、猫。 6、消化系统药物: 胃肠解痉药:大鼠、豚鼠、家兔、犬等,雌雄均可。 催吐、止吐:犬、猫、鸽等。兔、豚鼠、大鼠,无呕吐反射,故不选用。 7、泌尿系统药物: 利尿、抗利尿药:雄性大鼠或犬为好。 8、内分泌系统药物:

实验动物模型

第章实验动物模型 第一节实验动物选择的原则 第二节生物科学研究中的动物模型

实验动物模型 选择什么样的实验动物作实验是生物医学研究工作中一个重要环节,不能随便选用一种实验动物来作科学研究,因为在不适当的动物身上进行实验,常可导致实验结果的不可靠,甚至使整个实验徒劳无功,直接关系到科学研究的成败和质量。事实上,每一项科学实验都有其最适宜的实验动物。

第一节实验动物选择的原则 ?科学研究工作中实验动物的选择,首先应根据实验目的和要求来选择,其次再参考是否容易获得、是否经济,是否容易饲养和管理等情况。 ?在实验动物选择上必须注意三点,即实验动物的种类(Species);品种(Breed)或品系(Strain);质量和实验动物的健康状态。

尽量选择与研究对象的机能、代谢、结构及疾病特点相似的实验动物; ?生物医学研究的根本目的是要解决人类疾病的预防和治疗问题。因此,在选择实验动物时应优先考虑的问题是动物的种系发展阶段。在可能的条件下,尽量选择那些机能、代谢、结构和人类相似的实验动物作实验。一般来说,实验动物愈高等,进化愈高,其机能、代谢、结构愈复杂,反应就愈接近人类,猴、狒狒、猩猩、长臂猿等灵长类动物是最近似于人类的理想动物。

第二节生物科学研究中的动物模型 一、动物模型的意义和优越性 ?生物科学研究的进展常常依赖于使用动物模型作为实验假说和临床假说二者的试验基础。人类各种疾病的发生发展是十分复杂的,要深入探讨其疾病的发病机理及疗效机理不能也不应该在病人身上进行。可以通过对动物各种疾病和生命现象的研究,进而推用到人类,探索人类生命的奥秘,以控制人类的疾病的衰老,延长人类的寿命。

疾病动物模型(特选借鉴)

疾病动物模型 1复制方法和应用 动物疾病模型的复制,是用人为的方法,使动物在一定的致病因素(物理的、化学的、生物的)作用下,造成动物组织、器官或全身一定损害,出现某些类似人类疾病的功能、代谢、形态结构方面的变化或各种疾病,通过这种手段来研究人类疾病的发生、发展规律,为研究人类疾病的预防、治疗(包括新药物试用)提供理论依据。所以动物疾病模型的复制,在医学科学研究中占有十分重要的地位。 目前我国生物医学科学研究中,动物疾病模型主要用于三个方面:即实验生物学、实验病理学和实验治疗学(新药筛选亦属于实验治疗学范畴)。由于研究目的不同,对于疾病模型的要求也有所区别。如实验病理学,它着重于研究用某种特定方法复制出某些疾病。整个疾病复制过程,就是它的研究内容,目的是通过疾病的复制去探讨疾病的病因学和发病原。而实验治疗学则完全不同,疾病的复制仅是它研究的开始,因为它的主要目的是为了阐明在该病的发生发展过程中,某些治疗措施或药物的疗效如何。 诱发性动物模型的复制方法不外是用生物的、物理的、化学的和各种环境因子作用于动物而产生。 生物学因素包括细菌、病毒、寄生虫、细胞、生物毒素、激素等各种致病原,通过接种而使正常动物发生疾病。如接种细菌、病毒于敏感动物使其产生各种传染病。目前已知的150余种人畜共患病提供了极有意义的传染病材料。从流行病学、病理学或并发症等不同角度研究,首先要充分了解动物与人在疾病易感性和临床表现等方面的同异处。例如轮状病毒可引起婴儿急性坏死性肠类,犬感染轮状病毒后的表现只是亚临床的。然而严重威胁幼犬的肠道病毒是细小病毒,而人对细小病毒则并不易感。 物理因素是多方面的。例如在机械力作用下产生各种外伤性脑损伤、骨折等模型,气压变动复制高空病、潜水病;温度改变产生各种烧伤和冻伤;放射线照射可复制各型放射病,引起免疫功能抑制或诱发Spragae-Dawley系大鼠乳腺癌;闪光刺激诱发癫痫模型;噪音刺激引起听源性高血压及改变行为记忆功能等。复

造血系统疾病动物模型

第九节造血系统疾病动物模型 造血系统疾病(Disease of hematopoietic system),除了地中海贫血等少数疾病具有明确的病因以外,再盛赞该性贫血等大多数疾病都还没有明确的病因,造血系统疾病的动物模型,就成为研究造血系统疾病的发病机理、探索新型治疗技术和新药研究的基本工具。 一、缺铁性贫血动物模型 缺铁性贫血(iron deficiency anemia,IDA)是体内用来合成血红蛋白(HGB)的贮存铁缺乏,HGB合成减少而导致的小细胞低色素性贫血,主要发生于以下情况:(1)铁需求增加而摄入不足,见于饮食中缺铁的婴幼儿、青少年、孕妇和哺乳期妇女。(2)铁吸收不良,见于胃酸缺乏、小肠粘膜病变、肠道功能紊乱、胃空肠吻合术后以及服用抗酸和H2受体及抗剂等药物等情况。(3)铁丢失过多,见于反复多次小量失血,如钩虫病、月经量过多等。 IDA是一种多发性疾病,据报道,在多数发展中国家,约2/3的儿童和育龄妇女缺铁,其中1/3患IDA,因此,研究IDA的预防和治疗具有重要的意义。在这些研究中,缺铁性贫血的动物模型(Animal model of IDA),又是实施研究的基础工具。常见的IDA动物模型的构建技术如下: 实验动物:一般选用SD大鼠,4周龄,雌雄不拘,体重65g左右,HGB≥130g/L。 建模方法:低铁饲料加多次少量放血法。低铁饲料一般参照AOAC配方配制,采用EDTA 浸泡处理以去除饲料中的铁,饲料中的含铁量是诱导SD大鼠形成缺铁性贫血模型的关键,现有研究表明,饲喂含铁量<15.63mg/Kg的饲料35天,SD大鼠出现典型IDA表现,而饲喂含铁40.30mg/Kg的饲料SD大鼠出现缺铁,但并不表现贫血症状。建模时一般采用去离子水作为动物饮水,以排除饮水中铁离子的影响。少量多次放血主要用于模拟反复多次小量失血导致的铁丢失,还可以加速贫血的形成。放血一般在低铁饲料饲喂2周后进行,常用尾静脉放血法,1~1.5ml/次,2次/周。 模型指标:(1)HGB≤100g/L;(2)血象:红细胞体积较正常红细胞偏小,大小不一,中心淡染区扩大,MCV减小、MCHC降低;(3)血清铁(SI)降低,常小于10μmol/L,血清总铁结合力(TIBC)增高,常大于60μmol/L。 需要指出的是,以上模型不能用于铁吸收不良相关IDA的防治研究。根据具体的研究需要,也可以适当调整建模方法。 二、再生障碍性贫血动物模型 再生障碍性贫血(aplastic anemia),简称再障,系多种病因引起的造血系统退行性变,红骨髓总容量不断减少,黄骨髓不断增加,造血衰竭,以全血细胞减少为主要表现的一组综合征。再障的发病机制尚未完全阐明,目前存在四种假说:(1)“种子”学说,有证据表明,再障与患者造血干细胞存在某种内在缺陷有关。(2)“土壤”学说,有证据表明,再障与患者的造血微环境存在某种缺陷,对造血支持不良有关。(3)“虫子”学说,有证据表明,免疫反应、药物、病毒损伤造血干细胞可致再障发生。(4)“遗传”学说,有证据表明再障具有遗传易感性。 目前,再障的发病机制、预防和治疗都是有待深入研究的课题,这些研究都需要大量的

药物研发中常用的动物模型

一、常用肿瘤模型实验动物介绍: 1、BALB/c 小鼠(近交系) 特性与用途: ◇其发病率低,但对致癌因子敏感。乳腺肿瘤发生率约为10﹪~20﹪。 ◇有一定数量的卵巢、肾上腺和肺部肿瘤的发生,对放射线极度敏感。易患慢性肺炎。 ◇多数个体于6月龄以后出现免疫球蛋白过多症。主要是IgG1和IgA量的增加。 ◇免疫球蛋白的绝对量依饲养条件而异。腹腔注射矿物油后可引起浆细胞瘤。 ◇广泛地应用于肿瘤学、生理学、免疫学、核医学研究,以及单克隆抗体研究和生产等。 2、DBA/2 小鼠(近交系) 特征与用途: ◇免疫:在普通饲养条件下三月龄鼠血清免疫球蛋白量为1000ug/ml左右,仅相当C57BL/6,C3H/He和BALB/c的1/2。其中,IgM值较高,而IgG为低值。在IgG各亚类中,IgG1最高,IgG2最低。缺乏补体C5。对鼠斑疹伤寒补体C5较敏感。 ◇肿瘤:对DBA/1 的大部分移植瘤有抗性。雌鼠白血病发病率为34%,雄鼠为18%,经产母鼠乳腺癌发生率为50- 60%,雌雄鼠中均有淋巴瘤生长。 ◇微生物和寄生虫:对疟原虫、利什曼原虫有抗力。对猫后睾吸虫、曼氏血吸虫较敏感。对白色念球菌有抗力,由于具有Hc0等位基因,对新型隐球菌有抗力。 ◇生理:红细胞多。血压较低。维生素K缺乏,氯仿和氧化乙烯引起的死亡率高。肾上腺脂质贮存少,心脏有钙盐沉着。具低嗜酒性及吗啡嗜好。对百日咳组织胺易感因子敏感。 ◇病理:听源性癫痫发作率在35日龄时为100%,55日龄时为5%,约一半动物肝可出现由巨噬细胞构成的蜡样质的肉芽肿。 3、ICR 小鼠(封闭群)

特征与用途: ◇适应性强,体格健壮,繁殖力强,生长速度快,实验重复性较好。 ◇雌鼠自发性畸胎瘤和管状腺瘤发病率为0%~1%,用氨基甲酸乙酯诱发时,11~16天胚胎期畸胎瘤和管状腺瘤发病率为5.9%,离乳个体管状腺瘤和囊瘤发生率为30%,孕鼠为3%。◇是国际通用的封闭群小鼠(封闭群又称远交群,是指以非近亲交配方式进行繁殖生产的一个实验动物种群,在不从其外部引入新个体的条件下,至少连续繁殖4代以上) ◇是进行免疫药物筛选,复制病理模型较常用的实验动物。 ◇外周血象和骨髓细胞,具有较好的稳定性,是良好的血液学实验用动物。已广泛用于药理、毒理、肿瘤、放射性、食品、生物制品等的科研、生产和教学,与我国自行选育的昆明小鼠很类似。 4、SCID小鼠(近交系(Inbred Mice) 近交系:是指至少连续20代的全同胞兄妹交配培育而成,品系内所有个体都可追溯到起源于第20代或以后代数的一对共同祖先。 广泛应用于人类免疫学和病毒学、肿瘤学、生理学、血液病学、病理学等方面的研究,能接受人体正常组织的移植而成为一种嵌合体小鼠(即SCID-hu模型)进行人体免疫功能重建和肿瘤学方面的研究。 SCID小鼠自发性T细胞淋巴瘤(主要在胸腺)的发病率在15℅左右。而正常对照组动物却没有发现这种肿瘤的病例。淋巴瘤明显起源于胸腺,并可发生肺、淋巴结、脾、肝和肾转移。瘤体由大而均匀一的淋巴母细胞构成,细胞较大,染色质丰富,含有较大的核仁,胞浆呈嗜碱性。肿瘤细胞携带T细胞表面标记抗原。这种肿瘤的瘤块或培养细胞悬液在移植到组织相容性宿主体内后,可良好地生长传代。目前,尚未弄清:SCID突变基因与T细胞胸腺瘤高发之间的关系。

实验动物学试题及答案

实验动物学试题及答案 一、填空题 1、实验动物学研究的对象实验动物、动物实验。 2、根据我国实际,实验动物被分为四级,分别是一级为普通动物、二级为清洁动物、三级为SPF动物、四级为无菌动物(包括悉生动物)。国际上公认的标准实验动物是SPF 动物,我国公认的标准实验动物是清洁动物。 3、通常称近交系动物为品系,称封闭群动物为品种。 4、实验动物的年龄通常根据体重来判断。 5、裸鼠除全身无毛外,还有裸体和无胸腺,并随年龄增加皮肤变薄,头颈部皮肤皱褶,发育迟缓等特征。 6、药物筛选实验首选动物为小鼠;过敏实验首选动物为豚鼠;发热研究首选动物为家兔;实验外科学首选动物为犬;人类脊髓灰质炎等病的研究最理想的实验动物是非人灵长类动物;做反射弧分析实验常用实验动物是青蛙。 7、实验动物常用给药途径有经口给药、注射给药等。 二、名词解释 1.实验动物:是指经人工饲养、对其携带的微生物、寄生虫实行控制,遗传背景明确或来源清楚的,用于科学研究、教学、生产、鉴定、及其他科学研究的动物。 2.近交系动物:是指至少经过20以上连续全同胞或亲子交配,品系内所有个体都可追溯到其源于第20代或以后代鼠的一对共同祖先的动物群。 3.杂交优势:杂种一代具有较强的生命力,对疾病的抵抗力强,寿命较长,容易饲养,在很大程度上克服了近交衰退现象的优越性。 4.封闭群动物:不以近交形式进行交配,也不引入任何外来血缘,在封闭条件下交配繁殖,从而保持群体的一般遗传特性,又具有杂合性的一个实验动物种群。我国制定的标准作如下定义:以非近亲交配方式进行繁殖生产的一个实验动物种群,在不从其外部引入新个体的条件下,至少连续繁殖4代以上,称为一个封闭群,或叫远交群。 5.诱发性动物模型:是指使用物理、化学、生物等致病因素作用于动物,造成动物组织、器官或全身一定的损害,出现某些类似人类疾病的功能、代谢或形态性结构方面的病变,即人为地诱发动物产生类似人类疾病的动物模型。

常用疾病动物模型

常用疾病动物模型 丰核可以为广大客户提供各种疾病动物模型定制服务,同时提供相关疾病模型的药物敏感性实验分析服务。 客户只需要提供疾病模型的用途及建模方法的选择,我们会根据客户的具体要求量身定做各种动物模型服务。

4. 其他皮下肿瘤小鼠小鼠 或裸 鼠 同上,可采用人源肿瘤细胞,更 加贴近实际 12天 (八)心血管疾病模型 1. 动脉粥样硬化(高脂高胆固醇+维生素D喂养)兔高脂、高胆固醇饲喂兔造模,成 膜后血脂变化显著,为伴高血脂 症的动脉粥样硬化 4月血管组织病 理切片染色 2. 主动脉粥样硬化(高脂高胆固醇+主动脉球囊损伤)兔此模型用大球囊损伤加高脂饲 养方法成功建立兔主动脉粥样 硬化狭窄的动物模型,为相关基 础研究提供可靠模型。 2月动物实验模型病理切片展示 一、CCl4诱导的肝脏纤维化 简介:肝纤维化是肝细胞坏死或损伤后常见的反应,是诸多慢性肝脏疾病发展至肝硬化过程中的一个中间环节。肝纤维化的形成与坏死或炎症细胞释放的多种细胞因子或脂质过氧化产物密切相关。CCl4为一种选择性肝毒性药物,其进入机体后在肝活化成自由基,如三氯甲基自由基,后者可直接损伤质膜,启动脂质过氧化作用,破坏肝细胞的模型结构等,造成肝细胞变性坏死和肝纤维化的形成。通过CCl4复制肝纤维化动物模型通常以小鼠或大鼠为对象,染毒途径主要为灌胃、腹腔注射或皮下注射。 动物模型图. 经过3个月的CCl4注射造模,小鼠的肝脏在中央静脉区形成了比较明显的肝纤维化,中央静脉之间形成了纤维桥接。(Masson染色)

二、CXCL14诱导的急性肝损伤动物模型 简述:CCl4是最经典的药物性肝损伤造模毒素之一,其在肝主要被微粒体细胞色素P450氧化酶代,产生三氯甲烷自由基和三氯甲基过氧自由基,从而破坏细胞膜结构和功能的完整性,引起肝细胞膜的通透性增加,可溶性酶的大量渗出,最终导致肝细胞死亡,并引发肝脏衰竭。根据CCl4代和肝毒性机制可复制不同的肝损伤模型,其中给药剂量和给药方法是其技术关键。对于复制急性肝衰竭动物模型,往往采用大剂量一次性灌胃或腹腔注射给药。 图. (A) CCl4注射后0.5 d的HE染色表明CXCL14过表达增加了肝脏组织的嗜酸性变性面积(在照片中用虚线标记)(p < 0.05)。 (B) 1.5天组织样本的HE染色表明CXCL14过表达造成了比对照组更大面积的细胞坏死(p < 0.05)。 (C)同时还造成了中央静脉周围肝细胞中明显的脂肪滴积累。图中P和C分别表示动物模型的门静脉和中央静脉。KU指凯氏活性单位。 细胞凋亡检测结果TUNEL标记没有显示CXCL14免疫中和小鼠

疾病动物模型

疾病动物模型 1 复制方法和应用 动物疾病模型的复制,是用人为的方法,使动物在一定的致病因素(物理的、化学的、生物的)作用下,造成动物组织、器官或全身一定损害,出现某些类似人类疾病的功能、代谢、形态结构方面的变化或各种疾病,通过这种手段来研究人类疾病的发生、发展规律,为研究人类疾病的预防、治疗(包括新药物试用)提供理论依据。所以动物疾病模型的复制,在医学科学研究中占有十分重要的地位。 目前我国生物医学科学研究中,动物疾病模型主要用于三个方面:即实验生物学、实验病理学和实验治疗学(新药筛选亦属于实验治疗学范畴)。由于研究目的不同,对于疾病模型的要求也有所区别。如实验病理学,它着重于研究用某种特定方法复制出某些疾病。整个疾病复制过程,就是它的研究内容,目的是通过疾病的复制去探讨疾病的病因学和发病原。而实验治疗学则完全不同,疾病的复制仅是它研究的开始,因为它的主要目的是为了阐明在该病的发生发展过程中,某些治疗措施或药物的疗效如何。 诱发性动物模型的复制方法不外是用生物的、物理的、化学的和各种环境因子作用于动物而产生。 生物学因素包括细菌、病毒、寄生虫、细胞、生物毒素、激素等各种致病原,通过接种而使正常动物发生疾病。如接种细菌、病毒于敏感动物使其产生各种传染病。目前已知的150余种人畜共患病提供了极有意义的传染病材料。从流行病学、病理学或并发症等不同角度研究,首先要充分了解动物与人在疾病易感性和临床表现等方面的同异处。例如轮状病毒可引起婴儿急性坏死性肠类,犬感染轮状病毒后的表现只是亚临床的。然而严重威胁幼犬的肠道病毒是细小病毒,而人对细小病毒则并不易感。 物理因素是多方面的。例如在机械力作用下产生各种外伤性脑损伤、骨折等模型,气压变动复制高空病、潜水病;温度改变产生各种烧伤和冻伤;放射线照射可复制各型放射病,引起免疫功能抑制或诱发Spragae-Dawley系大鼠乳腺癌;闪光刺激诱发癫痫模型;噪音刺激引起听源性高血压及改变行为记忆功能等。复制各种模型时必须严格考虑不同对象应采用的不同的刺激强度、频率和作用时间,即按设计要求摸索有关实验条件。例如用扩张的气囊在颅内加压制作急性颅内压增高症动物模型时,应该按不同压力梯度通过几小时逐步加压,待脑的顺应性发生改变后才出现临床“脑缺血-脑水肿”的恶性循环。盲目加压会急速发生脑疝死亡,不可能复制出脑水肿对机体代偿和失代偿的病理生理过程,这样的模型会丧失或缺乏临床研究的价值。

相关文档