文档库 最新最全的文档下载
当前位置:文档库 › 函数、极限、连续重要概念公式定理精编版

函数、极限、连续重要概念公式定理精编版

函数、极限、连续重要概念公式定理精编版
函数、极限、连续重要概念公式定理精编版

一、函数、极限、连续重要概念公式定理

(一)数列极限的定义与收敛数列的性质

数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有

n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞

=.若

{}n x 的极限不存在,则称数列{}n x 发散.

收敛数列的性质:

(1)唯一性:若数列{}n x 收敛,即lim n n x A →∞

=,则极限是唯一的.

(2)有界性:若lim n n x A →∞

=,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤.

(3)局部保号性:设lim n n x A →∞

=,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或.

(4)若数列收敛于A ,则它的任何子列也收敛于极限A .

(二)函数极限的定义

(三)函数极限存在判别法 (了解记忆)

1.海涅定理:()0

lim x x f x A →=?对任意一串0n x x →()0,1,2,

n x x n ≠=,都有

()l i m n n f

x A →∞

=

2.充要条件:(1)()()0

lim ()lim lim x x x x x x f x A f x f x A +-

→→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞

→+∞

→-∞

=?==.

3.柯西准则:()0

lim x x f x A →=?对任意给定的0ε>,存在0δ>,当

100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<.

4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0

lim ()lim (),x x x x x x A ?φ→→==则

lim ()x x f x A →=.

5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在

常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞

存在.

(四)无穷小量的比较 (重点记忆)

1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==.

(1)若()

lim

0()

x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)()

lim ,())()

x x x x ααββ=∞若则是比(低阶的无穷小量. (3)()

lim (0),())()

x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)()

lim 1,())()

x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)()

lim

(0),0,())()

k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时,

sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ???

??

?

?

?

+?

-??

()

2

11c o s ~2(1)1~x x x x ααα-+-

是实常数 (五)重要定理 (必记内容,理解掌握)

定理1 0

00lim ()()()x x f x A f x f x A -+→=?==.

定理2 0

lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中.

定理3 (保号定理):0

lim (),0(0),0x x f x A A A δ→=>设又或则一个,当

000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或.

定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ?φ≤≤(,且

lim ()lim (),x x x x x x A ?φ→→==则0

lim ()x x f x A →=.

定理6 无穷小量的性质:

(1)有限个无穷小量的代数和为无穷小量; (2)有限个无穷小量的乘积为无穷小量; (3)无穷小量乘以有界变量为无穷小量.

定理7 在同一变化趋势下,无穷大量的倒数为无穷小量;非零的无穷小量的倒数为无穷大量. 定理8 极限的运算法则:设()()lim ,lim f x A g x B ==,则 (1)lim(()())f x g x A B ±=± (2)lim ()()f x g x A B =? (3)()lim

(0)()f x A

B g x B

= ≠ 定理9 数列的极限存在,则其子序列的极限一定存在且就等于该数列的极限. 定理10 初等函数在其定义域的区间内连续. 定理11 设()f x 连续,则()f x 也连续.

(六)重要公式 (重点记忆内容,应考必备)

(1)0sin lim

1x x

x

→=

(2)1

1lim(1)e,lim(1)e n x

x n x n

→→∞

+=+=.(通过变量替换,这两个公式可写成更加一般的形式:设

()lim 0f x =,且()0f x ≠则有()()

sin lim

1f x f x =,()()

1

lim 1f x f x e +=????

)

(3)10110

10

01

10,lim

,,n n n n m m x m m n m

a x a x a x a a n m

b b x b x b x b n m

---→∞-?

++++?= =?++++??∞ >?.

(4)函数()f x 在0x x =处连续()()()000f x f x f x -+?==. (5)当x →+∞时,以下各函数趋于+∞的速度

()ln ,0,(1),a x x

x x a a a x >>→+∞速度由慢到快

()ln ,0,(1),!,a n n

n n a a a n n >>→+∞速度由慢到快

(6)几个常用极限

)01,n a >=

1,n = lim arctan 2

x x π

→+∞

=

lim arctan 2

x x π

→-∞

=-

lim arccot 0,x x →+∞

= lim arccot x x π→-∞

=

lim e 0,x x →-∞

= lim e ,x x →+∞

=∞ 0

lim 1x x x +

→=. (七)连续函数的概念

1. ()f x 在0x x =处连续,需满足三个条件:

()f x 在点0x 的某个领域内有定义

②()f x 当0x x →时的极限存在

③()()0

0lim x x f x f x →=()()0000lim lim 0x x x y f x x f x ?→→??=+?-=????. 2. ()f x 在0x 左连续:()f x 在(]00,x x δ-内有定义,且()()0

0lim x x f x f x -

→=. 3. ()f x 在0x 右连续:()f x 在[)00,x x δ+内有定义,且()()0

0lim x x f x f x +

→=. 4. ()f x 在(),a b 内连续:如果()f x 在(),a b 内点点连续.

5. ()f x 在[],a b 内连续:如果()f x 在(),a b 内连续,且左端点x a =处右连续,右端点x b =处左连续.

(八)连续函数在闭区间上的性质 (重点记忆内容)

1.有界性定理:设函数()f x 在[],a b 上连续,则()f x 在[],a b 上有界,即?常数0M >,对任意的

[],x a b ∈,恒有()f x M ≤.

2.最大最小值定理:设函数()f x 在[],a b 上连续,则在[],a b 上()f x 至少取得最大值与最小值各一次,即,ξη?使得:

()(){}[]max ,,a x b

f f x a b ξξ≤≤=∈; ()(){}[]m i n ,,a x b

f f x

a b ηη≤≤=∈. 3.介值定理:若函数()f x 在[],a b 上连续,μ是介于()f a 与()f b (或最大值M 与最小值m )之间的任一实数,则在[],a b 上至少?一个ξ,使得

()().f a b ξμξ=≤≤.

4.零点定理:设函数()f x 在[],a b 上连续,且()()0f a f b ?<,则在(),a b 内至少?一个ξ,使得

()()0.f a b ξξ=<<

(九)连续函数有关定理

1.连续函数的四则运算:连续函数的和、差、积、商(分母在连续点处的数值不为零)仍为连续函数. 2.反函数的连续性:单值、单调增加(减少)的连续函数,其反函数在对应区间上也单值、单调增加(减少)且连续.

3.复合函数的连续性:()u x ?=在点0x 连续,()00x u ?=,而函数()y f u =在点0u 连续,则复合函数

()y f x ?=????在点0x 连续.

4.初等函数的连续性:一切初等函数在其定义区间内是连续函数.

(十)间断点的定义及分类

1.定义:若在0x x =处,()0

lim x x f x →不存在,或()0f x 无定义,或()()0

0lim x x f x f x →≠,则称()f x 在0x x =处间

断,0x x =称为()f x 的间断点.

2.间断点的分类

一、函数、极限、连续

(一)数列极限的定义与收敛数列的性质

数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有

n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞

=.若

{}n x 的极限不存在,则称数列{}n x 发散.

收敛数列的性质:

(1)唯一性:若数列{}n x 收敛,即lim n n x A →∞

=,则极限是唯一的.

(2)有界性:若lim n n x A →∞

=,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤.

(3)局部保号性:设

lim n n x A →∞

=,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或.

(4)若数列收敛于A ,则它的任何子列也收敛于极限A .

(了解记忆)

1.海涅定理:()0

lim x x f x A →=?对任意一串0n x x →()0,1,2,

n x x n ≠=,都有

()l i m n n f

x A →∞

=

2.充要条件:(1)()()0

lim ()lim lim x x x x x x f x A f x f x A +-

→→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞

→+∞

→-∞

=?==.

3.柯西准则:()0

lim x x f x A →=?对任意给定的0ε>,存在0δ>,当

100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<.

4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0

lim ()lim (),x x x x x x A ?φ→→==则

lim ()x x f x A →=.

5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在

常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞

存在.

(四)无穷小量的比较 (重点记忆)

1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==.

(1)若()

lim

0()

x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)()

lim ,())()

x x x x ααββ=∞若则是比(低阶的无穷小量. (3)()

lim (0),())()

x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)()

lim 1,())()

x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)()

lim

(0),0,())()

k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量

2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时,

sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ???

??

??

?

+?

-??

()

2

11c o s ~2

(1)1~x x

x x ααα-+-

是实常数 (五)重要定理 (必记内容,理解掌握)

定理1 0

00lim ()()()x x f x A f x f x A -+→=?==.

定理2 0

lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中.

定理3 (保号定理):0

lim (),0(0),0x x f x A A A δ→=>设又或则一个,当

000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或.

定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ?φ≤≤(,且

lim ()lim (),x x x x x x A ?φ→→==则0

lim ()x x f x A →=.

定理6 无穷小量的性质:

(1)有限个无穷小量的代数和为无穷小量; (2)有限个无穷小量的乘积为无穷小量; (3)无穷小量乘以有界变量为无穷小量.

定理7 在同一变化趋势下,无穷大量的倒数为无穷小量;非零的无穷小量的倒数为无穷大量. 定理8 极限的运算法则:设()()lim ,lim f x A g x B ==,则 (1)lim(()())f x g x A B ±=± (2)lim ()()f x g x A B =? (3)()lim

(0)()f x A

B g x B

= ≠ 定理9 数列的极限存在,则其子序列的极限一定存在且就等于该数列的极限. 定理10 初等函数在其定义域的区间内连续. 定理11 设()f x 连续,则()f x 也连续.

(六)重要公式 (重点记忆内容,应考必备)

(1)0sin lim

1x x

x

→=

(2)1

1lim(1)e,lim(1)e n x

x n x n

→→∞

+=+=.(通过变量替换,这两个公式可写成更加一般的形式:设

()lim 0f x =,且()0f x ≠则有()()

sin lim

1f x f x =,()()

1

lim 1f x f x e +=????

)

(3)10110

10

01

10,lim

,,n n n n m m x m m n m

a x a x a x a a n m

b b x b x b x b n m

---→∞-?

++++?= =?++++??∞ >?.

(4)函数()f x 在0x x =处连续()()()000f x f x f x -+?==. (5)当x →+∞时,以下各函数趋于+∞的速度

()ln ,0,(1),a x x

x x a a a x >>→+∞速度由慢到快

()ln ,0,(1),!,a n n

n n a a a n n >>→+∞速度由慢到快

(6)几个常用极限

)01,n a >=

1,n = lim arctan 2

x x π

→+∞

=

lim arctan 2

x x π

→-∞

=-

lim arccot 0,x x →+∞

= lim arccot x x π→-∞

=

lim e 0,x x →-∞

= lim e ,x x →+∞

=∞ 0

lim 1x x x +

→=. (七)连续函数的概念

1. ()f x 在0x x =处连续,需满足三个条件:

()f x 在点0x 的某个领域内有定义

②()f x 当0x x →时的极限存在

③()()0

0lim x x f x f x →=()()0000lim lim 0x x x y f x x f x ?→→??=+?-=????. 2. ()f x 在0x 左连续:()f x 在(]00,x x δ-内有定义,且()()0

0lim x x f x f x -

→=. 3. ()f x 在0x 右连续:()f x 在[)00,x x δ+内有定义,且()()0

0lim x x f x f x +

→=. 4. ()f x 在(),a b 内连续:如果()f x 在(),a b 内点点连续.

5. ()f x 在[],a b 内连续:如果()f x 在(),a b 内连续,且左端点x a =处右连续,右端点x b =处左连续.

(八)连续函数在闭区间上的性质 (重点记忆内容)

1.有界性定理:设函数()f x 在[],a b 上连续,则()f x 在[],a b 上有界,即?常数0M >,对任意的

[],x a b ∈,恒有()f x M ≤.

2.最大最小值定理:设函数()f x 在[],a b 上连续,则在[],a b 上()f x 至少取得最大值与最小值各一次,

即,ξη?使得:

()(){}[]max ,,a x b

f f x a b ξξ≤≤=∈; ()(){}[]m i n ,,a x b

f f x

a b ηη≤≤=∈. 3.介值定理:若函数()f x 在[],a b 上连续,μ是介于()f a 与()f b (或最大值M 与最小值m )之间的任一实数,则在[],a b 上至少?一个ξ,使得

()().f a b ξμξ=≤≤.

4.零点定理:设函数()f x 在[],a b 上连续,且()()0f a f b ?<,则在(),a b 内至少?一个ξ,使得

()()0.f a b ξξ=<<

(九)连续函数有关定理

1.连续函数的四则运算:连续函数的和、差、积、商(分母在连续点处的数值不为零)仍为连续函数. 2.反函数的连续性:单值、单调增加(减少)的连续函数,其反函数在对应区间上也单值、单调增加(减少)且连续.

3.复合函数的连续性:()u x ?=在点0x 连续,()00x u ?=,而函数()y f u =在点0u 连续,则复合函数

()y f x ?=????在点0x 连续.

4.初等函数的连续性:一切初等函数在其定义区间内是连续函数.

(十)间断点的定义及分类

1.定义:若在0x x =处,()0

lim x x f x →不存在,或()0f x 无定义,或()()0

0lim x x f x f x →≠,则称()f x 在0x x =处间

断,0x x =称为()f x 的间断点.

2.间断点的分类

关于大学高等数学函数极限和连续

关于大学高等数学函数极 限和连续 Last revision on 21 December 2020

第一章 函数、极限和连续 § 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ? ? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D内严格单调增加( ); 若f(x1)>f(x2), 则称f(x)在D内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x∈(-∞,+∞) 周期:T——最小的正数 4.函数的有界性: |f(x)|≤M , x∈(a,b) ㈢基本初等函数 1.常数函数: y=c , (c为常数) 2.幂函数: y=x n , (n为实数) 3.指数函数: y=a x , (a>0、a≠1) 4.对数函数: y=log x ,(a>0、a≠1) a 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x∈X 2.初等函数:

三角函数的基本概念与诱导公式

三角函数的概念、基本关系式及诱导公式 一、角的相关概念 1、按旋转方向的不同形成_________,___________,___________ 2、终边位置的不同形成__________,__________,____________ 例如:第一象限角的集合________________ 终边在y 轴上角的集合_________________ 终边在x 轴上角的集合_________________ 3、终边相同的角的集合________________ 4、注意第一象限角、锐角的不同,钝角与第二象限角的不同 5、已知α是第二象限的角,则 2 α是第几象限的角? 二、弧度制与角度制: 1、弧度制的定义:圆周上弧长等于_______的弧所对的圆心角的大小为1弧度(1rad ) 2、 3602=π 180=π _______1=rad rad _______1= 弧度制与角度制的换算_________________________________ 3、扇形的弧长、面积公式 ____________________________________________ 例1、已知一扇形周长为)0(>C C ,当扇形中心角为多少弧度时,它的面积最大? 例2、扇形中心角为 120,则扇形面积与其内切圆的面积之比为_____________ 三、任意角的三角函数: 1、定义:设α是一个任意角,α的终边上任一点),(y x P O 为坐标原点,则 )(022y x r r OP +=>=则 r y = αsin r x =αcos x y =αtan y r =αcsc _____sec =α _____cot =α 实质是____________________ 2、三角函数的符号___________________________ 3、特殊角的三角函数值: ___________________________________________________________ 四、单位圆与三角函数线: 1、第Ⅰ、Ⅱ、Ⅲ、Ⅳ象限的角的三角函数线 2、三角函数线的应用——用来解决三角不等式

三角函数基本概念

三角函数基本概念 1.角的有关概念 (1)从运动的角度看,角可分为正角、负角和零角.(2)从终边位置来看,可分为象限角和轴线角. (3)若α与β是终边相同的角,则β可用α表示为S ={β|β=α+k ·360°,k ∈Z }(或{β|β=α+2k π,k ∈Z }). 2.象限角 3.弧度与角度的互化 (1)1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示. (2)角α的弧度数:如果半径为r 的圆的圆心角α所对弧的长为l ,那么l =rα,角α的弧度数的绝对值是|α| = l r . (3)角度与弧度的换算①1°=π 180rad ;②1 rad =?π 180 (4)弧长、扇形面积的公式:设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,又l =rα,则扇形的面积为 S =12lr =12 |α|·r 2 . 4.任意角的三角函数 三角函数 正弦 余弦 正切 定义 设是一个任意角,它的终边与单位圆交于点P (x ,y ),那么 y 叫做的正弦,记作sin x 叫做的余弦,记作cos x y 叫做的正切,记作tan α 三角函数 正弦 余弦 正切 各象限符号 Ⅰ 正 正 正 Ⅱ 正 负 负 Ⅲ 负 负 正 Ⅳ 负 正 负 各象限符号 口诀 一全正,二正弦,三正切,四余弦 5.三角函数线 设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cosα,sinα),即P(cosα,sinα),其中cosα=OM ,sinα=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tanα=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.

上海教材三角函数的概念、性质和图象

三角函数的概念、性质和图象 复习要求(以下内容摘自《考纲》) 1. 理解弧度的意义,并能正确进行弧度和角度的换算. 2. 掌握任意角的三角函数的定义、三角函数的符号、特殊角的三角函数值、三角函数的性质、同角三角函数的关系式与诱导公式,了解周期函数和最小正周期的意义.会求y =A sin(ωx +?)的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,能运用上述三角公式化简三角函数式,求任意角的三角函数值与证明较简单的三角恒等式. 3. 了解正弦、余弦、正切、余切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数y =A sin(ωx +?)的简图,并能解决与正弦曲线有关的实际问题. 4.正弦函数、余弦函数的对称轴,对称点的求法。 5.形如y x y y x y cos sin cos sin -=+=或 的辅助角的形式,求最大、最小值的总题。 6.同一问题中出现y x y x x x cos sin ,cos sin ,cos sin ?-+,求它们的范围。如求y x y x y cos sin cos sin ?++=的值域。 7.已知正切值,求正弦、余弦的齐次式的值。 如已知求,2tan =x 4cos cos sin 2sin 22++?+y y x x 的 8 正弦定理:)R R C c swinB b A a 为三角形外接圆的半径(2sin sin === C B A c b a s i n :s i n :s i n ::= 余弦定理:A ab c b a cos 2222-+=,…ab a c b A 2cos 2 22-+= 可归纳为表9-1. 表9-1 三角函数的图象三、主要内容及典型题例 三角函数是六个基本初等函数之一,三角函数的知识包括三角函数的定义、图象、性质、

数学分析习作-数列极限与函数极限的异同

云南大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 姓名、学号: 任课教师: 时间: 2009-12-26 摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的 重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基 础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用 的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知 识;

在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数: a、数列的定义:数列是指按自然数编了号的一串数:x1,x2,x3,…,x n,…. 通常记作{x n},也可将其看作定义在自然数集N上的函数x n=N (, ), n n f∈故也称之为整标函数。 b、函数的定义:如果对某个范围X内的每一个实数x,可以按照确定的规律f, 得到Y内唯一一个实数y和这个x对应,我们就称f是X上的函数,它在x的数值(称为函数值)是y,记为) f y=。 (x (x f,即) 称x是自变量,y是因变量,又称X是函数的定义域,当x遍取X内的所有实数时,在f的作用下有意义,并且相应的函数值) f的全体所组成的范围叫作 (x

函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一) 数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 >n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβn n n n n n n n n n n 1 95) 423(310 531423222 222. 故,

高等数学函数极限练习题

设 f ( x ) 2 x , 求 f ( x ) 的 定 义 域 及 值 域 。 1 x 设 f ( x) 对一切实数 x 1, x 2 成立 f ( x 1 x 2 ) f ( x 1 ) f ( x 2 ),且 f (0 ) 0, f (1) a , 求 f (0 )及 f ( n).(n 为正整数 ) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 f ( x) 表 示 将 x 之 值 保 留 二 位小数,小数第 3 位起以后所有数全部舍去,试用 表 示 f ( x) 。 I ( x) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 g ( x) 表 示 将 x 依 4 舍 5 入 法 则 保 留 2 位 小 数 , 试 用 I ( x) 表 示 g ( x) 。 在某零售报摊上每份报纸的进价为 0.25 元,而零售价为 0.40 元,并且如果报纸当天未售 出 不 能 退 给 报 社 ,只 好 亏 本 。若 每 天 进 报 纸 t 份 ,而 销 售 量 为 x 份 ,试 将 报 摊 的 利 润 y 表 示 为 x 的函数。 定义函数 I ( x)表示不超过 x 的最大整数叫做 x 的取整函数,试判定 ( x) x I ( x )的周期性。 判定函数 x x ln( 1 x x )的奇偶性。 f ( x ) ( e 1) 设 f ( x ) e x sin x , 问 在 0 , 上 f ( x ) 是 否 有 界 ? 函 数 y f ( x ) 的 图 形 是 图 中 所 示 的 折 线 O BA , 写 出 y f ( x) 的 表 达 式 。 x 2 , 0 x ; x , x ; 设 f ( x) 2 ( x) 0 4 求 f ( x ) 及f ( x ) . x x 4 x x , . , . 2 2 2 4 6 设 f ( x ) 1, x 0 ; ( x ) 2 x 1, 求 f ( x ) 及 f ( x) . 1 , x 0 . e x , x ; 0 , x 0 ; 设 f ( x ) 求 f ( x )的反函数 g ( x ) 及 f ( x ) . x x ( x) x 2, x 0 , . . 1 x ) , ( x ) x , x 0 ; 求 f ( x ) . 设 f ( x )( x x 2 , x 2 0 . 2 x , x 0 ; 求 f f ( x ) 设 f ( x ) x 0. . 2 , 0 , x ; x , x ; ( x ) 求 f ( x) ( x ). 设 f ( x ) x , x 0 . x , x . 1

-高中三角函数知识点复习总结

第四章 三角函数 一、三角函数的基本概念 1.角的概念的推广 (1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:)(3600Z k k ∈+?=αβ (3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量 (1)角度制与弧度制的概念 (2)换算关系:8157)180(1) (180'≈==οο ο π π弧度弧度 (3)弧长公式:r l ?=α 扇形面积公式:22 1 21r lr S α== 3.任意角的三角函数 y x x y x r r x y r r y = ===== ααααααcot tan sec cos csc sin 注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式 (一) 诱导公式: α±? 2 k )(Z k ∈与α的三角函数关系是“立变平不变,符号 看象限”。如: ()?? ? ??--??? ??+απαπαπ25sin ;5tan ,27cos 等。 (二) 同角三角函数的基本关系式:①平方关系1 cos sin 22 =+αα; α ααα22 22tan 11cos cos 1tan 1+=?= +②商式关系 α α α tan cos sin =;αααcot sin cos =③倒数关系1cot tan =αα;1sec cos ;1csc sin ==αααα。 (三) 关于公式1cos sin 22 =+αα的深化

() 2 cos sin sin 1ααα±=±; α ααcos sin sin 1±=±; 2 cos 2 sin sin 1α α α+=+ 如: 4cos 4sin 4cos 4sin 8sin 1--=+=+;4cos 4sin 8sin 1-=- 注:1、诱导公式的主要作用是将任意角的三角函数转化为ο0~ο90角的三角函数。 2、主要用途: a) 已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的范围,②用三角函数的定义求解会更方便); b) 化简同角三角函数式; 证明同角的三角恒等式。 三、两角和与差的三角函数 (一)两角和与差公式 ()βαβαβαsin cos cos sin sin ±=± ()β αβαβαsin sin cos cos cos μ=± ()β αβ αβαtan tan 1tan tan tan μ±= ± (二)倍角公式 1、公式βαα cos sin 22sin = cos 2α= 2 2cos 1α + sin 2α= 2 2cos 1α - ααααα2222sin 211cos 2sin cos 2cos -=-=-= α αα2tan 1tan 22tan -= α α ααα sin cos 1cos 1sin 2 tan -= += )sin(cos sin 22?ααα++=+b a b a )sin ,(cos 2 2 2 2 b a a b a b += += ?? 注: (1)对公式会“正用”,“逆用”,“变形使用”。(2)掌握“角的演变”规律(3)将公式和其它知识衔接起来使用。(4)倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。 2、两角和与差的三角函数公式能够解答的三类基本题型: (1)求值 ①“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角 ②“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解 ③ “给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。 ④ “给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之 三角函数式常用化简方法:切割化弦、高次化低次 注意点:灵活角的变形和公式的变形, 重视角的范围对三角函数值的影响,对角的范围要讨论

数学分析习作-数列极限及函数极限的异同

XX大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 、学号: 任课教师: 时间:2009-12-26摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的

重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知识;在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数:

a 、数列的定义:数列是指按自然数编了号的一串数:x 1,x 2,x 3,…,x n ,…. 通常记作{x n },也可将其看作定义在自然数集N 上的函数x n =N n n f ∈),(, 故也称之为整标函数。 b 、函数的定义:如果对某个围X 的每一个实数x ,可以按照确定的规律f ,得到Y 唯 一一个实数y 和这个x 对应,我们就称f 是X 上的函数,它在x 的数值(称为函数值)是y ,记为)(x f ,即)(x f y =。 称x 是自变量,y 是因变量,又称X 是函数的定义域,当x 遍取X 的所有实数 时,在f 的作用下有意义,并且相应的函数值)(x f 的全体所组成的围叫作函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一)数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 > n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβ

高等数学1.3-函数的极限

第三节 函数的极限(一) 教学目的:(1)理解函数极限和左、右极限的概念; (2)理解无穷小概念,掌握其性质 教学重点:函数极限的概念,无穷小概念 教学难点:函数极限的概念的理解与应用 教学方法:讲授法 教学时数:2课时 本节我们将数列极限的概念推广到一元实值函数,然后研究函数极限的性质及其运算法则. 一、函数极限的概念 1.自变量x 趋于无穷大时函数的极限 1)+∞→x 时的极限: +∞→x 读作“x 趋于正无穷大”,表示x 无限增加,0x > . 例:对于x x f 1)(= ,当自变量+∞→x 时,x x f 1 )(=与常数0无限接近 . 复习数列极限的定义:数列{}n x 以a 为极限即a x n n =∞ →lim ? 0>?ε,N ?,N n >时,ε<-a x n . 令()n f x n =,则()?=∞ →a n f n lim 0>?ε,N ?,当N n >时,()ε<-a n f .将n 换成连续变量x ,将a 改记为A ,就可以得到x →+∞时,()A x f →的极限的定义及其数学上的精确描述 . 定义3.1:设函数)(x f 在),(+∞a 内有定义,,A ∈若0>?ε,0X ?>,当x X >时,有()ε<-A x f ,则称数A 为函数()x f 当x →+∞时的极限,记作()lim x f x A →+∞ =, 或()A x f →,(x →+∞) . 几何意义:对任意给定的0ε>,在轴上存在一点X ,使得函数的图象 {(,)|(),(,)}x y y f x x a =∈+∞在X 右边的部分位于平面带形),(),(εε+-?+∞A A X 内 . 2)x →-∞时的极限: x →-∞读作“x 趋于负无穷大”,表示x 无限增加,0x < . 定义:设函数)(x f 在),(a -∞内有定义,,A ∈若0>?ε,0X ?>,当x X <-时,有()ε<-A x f ,则称数A 为函数()x f 当x →-∞时的极限,记作()lim x f x A →-∞ =

5.2 三角函数的概念(解析版).docx

5.2 三角函数的概念 A 组-[应知应会] 1.(2020·周口市中英文学校高一期中)已知角α终边经过点122P ?? ? ??? ,则 cos α=( ) A . 1 2 B C D .12 ± 【参考答案】B 【解析】由于1,r OP x === ,所以由三角函数的定义可得cos x r α==,应选参考答案B . 2.(2019·渝中·重庆巴蜀中学高一期末)若cos 0θ<,cos sin θθ-=那么θ的( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 【参考答案】C 【解析】由题意得sin cos θθ==-, 即cos sin sin cos θθθθ-=-,所以sin θcos θ 0,即sin cos θθ≤,又cos 0θ<,所以sin 0,θ<θ位于第三象限,故选C. 3.若α为第二象限角,则下列各式恒小于零的是( ) A .sin cos αα+ B .tan sin αα+ C .cos tan αα- D .sin tan αα- 【参考答案】B 【分析】画出第二象限角的三角函数线,利用三角函数线判断出sin tan 0αα+<,由此判断出正确选项. 【解析】如图,作出sin ,cos ,tan ααα的三角函数线,显然~OPM OTA ??,且MP AT <,∵0MP >,0AT <,∴MP AT <-.∴0MP AT +<,即sin tan 0αα+<.故选B. 4.若角α的终边经过点()() sin 780,cos 330P ?-?,则sin α=( ) A B . 12 C D .1 【参考答案】C 【分析】利用诱导公式化简求得P 点的坐标,在根据三角函数的定义求得sin α的值.

三角函数基本概念和表示

第三章三角函数 第一节三角函数及概念 复习要求: 1.任意角、弧度 了解任意角的概念和弧度制,能进行弧度与角度的互化; 2.三角函数 (1)借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义; (2)借助单位圆中的三角函数线推导出诱导公式。 知识点: 1.任意角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止 位置,就形成角。旋转开始时的射线叫做角的始边,叫终边,射 线的端点叫做叫的顶点。 2.角的分类 为了区别起见,我们规定: 按逆时针方向旋转所形成的角叫正角, 按顺时针方向旋转所形成的角叫负角。如果一条射线没有做任何旋转,我们称它为零角。 3.象限角 角的顶点与原点重合,角的始边与轴的非负半轴重合。那么,角的终边(除端点外)落在第几象限,我们就说这个角是第几象限角。 (1)第一象限角的集合: |22, 2 k k k Z π απαπ ?? <<+∈ ???? (2)第二象限的集合:。 O

(3)第三象限角的集合: 。 (4)第四象限角的集合: 4.轴线角 角的顶点与原点重合,角的始边与轴的非负半轴重合。若角的终边落在坐标轴上,称这个角为轴线角。它不属于任何象限,也称为非象限角。 5.终边相同的角 所有与角α终边相同的角连同角α在内,构成的角的集合,称之为终边相同的角。记为: {} |360,S k k Z ββα==+?∈或 {} |2,S k k Z ββαπ==+∈。它们彼此相差 2()k k Z π∈,根据三角函数的定义知,终边相同的角的各种三角函数值都相等。 6.区间角 区间角是指介于两个角之间的所有角,如5| ,6 666π πππααα? ??? =≤≤ =????? ???。 7,角度制与弧度制 角度制:规定周角的1 360为1度的角,记作0 1,它不会因圆的大小改变而改变, 与r 无关 弧度制:长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad 或1弧度或1(单位可以省略不写)。 角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。 8.角的度量 (1)角的度量制有:角度制,弧度制 (2)换算关系:角度制与弧度制的换算主要抓住180rad π=o 。

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

高等数学函数极限练习试题

设x x x f += 12)(,求)(x f 的定义域及值域。 ,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。 在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。 的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。)()(x I x x -=? 的奇偶性。 判定函数)1ln()1()(x x e x f x x -+?-=+ [ )设,问在,上是否有界?f x e x f x x ()sin ()=+∞0 函数的图形是图中所示的折线,写出的表达式。y f x OBA y f x ==()() ???≤≤-<≤=????≤≤+<≤=., ; ,.,;, 设64240)(42220)(2 x x x x x x x x x x f [][].及求)()(x f x f ?? [][]设,; ,. ,求及.f x x x x x f x f x ()()()()=-≤>???=-101021??? ???>-≤=????>≤-=. ,; ,., ;,设000)(00)(2 x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ? []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥???1 2002?? []设,; , .求.f x x x x f f x ()()=+<≥???2020 .求.,; ,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ?+? ??≥<+=????≥<=

三角函数知识点汇总

1三角函数的概念 【知识网络】 【考点梳理】 考点一、角的概念与推广 1.任意角的概念:正角、负角、零角 2.象限角与轴线角: 与α终边相同的角的集合:},2|{Z k k ∈+=απββ 第一象限角的集合:{|22,}2 k k k Z π βπβπ<<+∈ 第二象限角的集合:{| 22,}2 k k k Z π βπβππ+<<+∈ 第三象限角的集合:3{|22,}2 k k k Z π βππβπ+<<+∈ 第四象限角的集合:3{| 222,}2 k k k Z π βπβππ+<<+∈ 终边在x 轴上的角的集合:{|,}k k Z ββπ=∈ 终边在y 轴上的角的集合:{|,}2 k k Z π ββπ=+∈ 终边在坐标轴上的角的集合:{|,}2 k k Z π ββ=∈ 要点诠释: 要熟悉任意角的概念,要注意角的集合表现形式不是唯一的,终边相同的角不一定相等,但相等的角终边一定相同,还要注意区间角与象限角及轴线角的区别与联系. 三角函数的概念 角的概念的推广、弧度制 正弦、余弦的诱导公式 同角三角函数的基本关系式 任意角的三角函数

考点二、弧度制 1.弧长公式与扇形面积公式: 弧长l r α= ?,扇形面积21 122 S lr r α==扇形(其中r 是圆的半径,α是弧所对圆心角的弧度数). 2.角度制与弧度制的换算: 180π=;180 10.017451()57.305718'180 rad rad rad π π = ≈=≈=; 要点诠释: 要熟悉弧度制与角度制的互化以及在弧度制下的有关公式. 考点三、任意角的三角函数 1. 定义:在角α上的终边上任取一点(,)P x y ,记r OP ==则sin y r α= , cos x r α=, tan y x α=,cot x y α=,sec r x α=,csc r y α= 2. 三角函数线:如图,单位圆中的有向线段MP ,OM ,AT 分别叫做α的正弦线,余弦线,正切线. 3. 三角函数的定义域:sin y α=,cos y α=的定义域是R α∈;tan y α=,sec y α=的定义域是 {|,}2 k k Z π ααπ≠+ ∈;cot y α=,csc y α=的定义域是{|,}k k Z ααπ≠∈. 4. 三角函数值在各个象限的符号: 考点四、同角三角函数间的基本关系式 1. 平方关系:2 2 2222sin cos 1;sec 1tan ;csc 1cot α+α=α=+αα=+α. 2. 商数关系:sin cos tan ;cot cos sin α α α= α= α α . 3. 倒数关系:tan cot 1;sin csc 1;cos sec 1α?α=αα=α?α= 要点诠释: ①同角三角函数的基本关系主要用于:(1)已知某一角的三角函数,求其它各三角函数值;(2)证明三角恒等式;(3)化简三角函数式. ②三角变换中要注意“1”的妙用,解决某些问题若用“1”代换,如2 2 1sin cos =α+α, 221sec tan tan 45=α-α== ,则可以事半功倍;同时三角变换中还要注意使用“化弦法”、消去法 及方程思想的运用. 考点五、诱导公式 1.2(),,,2k k Z πααπαπα+∈-±-的三角函数值等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值所在象限的符号.

高等数学函数与极限试的题目

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1)(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1 -,x ≠0,1,则f [)(1 x f ]= ( ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( ) A ) lim + →x )x 1 +1(x =1 B ) lim + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e 5.已知9)( lim =-+∞→x x a x a x ,则=a ( )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1( lim ( ) A.1; B.∞; C.2 -e ; D.2 e 7.极限:∞ →x lim 3 32x x +=( ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0-+→=( ) A.0; B.∞; C 2 1; D.2.

高数数学极限总结

函数极限总结 一.极限的产生 极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。 极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。 从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。[1] 二.极限知识点总结 1. 极限定义 函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式 时,对应的函数值 都满足不等式: 那么常数A 就叫做函数f(x)?当x →x 0时的极限,记作。[2] 单侧极限:?.左极限:或 ?.右极限:或 定理: 函数当时极限存在的充分必要条件是左、右极限各自存在且相 δ<<|x -x |00ε <-|)(|A x f A x f x x =→)(lim 0 A x f x x =- →)(lim )()(左→→x A x f A x f x x =+ →)(lim )()(右→→x A x f A x f x f A x f x x ==? =+-→)()()(lim 0 )(x f 0x x →

等 即。 2. 极限概念 函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式 时,对应的函数值f(x)都满足不 等式:|f(x)-A|<ε,那么常数A 就叫做函数f(x)当 x →x 。时的极限。 函数极限具有唯一性、局部有限性、局部保号性[2] 3. 存在准则 有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。 准则Ⅰ.如果数列,及满足以下条件: (1)从某项起,即,当时,有; (2);, 那么数列的极限存在,且 准则Ⅰ'如果(1)当(或)时, (2) ,, 那么存在,且等于。 夹逼定理:(1)当时,有??成立 (2) ?,那么,极限存在,且等于A 【准则Ⅰ,准则Ⅰ′合称夹逼定理】 )()()(lim 0 00x f x f x f x x →+-==0,,,x x x x x →-∞→+∞→∞→0x x →{}n x {}n y {}n z +∈?N n 00n n >n n n z x y ≤≤a y n x =∞→lim a z n x =∞ →lim {}n x a x n x =∞ →lim ),(0r x U x ο ∈M x >||)()()(x h x f x g ≤≤A x g x x x =∞→→)(lim ) (0 A x h x x x o =∞→→)(lim ) ()(lim ) (0 x f x x x ∞→→A ),(x 0r x U ο ?()0x f

数学分析下——二元函数的极限课后习题

第二节二元函数的极限 1、试求下列极限(包括非正常极限): (1);(2); (3);(4); (5);(6)(x+y)sin; (7)x2+y2. 2、讨论下列函数在点(0,0)的重极限与累次极限: (1)f(x,y)=;(2)f(x,y)=(x+y)sinsin; (3)f(x,y)=;(4)f(x,y)= ; (5)f(x,y)=ysin;(6)f(x,y)=; (7)f(x,y)=. 。f(x,y)存在且等于A;2。y在b的某邻域内,有f(x,y)= 3、证明:若1 (y)则 f(x,y)=A. 4、试应用ε—δ定义证明 =0. 5、叙述并证明:二元函数极限的唯一性定理、局部有界性定理与局部保号性定理. 6、试写出下列类型极限的精确定义: (1) f(x,y)=A;(2)f(x,y)=A. 7、试求下列极限: (1);(2)(x2+y2)e-(x+y); (3)(1+)xsiny;(4). 8、试作一函数f(x,y)使当x+,y+时, (1)两个累次极限存在而重极限不存在; (2)两个累次极限不存在而重极限存在; (3)重极限与累次极限都不存在; (4)重极限与一个累次极限存在,另一个累次极限不存在. 9、证明定理16.5及其推论3. 10、设f(x,y)在点(x0,y0)的某邻域U。()上有定义,且满足: (i)在U。()上,对每个y≠y0,存在极限f(x,y)=ψ(y); (ii)在U。()上,关于x一致地存在极限f(x,y)=(x)(即对任意ε>0,存在δ>0,当0<|y-y0|<δ时,对所有的x,只要(x,y)∈U。(),都有|f(x,y)-(x)|<成立). 试证明 f(x,y)=f(x,y).

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

相关文档
相关文档 最新文档