文档库 最新最全的文档下载
当前位置:文档库 › 三种重要概率分布的关系及其应用

三种重要概率分布的关系及其应用

三种重要概率分布的关系及其应用
三种重要概率分布的关系及其应用

概率论中几种具有可加性的分布及其关系

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1几种常见的具有可加性的分布 (1) 二项分布 (2) 泊松分布(Possion分布) (3) 正态分布 (4) 伽玛分布 (6) 柯西分布 (7) 卡方分布 (7) 2具有可加性的概率分布间的关系 (8) 二项分布的泊松近似 (8) 二项分布的正态近似 (9) 正态分布与泊松分布间的关系 (10) 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11) 3小结 (12) 参考文献 (12) 致谢 (13)

概率论中几种具有可加性的分布及其关系 摘要概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词概率分布可加性相互独立特征函数 SeveralKindsofProbabilityDstributionanditsRelationshipwithAdd itive 'scentrallimittheorem,andsoon,hascarriedonthedifferentlevelsofdiscussion. KeyWords probabilitydistributionadditivitypropertymutualindependencecharacteristicfunction 引言概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等. 1几种常见的具有可加性的分布 在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]: ①离散场合的卷积公式设离散型随机变量ξζ,彼此独立,且它们的分布列分别是 n k a k P k ,1,0,)(???===ζ和.,,1,0,)(n k b k P k ???===ξ则ξζ?+=的概率分布列可表示为 ②连续场合的卷积公式设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是 )(),(y f x f ξζ,则它们的和ξζ?+=的密度函数如下 其证明如下: ξζ?+=的分布函数是dxdy y f x f z f z F z y x )()()()(ξζ?ξζ??≤+= ≤+= 其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζ?+=的密度函数:

大学概率论与数理统计复习资料

第一章 随机事件及其概率 知识点:概率的性质 事件运算 古典概率 事件的独立性 条件概率 全概率与贝叶斯公式 常用公式 ) ()()()()()2(加法定理AB P B P A P B A P -+= ) ,,() ()(211 1 有限可加性两两互斥设n n i i n i i A A A A P A P ∑===) ,(0 )()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==) ()()()()5(AB P A P B A P B A P -==-) () ()()()(时当A B B P A P B A P B A P ?-==-))0(,,()()/()()()6(211 >Ω=∑=i n n i i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ) ,,()] (1[1)(211 1 相互独立时n n i i n i i A A A A P A P ∏==--=) /()()/()()()4(B A P B P A B P A P AB P ==) (/)()/()3(A P AB P A B P =) () /()() /()()/()7(1 逆概率公式∑== n i i i i i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L A P n r A P ==

应用举例 1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。 2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。 3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。 4、若,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P ( )。 5、,,A B C 是三个随机事件,C B ?,事件()A C B - 与A 的关系是( )。 6、5张数字卡片上分别写着1,2,3,4,5,从中任取3张,排成3位数,则排成3位奇数的概率是( )。 某日他抛一枚硬币决定乘地铁还是乘汽车。 (1)试求他在5:40~5:50到家的概率; (2)结果他是5:47到家的。试求他是乘地铁回家的概率。 解(1)设1A ={他是乘地铁回家的},2A ={他是乘汽车回家的}, i B ={第i 段时间到家的},4,3,2,1=i 分别对应时间段5:30~5:40,5:40~5:50,5:50~6:00,6:00以后 则由全概率公式有 )|()()|()()(2221212A B P A P A B P A P B P += 由上表可知4.0)|(12=A B P ,3.0)|(22=A B P ,5.0)()(21==A P A P 35.05.03.04.05.0)(2=?+?=B P (2)由贝叶斯公式 7 4 35.04.05.0)()()|(22121=?== B P B A P B A P 8、盒中12个新乒乓球,每次比赛从中任取3个来用,比赛 后仍放回盒中,求:第三次比赛时取到3个新球的概率。 看作业习题1: 4, 9, 11, 15, 16

几种重要的概率分布

1、均匀分布(uniform) 定义:设连续型 随机变量X的分布函数为F(x)=(x-a)/(b-a),a≤x≤b 则称随机变量X服从[a,b]上的均匀分布,记为X~U[a,b]. 若[x1,x2]是[a,b]的任一子区间,则P{x1≤x≤x2}=(x2-x1)/(b-a) 这表明X落在[a,b]的子区间内的概率只与子区间长度有关,而与子区间位置无关,因此X落在[a,b]的长度相等的子区间内的可能性是相等的,所谓的均匀指的就是这种等可能性. 在实际问题中,当我们无法区分在区间[a,b]内取值的随机变量X取不同值的可能性有何不同时,我们就可以假定X服从[a,b]上的均匀分布 若随机变量X的密度函数为 则称随机变量X服从区间[a,b]上的均匀分布。记作X~U(a,b). 均匀分布的分布函数为

图像如下图所示: 均匀分布的数学期望E(X)=1/(2*(b+a)),方差为D(X)=1/(12*(b-a)2)。 2、正态分布 如果连续型随机变量X的密度函数为

其中,-∞

3.F分布 F分布定义为: 设X、Y为两个独立的随机变量,X服从自由度为k1的>2分布,Y服从自由度为k2的>2 分布,这2 个独立的>2分布被各自的自由度除以后的比率这一统计量的分布。即:上式F服从第一自由度为k1,第二自由度为k2的F分布 F分布的性质 1、它是一种非对称分布; 2、它有两个自由度,即n1 -1和n2-1,相应的分布记为F(n1 –1,n2-1),n1 –1通常称为分子自由度,n2-1通常称为分母自由度; 3、F分布是一个以自由度n1 –1和n2-1为参数的分布族,不同的自由度决定了F 分布的形状。 4、F分布的倒数性质:Fα,df1,df2=1/F1-α,df1,df2 密度函数表达式

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

第四章常用概率分布学习指导(定)详解

第四章 常用概率分布 [教学要求] 了解:质量控制的意义、原理和方法 熟悉:三个常用概率分布的特征。 掌握:掌握三个常用概率分布的概念;二项分布及Poisson 分布的概率 函数与累计概率、正态分布的分布函数的计算方法;医学参考值的计算。 [重点难点] 第一节 二项分布 一、二项分布的概念与特征 基本概念:如果每个观察对象阳性结果的发生概率均为 ,阴性结果的发生概率 均为(1-π);而且各个观察对象的结果是相互独立的,那么,重复观察n 个人,发生阳性结果的人数X 的概率分布为二项分布,记作B (n ,π)。 二项分布的概率函数: X n X X n C X P --=)1()(ππ 二项分布的特征: 二项分布图的形态取决于与n ,高峰在=n 处。当接近0.5时,图形是对称的;离0.5愈远,对称性愈差,但随着n 的增大,分布趋于对称。 二项分布的总体均数为 πμn = 方差为 )1(2ππσ-=n 标准差为 )1(ππσ-=n 如果将出现阳性结果的频率记为 n X p = 则p 的总体均数为 πμ=p 标准差为 二、二项分布的应用 二项分布出现阳性的次数至多为k 次的概率为 n p ) 1(ππσ-=

∑∑==-== ≤k X k X X X e X P k X P 0 ! )()(λλ 出现阳性的次数至少为k 次的概率为 第二节 Poisson 分布的概念与特征 一、Poisson 分布的概念与特征 基本概念:Poisson 分布可以看作是每个观察对象阳性结果的发生概率 很小, 而观察例数n 很大时的二项分布。除二项分布的三个基本条件以外,Poisson 分布还要求 接近于0。有些情况 和n 都难以确定,只能以观察单位(时间、 空间、面积等)内某种稀有事件的发生数X 来近似。 Poisson 分布的概率函数: 式中,πλn =为Poisson 分布的总体均数,X 为观察单位内某稀有事件的发生次数,e 为自然对数的底,λ为常数,约等于2.71828。 Poisson 分布的特征 Poisson 分布当总体均数λ值小于5时为偏峰,λ愈小分布愈偏,随着λ增大,分布趋向对称。 Poisson 分布的总体均数与总体方差相等, 均为λ,且Poisson 分布的观察结果具有可加性。 特点:凡个体有传染性、聚集性,均不能视为二项分布或Poisson 分布。 三、Poisson 分布的应用 如果某稀有事件发生次数的总体均数为λ,那么发生次数至多为k 次的概率为 发生次数至少为k 次的概率为 ! )(X e X P X λλ -= ∑∑==---= = ≤k X k X X n X X n X n X P k X P 0 0)1()! (!! )()(ππ∑∑ ==---== ≥n k X n k X X n X X n X n X P k X P )1()! (!! )()(ππ

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

统计概率知识点归纳总结

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

考研数学概率论重要知识点梳理

2017考研数学:概率论重要知识点梳理 来源:文都图书 概率论在历年考研数学真题中特点比较明显。概率论与数理统计对计算技巧的要求低一些,一些题目,尤其是文字叙述题要求考生有比较强的分析问题的能力。所以考生应在这门中尽量做到那全分,这样才能保证数学的分数,下面我们整理了一些概率论的重要知识点: 第一部分:随机事件和概率 (1)样本空间与随机事件 (2)概率的定义与性质(含古典概型、几何概型、加法公式) (3)条件概率与概率的乘法公式 (4)事件之间的关系与运算(含事件的独立性) (5)全概公式与贝叶斯公式 (6)伯努利概型 其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,考生务必引起重视, 第二部分:随机变量及其概率分布 (1)随机变量的概念及分类 (2)离散型随机变量概率分布及其性质 (3)连续型随机变量概率密度及其性质 (4)随机变量分布函数及其性质 (5)常见分布 (6)随机变量函数的分布 其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。 第三部分:二维随机变量及其概率分布 (1)多维随机变量的概念及分类 (2)二维离散型随机变量联合概率分布及其性质 (3)二维连续型随机变量联合概率密度及其性质

(4)二维随机变量联合分布函数及其性质 (5)二维随机变量的边缘分布和条件分布 (6)随机变量的独立性 (7)两个随机变量的简单函数的分布 其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视! 第四部分:随机变量的数字特征 (1)随机变量的数字期望的概念与性质 (2)随机变量的方差的概念与性质 (3)常见分布的数字期望与方差 (4)随机变量矩、协方差和相关系数 其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算 第五部分:大数定律和中心极限定理 (1)切比雪夫不等式 (2)大数定律 (3)中心极限定理 其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。 第六部分:数理统计的基本概念 (1)总体与样本 (2)样本函数与统计量 (3)样本分布函数和样本矩 其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下 第七部分:参数估计 (1)点估计 (2)估计量的优良性 (3)区间估计

重要的概率分布

第三章重要的概率分布 (1)正态分布; χ分布; (2)2 (3)t分布; (4)F分布。 3.1 正态分布 对于连续型随机变量而言,正态分布(normal distribution)是最重要的一种概率分布。 经验表明:对于依赖于众多微小因素;且每一因素均产生微小的或正或负影响的连续型随机变量来说,正态分布是一个相当好的描述模型。 如人的体重,因为遗传、骨骼结构、饮食、锻炼、等都对人的体重有影响,但又没有一种因素起到压到一切的主导作用。与此相类似,人的身高、考试分数等都近似地服从正态分布。 通常用: δ) (3 - 1) X~N(u, 2 δ称为正态分布的表示随机变量X服从正态分布。N表示正态分布,括号内的参数u, 2 总体均值(或期望)和方差。

3.1.1 正态分布的性质 (1) 正态分布曲线以均值u 为中心,对称分布。 (2) 正态分布的概率密度函数呈中间高、两边低,在均值u 处达到最高,向两边逐渐降低,即随机变量在远离均值处取值的概率逐渐变小。 (3) 正态曲线下的面积约有68%位于u ±δ 两值之间;约有95%的面积位于u±22 δ之间; 而约有99.7%的面积位于u±3 δ之间。 ★ (4) 两个(或多个)正态分布随机变量的线性组合仍服从正态分布。 令X 和Y 相互独立: X ~N(u X ,2x δ) Y ~N(u Y , 2y δ) 现在考虑两个变量的线性组合:W =a X+b Y 则 W ~N(u W , 2w δ) ( 3 - 2 ) 其中, u W =(au X +bu Y ) ( 3 - 3 ) 2w δ = (22x a δ+22y b δ) (3 - 4) 例3.1 令X 表示在下沙高教区一花店每日出售玫瑰花数量, Y 表示在下沙镇一花店每日出售玫瑰花的数量,假定X 和Y 服从正态分布,且相互独立,并有: X ~N( 100,64 ),Y ~N( 150,81 ) 求两天内两花商出售玫瑰花数量的期望及方差? W =2X +2Y 根据式( 3 - 3 ) E(w)=E( 2X+ 2Y) = 5 0 0, Var (w) = 4var(X) + 4var(Y) = 5 8 0 因此,W 服从均值为5 0 0,方差为5 8 0的正态分布,即W ~N( 5 0 0,5 8 0 )。

考试练习题常用概率分布教学提纲

考试练习题常用概率 分布

第四章 选择题: 1.二项分布的概率分布图在 条件下为对称图形。 A .n > 50 B .π=0.5 C .n π=1 D .π=1 E .n π> 5 2.满足 时,二项分布B (n,π)近似正态分布。 A .n π和n (1-π)均大于等于5 B .n π或n (1-π)大于等于5 C .n π足够大 D .n > 50 E .π足够大 3. 的均数等于方差。 A .正态分布 B .二项分布 C .对称分布 D .Poisson 分布 E .以上均不对 4.标准正态典线下,中间95%的面积所对应的横轴范围是 。 A .-∞到+1.96 B .-1.96到+1.96 C .-∞到+2.58 D .-2.58到+2.58 E .-1.64到+1.64 5.服从二项分布的随机变量的总体均数为 。 A .n (1-π) B .(n -1)π C .n π(1-π) D .n π 6.服从二项分布的随机变量的总体标准差为 。 A . B . (1-π)(1-π)( -)π1 C . D . π(1-π)(π 7.设X 1,X 2分别服从以λ1,λ2为均数的Poisson 分布,且X 1与X 2独立,则X 1+X 2服从以 为方差的Poisson 分布。 A . B .λ2λ12+2λ 2λ1+ C . D . 2λ2λ1+() 2λ2λ1+() E .λ2λ12+2 8.满足 时,Poisson 分布Ⅱ(λ)近似正态分布。

A.λ无限大 B.λ>20 C.λ=1 D.λ=0 E.λ=0.5 9.满足时,二项分布B(n,π)近似Poisson分布。 A.n很大且π接近0 B.n→∞ C.nπ或n(1-π)大于等于5 D.n很大且π接近0.5 E.π接近0.5 10.关于泊松分布,错误的是。 A.当二项分布的n很大而π很小时,可用泊松分布近似二项分布 B.泊松分布均数λ唯一确定 C.泊松分布的均数越大,越接近正态分布 D.泊松分布的均数与标准差相等 E.如果X1和X2分别服从均数为λ1和λ2的泊松分布,且相互独立。则 X1+X2服从均数为λ1+λ2的泊松分布。 11.以下分布中,均数等于方差的分布是。 A.正态分布 B.标准正态分布 C.二项分布 D.Poisson分布 E.t 分布 12.随机变量X服从正态分布N(μ1,σ12),Y服从正态分布N(μ2,σ 2),X与Y独立,则X-Y服从。 2 A.N(μ1+μ2,σ12-σ22) B.N(μ1-μ2,σ12-σ22) C.N(μ1-μ2,σ12+σ22) D.N(0,σ12+σ22) E.以上均不对 13.下列叙述中,错误的是。 A.二项分布中两个可能结果出现的概率之和为1 B.泊松分布只有1个参数λ C.正态曲线下的面积之和为1

几种常见的概率分布复习过程

几种常见的概率分布 一、 离散型概率分布 1. 二项分布 n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布 应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的 平均数: (Y)np X E μ== 方差与标准差:2(1)X np P σ=- ;X σ=特例:(0-1)分布 若随机变量X 的分布律为 1(x k)p (1p)k k p -==- k=0,1;0

复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票 二、 连续型概率分布 1. 均匀分布 若随机变量X 具有概率密度函数 (x)f = 则称X 在区间(a ,b )上服从均匀分布,记为X ~ U(a ,b) 在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为 0F(x),1 x a x a a x b b a b x ? 是常数, 则称X 服从以λ 为参数的指数分布,记作~()X E λ ,X 的分布函数为 1,0(x)0,0 x e x F x λ-?-≥=?

第四章 常概率分布

第四章常用概率分布 为了便于读者理解统计分析的基本原理,正确掌握和应用以后各章所介绍的统计分析方法,本章在介绍概率论中最基本的两个概念——事件、概率的基础上,重点介绍生物科学研究中常用的几种随机变量的概率分布——正态分布、二项分布、波松分布以及样本平均数的抽样分布和t分布。 第一节事件与概率 一、事件 (一)必然现象与随机现象在自然界与生产实践和科学试验中,人们会观察到各种各样的现象,把它们归纳起来,大体上分为两大类:一类是可预言其结果的,即在保持条件不变的情况下,重复进行试验,其结果总是确定的,必然发生(或必然不发生)。例如,在标准大气压下,水加热到100℃必然沸腾;步行条件下必然不可能到达月球等。这类现象称为必然现象(inevitable phenomena)或确定性现象(definite phenomena)。另一类是事前不可预言其结果的,即在保持条件不变的情况下,重复进行试验,其结果未必相同。例如,掷一枚质地均匀对称的硬币,其结果可能是出现正面,也可能出现反面;孵化6枚种蛋,可能“孵化出0只雏”,也可能“孵化出1只雏”,…,也可能“孵化出6 只雏”,事前不可能断言其孵化结果。这类在个别试验中其结果呈现偶然性、不确定性现象,称为随机现象(random phenomena)或不确定性现象(indefinite phenomena)。 人们通过长期的观察和实践并深入研究之后,发现随机现象或不确定性现象,有如下特点:在一定的条件实现时,有多种可能的结果发生,事前人们不能预言将出现哪种结果;对一次或少数几次观察或试验而言,其结果呈现偶然性、不确定性;但在相同条件下进行大量重复试验时,其试验结果却呈现出某种固有的特定的规律性——频率的稳定性,通常称之为随机现象的统计规律性。例如,对于一头临产的妊娠母牛产公犊还是产母犊是事前不能确定的,但随着妊娠母牛头数的增加,其产公犊、母犊的比例逐渐接近1:1的性别比例规律。概率论与数理统计就是研究和揭示随机现象统计规律的一门科学。 (二)随机试验与随机事件 1、随机试验通常我们把根据某一研究目的,在一定条件下对自然现象所进行的观察或试验统称为试验(trial)。而一个试验如果满足下述三个特性,则称其为一个随机试验(random trial),简称试验: (1)试验可以在相同条件下多次重复进行; (2)每次试验的可能结果不止一个,并且事先知道会有哪些可能的结果; (3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果。 如在一定孵化条件下,孵化6枚种蛋,观察其出雏情况;又如观察两头临产妊娠母牛所

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布 摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。 关键词:二项分布;Poisson 分布;正态分布;定义;性质 一、二项分布 二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生 这种分布的重要现实源泉是所谓的伯努利试验。 (一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布) 1.泊努利试验 在许多实际问题中,我们感兴趣的是某事件A 是否发生。例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。 为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = () q p A P =-=1。 2.泊努利分布 定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数, 则??? ? ??ξp q 10 ~,称ξ服从参数为)10(<

概率论中几种常用的重要的分布

伯努利试验、泊松过程、独立同分布生成 的重要分布 敖登 (内蒙古大学数学科学学院2010级数理基地,01008104) 摘要 本文是一篇读书报告。主要研究了伯努利试验与二项分布的关系,泊松过程生成泊松分布的过程和在泊松条件下的埃尔朗分布,正态分布的生成用到的独立同分布以及均匀分布生成任意分布的重要性质。 关键词:伯努利试验泊松分布独立同分布均匀分布的生成性

Important in theory of probability distribution of exploration Author:Ao Deng Tutor: Luo Cheng (School of Mathematical sciences ,Huhhot Inner Mongolia 01008104 ) Abstract This article mainly discusses the theory of several common distribution (0-1) distribution, binomial distribution, poisson distribution and uniform distribution, exponential distribution, normal distribution and normal distribution out three kinds of important distribution, distribution, distribution and the distribution of the source and the relationship among them and their application in actual. Key words: random variable; The discrete distribution ;Continuous distribution

概率论知识点的总结

概率论总结 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结 果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为 随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全 体样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。

3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。 定义6:逆事件/对立事件 称事件“A不发生”为事件A的逆事件,记为ā。A与ā满足:A ∪ā= S,且Aā=Φ。 运算律: 设A,B,C为事件,则有 (1)交换律:A∪B=B∪A,AB=BA (2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC (3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC (4)德摩根律:B A = A B = A B A B

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点 第二章知识点: 1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。 2.常用离散型分布: (1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为 12{},{}1(01) P X x p P X x p p ====-<<, 则称X 服从 12 ,x x 处参数为p 的两点分布。 两点分布的概率分布:12{},{}1(01) P X x p P X x p p ====-<< 两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =- (2)二项分布: 若一个随机变量X 的概率分布由式 {}(1),0,1,...,. k k n k n P x k C p p k n -==-= 给出,则称X 服从参数为n,p 的二项分布。记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,. k k n k n P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =- (3)泊松分布: 若一个随机变量X 的概率分布为{},0,0,1,2,... ! k P X k e k k λ λλ-==>=,则称X 服从参 数为λ的泊松分布,记为X~P (λ) 泊松分布的概率分布:{},0,0,1,2,... ! k P X k e k k λ λλ-==>= 泊松分布的期望: ()E X λ=;泊松分布的方差:()D X λ= 4.连续型随机变量: 如果对随机变量X 的分布函数F(x),存在非负可积函数 ()f x ,使得对于任意实数x ,有 (){}()x F x P X x f t dt -∞ =≤=? ,则称X 为连续型随机变量,称 ()f x 为X 的概率密度函数, 简称为概率密度函数。 5.常用的连续型分布:

几种常见的概率分布

几种常见的概率分布 离散型概率分布 1.二项分布 n次独立的贝努利实验,其实验结果的分布(一种结果出现x次的概率是多少的分布)即为二项分布 应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的 平均数:\二E(Y)二叩 方差与标准差:▽ X = np(1- P) ; = J np(1- p) 特例:(0-1 )分布 若随机变量x的分布律为 p(x = k) = p k(1 - p)1* k=o,i ;0

复抽样,抽样成功的次数X的概率分布服从超几何分布,如福利彩票 二、连续型概率分布 1?均匀分布 若随机变量X具有概率密度函数 f(X)二 则称X在区间(a,b)上服从均匀分布,记为X?U(a,b)在区间(a,b)上服从均匀分布的随机变量X的分布函数为 x v a F(x)X— ,a 乞x b b — a , X x 2指数分布 若随机变量X具有概率密度函数f(X)= e ' x - 0其中0是常数, 0,x< 0 则称X服从以’为参数的指数分布,记作X?E(' ),X的分布函数为 F(x)=」1 -e ,x 色0 j 0,x<0 3.正态分布 正态随机变量X的概率密度函数的形式如下: 1 f (x) e 2 $ ,—:::: x ::: 式中,」为随机变量X的均值;、;2为随机变量X的方差通常对具有均值卩,方差为62的正态概率分布,记为N (卩,62)。于是有正态随机变量X~N ( '2)。

第4章 常见概率分布.

第四章常用概率分布 一、二项分布的概念和特征 概念 分布:随机变量的取值规律分布函数:描述分布的规律 变量类型 连续型变量 离散型变量如:正态分布 如:二项分布,泊松分布 思考 例1.假设有5只实验小白鼠,要求它们同种属、同性别、体重相近,且给小白鼠注射一定剂量的毒物时,他们有相同的死亡率80%,存活率为20%。那么这5只小白鼠实验后全部死亡的概率是多少?有一只白小鼠存活的概率是多少?2只小白鼠存活的概率是多少? 例1.假设有5只实验小白鼠,要求它们同种属、同性别、体重相近, 且给小白鼠注射一定剂量的毒物时,他们有相同的死亡率80%, 存活率为20%。那么这5只小白鼠实验后全部死亡的概率是多少? 有一只白小鼠存活的概率是多少?2只小白鼠存活的概率是多少? P 死 =0.8 P 活 =0.2 P 1 =0.8×0.8×0.8×0.8×0.8 P 2 = P 3 = 1 5 C 2 5

C 0.2×0.8 4 =0.082 0.2 2 ×0.8 3 =0.020 =0.8 5 =0.328 该实验有三个特点: 1.各次实验是彼此独立的; 2.每次实验只有二种可能的结果,或死亡或生存; 3.每次实验小白鼠死亡和生存的概率是固定的。 具备以上三点,即从阳性率为π的总体中随机抽取大小为n的样本, 则出现“阳性”数为X的概率分布即呈现二项分布,记作B(n,p。 概率分布函数 二项分布的概率函数P (X 可用公式 X n X X n C X P - - = 1 ( ( p p 其中 ! ( ! ! X n X n C X n - = 对于任何二项分布,总有 ( 1 = ? = n X X P 例2.临床上用针灸治疗某型头疼,有效的概率为60%,现以该疗法治疗3例,其中2例有效的概率是多大? 分析:治疗结果为有限和无效两类,每个患者是否有效不受其他病例的影响,有效概率均为0.6,符合二项分布的条件。

相关文档
相关文档 最新文档