文档库 最新最全的文档下载
当前位置:文档库 › 牛顿第二定律的应用经典

牛顿第二定律的应用经典

牛顿第二定律的应用经典
牛顿第二定律的应用经典

牛顿第二定律的应用(二)

【学习目标】

1、知道利用整体法和隔离法分析连接体问题。

2、知道瞬时加速度的计算方法。

3、知道临界法、程序法、假设法在牛顿第二定律中的应用。

4、学会利用图像处理动力学问题的方法。

【重点、难点】

掌握临界法、程序法、假设法、图象法、整体法和分隔法,并能利用它们处理物理问题。

【知识精讲】

一、整体法和隔离法分析连接体问题

在研究力与运动的关系时,常会涉及相互关联物体间的相互作用问题,即连接体问题。在求解连接体问题时,整体法和隔离法相互依存,相互补充,交替使用,形成一个完整的统一体。

在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体(当成一个质点)分析受到的外力和运动情况,应用牛顿第二定律求出加速度(或其他未知量)。如果需要知道物体之间的相互作用力,就需要把物体从系统中隔离出来,将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程。隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。

例1、为了测量木板和斜面间的动摩擦因数,某同学设计这样一个实验。在小木板上固定一个弹簧秤(弹簧秤的质量不计),弹簧秤下端吊一个光滑的小球。将木板和弹簧秤一起放在斜面上。当用手固定住木板时,弹簧秤示数为F1;放手后使木板沿斜面下滑,稳定时弹簧秤示数为F2,测得斜面倾角为θ,由以上数据可算出木板与斜面间的动摩擦因数为(只能用题中给出的已知量表示)。

解析:把木板、小球、弹簧看成一个整体,应用整体法。

木板、小球、弹簧组成的系统,当沿斜面下滑时,它们有相同的加速度。

设,它们的加速度为a,

则可得:(m球+m木)gsinθ-μ(m球+m木)gcosθ=(m球+m木)a

可得:a=gsinθ-μgcosθ①

隔离小球,对小球应用隔离法,

对小球受力分析有:mgsinθ-F2=m a②

而:mgsinθ=F1 ③

由①②得:F2=μmgcosθ ④

由③④得tanθ

例2、如图示,两个质量均为m的完全相同的物块,中间用绳连接,若绳能够承受的最大拉力为T,现将两物块放在光滑水平面上,用拉力F1拉一物块时,恰好能将连接绳拉断;倘若把两物块放在粗糙水平面上,用拉力F2拉一物块时(设拉力大于摩擦力),也恰好将连接绳拉断,比较F1、F2的大小可知( )。

A、F1>F2

B、F1<F2

C、F1=F2

D、无法确定

解析:(1)当放置在光滑水平面上时。

由于两物体的加速度相同,可以把它们看成一个整体,对此应用整体法。

由F=m a可知,两物体的整体加速度。

在求绳子张力时,必须把物体隔离(否则,绳子张力就是系统内力),应用隔离法。

隔离后一物体,则绳子的张力:。

(2)当放置在粗糙水平面上时,同样应用整体法与隔离法。

设每个物块到的滑动摩擦力为F′,则整体加速度。

隔离后一个物体,则绳子的张力

可见这种情况下,外力都等于绳子的最大张力T的两倍,故选项C正确。

答案:C。

二、瞬时加速度的分析

分析物体在某一时刻的瞬时加速度,关键是分析那一时刻前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。此类问题应注意两种基本模型的建立。

(1)钢性绳(或接触面):认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要恢复弹性形变时间。一般题目中所给细线和接触面在不加特殊说明时,均可按此模型处理。

(2) 弹簧(或橡皮绳):此种物体的特点是形变量大,恢复弹性形变需要较长时间,在瞬时问题中,其弹力的大小往往可以看成不变。

例3、质量分别为m A和m B的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下,如图所示,当细线被剪断的瞬间。关于两球下落加速度的说法中,正确的是( )

A、a A=a B=0

B、a A=a B=g

C、a A>g,a B=0

D、a A<g,a B=0

解析:分别以A、B两球为研究对象。当细线束剪断前,A球受到竖直向下的重力m A g、弹簧的弹力T,竖直向上细线的拉力T′;B球受到竖直向下的重力m B g,竖直向上弹簧的弹力T,如下图。

它们都处于力平衡状态,因此满足条件,

T =m B g

T′=m A g+T=(m A+m B)g

细线剪断的瞬间,拉力T′消失,但弹簧仍暂时保持着原来的拉伸状态,故B球受力不变,仍处于平衡状态。所以,B的加速度a B=0,而A球则在重力和弹簧的弹力作用下,其瞬时加速度为:

答案选C。

例4、如下图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三者静置于地面,它们的质量之比是l∶2∶3,设所有接触面都光滑,当沿水平方向抽出木块C的瞬间,木块A和B的加速度分别是a A=,a B=。

解析:在抽出木块C前,弹簧的弹力F=m A g。抽出木块C瞬间,弹簧弹力不变,所以,A所

受合力仍为零,故a A=0。木块B所受合力F B=m B g+F=,所以。

答案:

三、临界问题的分析与求解

在应用牛顿定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有临界现象,此时要采用极限分析法,看物体在不同的加速度时,会有哪些现象发生,尽快找出临界点,求出临界条件。

例5、如图所示,斜面是光滑的,一个质量是0.2kg的小球用细绳吊在倾角为53°的斜面顶端。斜面静止时,球紧靠在斜面上,绳与斜面平行;当斜面以8m/s2的加速度向右做匀加速运动时,求绳子的拉力及斜面对小球的弹力。

解析:必须先求出小球离开斜面的临界值a0,然后,才能确定某一状态下小球是否在斜面上。

处于临界状态时小球受力如图示:

则有:mgcotθ=m a0

解得:a0=gcotθ=7.5m/s2

∵a=8m/s2>a0

∴小球在此时已经离开斜面

∴绳子的拉力

斜面对小球的弹力:N=0

例6、一个弹簧放在水平地面上,Q为与轻弹簧上端连在一起的秤盘,P为一重物,已知P的质量M=10.5kg,Q的质量m=1.5kg,弹簧的质量不计,劲度系数k=800N/m,系统处于静止,如下图所示,现给P施加一个方向竖直向上的力F,使它从静止开始向上做匀加速运动,已知在前0.2s以后,F为恒力,求:力F的最大值与最小值。(取g=l0m/s2)

解析:(1)P做匀加速运动,它受到的合外力一定是恒力。P受到的合外力共有3个:重力、向上的力F及对Q对P的支持力F N,其中重力Mg为恒力,F N为变力,题目说0.2s以后F为恒力,说明t=0.2s的时刻,正是P与Q开始脱离接触的时刻,即临界点。

(2)t=0.2s的时刻,是Q对P的作用力F N恰好为零的时刻,此时刻P与Q具有相同的速度及加速度。因此,此时刻弹簧并未恢复原长,也不能认为此时刻弹簧的弹力为零。

(3)当t=0时刻,应是力F最小的时刻,此时刻F小=(M+m)a(a为它们的加速度)。随后,由于弹簧弹力逐渐变小,而P与Q受到的合力保持不变,因此,力F逐渐变大,至t=0.2s时刻,F增至最大,此时刻F大=M(g+a)。

以上三点中第(2)点是解决此问题的关键所在,只有明确了P与Q脱离接触的瞬间情况,才能确定这0.2s时间内物体的位移,从而求出加速度a,其余问题也就迎刃而解了。

解:设开始时弹簧压缩量为x1,t=0.2s时弹簧的压缩量为x2,物体P的加速度为a,则有:kx1=(M+m)g①

kx2-mg=m a②

x1-x2=③

由①式得:

解②③式得:a=6m/s2

力F的最大值:F小=(M+m)a=72N

力F的最大值:F大=M(g+a)=168N

四、利用图象求解动力学与运动学的题目

图象在中学物理解题中应用十分广泛,这是因为它具有以下优点:

①能形象地表达物理规律;

②能直观地描述物理过程;

③能鲜明地表示物理量之间的依赖关系。

因此,理解图象的意义,自觉地运用图象分析物理规律是十分必要的。

在理解图象所表示的物理规律时要注意:

(1)看清坐标轴所表示的物理量及单位,并注意坐标原点是否从零开始。

(2)图象上每一点都对应着两个数,沿图象上各点移动,反映着一个量随另一量变化的函数关系。因此,图象都应该与一个代数方程相对应。

(3)图象上任一点的斜率,反映了该点处一个量随另一个量变化的快慢(变化率),如s—t图象中的斜率为速度,v—t图象中的斜率为加速度。

(4)一般图象与它对应的横轴(或纵轴)之间的面积,往往也能代表一个物理量,如v—t图象中,曲线与t轴所夹的面积代表位移。

例7、放在水平地面上的一物块,受到方向不变的水平推力的作用,F的大小与时间t的关系和物块速度v与时间t的关系,如图甲、乙所示。取重力加速度g=10m/s2。由此两图线可以求得物块的质量m和物块与地面之间的动摩擦因数μ分别为( )

A、m=0.5kg,μ=0.4

B、m=1.5kg,μ=

C、m=0.5kg,μ=0.2

D、m=1kg,μ=0.2

解析:由v-t图可知在0~2s 静止,2~4s是以初速度为0,加速度a=2m/s2做匀加速运动,4~6s内以v=4m/s做匀速直线运动,结合F-t图像可分析得出:μmg=2N,m a=3N-2N,解得m=0.5kg,μ=0.4。

答案选A。

五、程序法解题

程序法:按时间的先后顺序对题目给出的物体运动过程(或不同的状态)进行分析(包括列式计算)的解题方法可称为程序法,程序法解题的基本思路是:

(1)划分出题目中有多少个不同的过程或多少个不同的状态。

(2)对各个过程或各个状态进行具体分析,得出正确的结果。

(3)前一个过程的结束就是后一个过程的开始,两个过程的交接点是问题的关键。

例8:如下图所示,一根轻质弹簧上端固定,下挂一质量为m0的平盘,盘中有物体质量为m,当盘静止时,弹簧伸长了l,现向下拉盘使弹簧再伸长Δl后停止,然后松开放开,设弹簧总处在弹性限度内,则刚松开手时盘对物体的支持力等于:

A、(1+

B、(1+)mg

C、

D、

答案:B。

解析:题目描述主要有两个状态:(1)未用手拉时盘处于静止状态;(2)松手时盘处于向上加速状态,对于这两个状态,分析即可:

当弹簧伸长l静止时,对整体有

当刚松手时,对整体有:

对m有:F-mg=m a ③

对①、②、③解得:

说明:在求解物体系从一种运动过程(或状态)变化到另—种运动过程(或状态)的力学问题(称之为“程序题”)时,通常用“程序法”求解。要求我们从读题开始,就要注意到题中能划分多少个不同的过程或多少个不同的状态,然后对各个过程或各个状态进行分析(称之为“程序分析”),最后逐一列式求解得到结论。“程序法”是一种重要的基本解题方法,我们在“程序分析” 的基础上,通过比较各个过程(或状态)下力产生的效果,然后,从力的效果出发分步列方程,这样解题往往简化了数学列式和数学运算,使问题得到了巧解。

六、用假设法分析物体的受力

方法1:首先假定某力不存在,查看物体会发生怎样的运动,然后再确定此力应在什么方向,物体才会产生题目给定的运动状态。

方法2:假定此力沿某一方向,用运动规律进行验算,若算得正值,说明此力与假定的方向相同,否则相反。

方法3:在力的作用线上定出坐标轴的正方向将此力用正号运算,若求得是正值,说明此力与坐标轴同向,否则相反。

例9、两个叠在一起的滑块,置于固定的、倾角为θ的斜面上,如下图所示,滑块A、B质量分别为M、m,A与斜面间的动摩擦因数为μ1,B与A之间的动摩擦因数为μ2,已知两滑块都从静止

开始以相同的加速度从斜面滑下,滑块B受到的摩擦力()

A、等于零

B、方向沿斜面向上

C、大于等于μ1mgcosθ

D、大于等于μ2mgcosθ

解析:把A、B两滑块作为一个整体,设其下滑加速度为a ,由牛顿第二定律:

(M+m)gsinθ-μ1(M+m)gcosθ=(M+m)a

得a =g(gsinθ-μ1cosθ)

由于a<gsinθ,可见B随A一起下滑过程中,必须受到A对它沿斜面向上的摩擦力,设摩擦力为F B(如图所示),由牛顿第二定律:mgsinθ-F B=m a

得F B=mgsinθ-m a=mgsinθ-mg(sinθ-μ1cosθ)=μ1mgcosθ

答案:B、C

说明:由于所求的摩擦力是未知力,如果不从加速度大小比较先判定其方向,也可任意假设,若设B受到A对它的摩擦力沿斜面向下,则牛顿第二定律的表达式为:mgsinθ+F B=m a得F B=m a -mgsinθ=mg(sinθ-μ1cosθ)-mgsinθ=-μ1mgcosθ,大小仍为μ1mgcosθ。

式中负号表示F B的方向与规定的正方向相反,即沿斜面向上。

例10、如图所示,传送带与水平面夹角θ=37°,并以v=10m/s的速度运行,在传送带的A端轻轻地放一小物体,若已知传送带与物体之间的动摩擦因数μ=0.5,传送带A到B端的距离s=16m,则小物体从A端运动到B端所需的时间可能是(g=10m/s2) ()

A、1.8s

B、2.0s

C、2.1s

D、4. 0s

解析:若传送带顺时针转动,物体受向上的摩擦力,因mgsinθ>μmgcosθ,故物块向下加速运

动,a=gsinθ-μgcosθ=2m/s2。由,解得:t=4.0s。即,小物体从A端运动到B端所需的时间为4.0s,所以,D正确。

若传送带逆时针转动,物体开始受向下的摩擦力,向下加速运动,a1=gsinθ+μgcosθ=10m/s2,

当速度达到l0m/s时,运动位移,所用的时间为,t1=,以后由于下滑力的作用物块又受向上的摩擦力,此时它的加速度为a2=2m/s2,在此加速度下运动的位移s2=s-s1=11m,又由得11=10t2+t22,解得t2=1s。所以,小物体从A端运动到B端所需的时间:t总=t1

+t2=2s,B正确。

答案:B、D。

【巩固练习】

1、如图所示,在两根轻质弹簧a、b之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同一竖直线上的两点,等小球静止后,突然撤去弹簧a,则在撤去弹簧后的瞬间,小球加速度的大小为2.5m/s2,若突然撤去弹簧b,则在撒去弹簧后的瞬间,小球加速度的大小可能为( )

A、7.5m/s2,方向竖直向下

B、7.5 m/s2,方向竖直向上

C、12.5 m/s2,方向竖直向下

D、12.5 m/s2,方向竖直向上

2、质点所受的力F随时间变化的规律如图所示,力的方向始终在一直线上,已知t=0时质点的速度为零,在图所示的t1、t2、t3和t4各时刻中,哪一时刻质点的速率最大()

A、t1

B、t2

C、t3

D、t4

3、在光滑的水平面上,有一个物体同时受到两个水平力F1和F2作用,在第1s内保持静止。若两个力F1和F2随时间变化如图示,则下列说法正确的是()

A、在第2s内,物体做匀加速运动,加速度的大小恒定,速度均匀增大

B、在第3s内,物体做变加速运动,加速度均匀减小,速度逐渐减小

C、在第5s内,物体做变加速运动,加速度均匀减小,速度逐渐增大

D、在第5s末,物体的加速度与速度均为零

4、放在水平光滑平面上的物体A和B,质量分别为M和m,水平恒力F作用在A上,A、B 间的作用力为F1;水平恒力F作用在B上,A、B间作用为F2,则( )

A、F1+F2=F

B、F1=F2

C、D、

5、重物A和小车B的重力分别为G A和G B,用跨过定滑轮的细线将它们连接起来,如图所示,已知G A>G B,不计一切摩擦。则细线对小车B的拉力T的大小是( )

A、T=G A

B、G A>T

C、G A<T

D、当G B>>G A时,T约等于G A

6、如图所示,一个箱子放在水平面上,箱内有一固定的竖直杆,在杆在上套着一个环,箱和杆的质量为M,环的质量为m,已知环沿杆加速下滑,环与杆的摩擦力的大小为f,则此时箱对地面的压力()

A、等于Mg

B、等于(M+m)g

C、等于Mg+f

D、等于(M+m)g-f

7、如图所示,质量2m的物块A与水平地面成的摩擦可忽略不计,质量为m的物块B与地面的动摩擦因数为μ,在已知水平推力F作用下,A、B作加速运动,则A对B的作用为。

8、如图所示,一细线的一端固定于倾角为45°的光滑楔形滑块A的顶端P处。细线的另一端拴一质量为m的小球,当滑块至少以a=向左运动时,小球对滑块的压力等于零,当滑块以a=2g的加速度向左运动时,线中拉力T=。

9、物体以大小不变的初速度v0沿木板滑动。若木板倾角θ不同。物体能上滑的距离s也不同,图示是得出的s—θ图像.求图中最低点P的坐标。(取10m/s2)

10、风洞实验室中可产生水平方向的、大小可调节的风力。现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径,如图所示:

(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上做匀速运动,这时小球所受的风力为小球所受重力的0.5倍。求小球与杆间的滑动摩擦因数。

(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静上出发在细杆上滑下距离s所需时间为多少?(sin37°=0.6,cos37°=0.8)

11、如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=1.4m;木板右端放着一小滑块,小滑块质量为m=1kg,其尺寸远小于L。小滑块与木板之间的动摩擦因数为μ=0.4(g=l0m/s2)。

(1)现用恒力F作用在木板M上,为了使得m能从M上面滑落下来,问:F大小的范围是什么?

(2)其他条件不变,若恒力F=22.8N,且始终作用在M上,最终使得m能从M上面滑落下来。问:m在M上面滑动的时间是多大。

【参考答案】

1、AC

2、B

3、C

4、AC

5、BD

6、C

7、解析:B物体受地面摩擦力大F′=μF N=μmg

设A、B运动共同速度为a

根据牛顿第二定律,以AB整体为研究对象

F-F′=3m a

B物体受力情况如图所示:

对B根据牛顿第二定律:F AB-F′=m a

所以F AB=F′+m a=

8、g,

9、解析:当θ1=90°时,s1=15m,此时物体实际做竖直上抛运动,可解得v0=10

当θ2=0°时,s2=20m,此时物体沿水平面运动,由

当θ为一般值时,

所以,当θ=90°-a rct a nα=53°时,s有极小值12,故P的坐标为(53°,12m)

10、(1)设小球受的风力为F,小球质量为m,因小球做匀速运动,则F=μmg,F=0.5mg,所以μ=0.5

(2)如下图所示,设杆对小球的支持力为F N,摩擦力为F f,小球受力产生加速度,沿杆方向有Fcosθ+mgsinθ-F f=m a①

垂直杆方向有F N+Fsinθ-mgcosθ=0 ②

又F f=μF N③

由①②③可解得a=g

由s=a t2得t=

答案:(1)0.5;(2)

11、(1)隔离小滑块,用隔离法研究小滑块。

小滑块与木板间的滑动摩擦力

f=μN=μmg

小滑块在滑动摩擦力f作用下向右匀加速运动的加速度

对木板与小滑块用整体法。

力F最小值的临界条件是木板与小滑块有相同的加速度的,

所以,

要使m能从M上面滑落下来的条件是:

(2)设m在M上滑动的时间为t,当恒力F=22.8N,木板的加速度

小滑块在时间t内运动位移

木板在时间t内运动位移

因s2-s1=L

答案:(1)F>20N。(2)t=2s。

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式 一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程: F 合 = (m 1 +m 2 +……)a 分量表达式:F x = (m 1 +m 2 +……)a x F y = (m 1 +m 2 +……)a y 2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。 例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。现对A施以水平推力F, 恰使B与A不发生相对滑动,忽略一切摩擦,则B对 A的压力大小为( BD ) A 、 mgcosα B、mg/cosα C、FM/(M+m)cosα D、Fm/(M+m)sinα ★题型特点:隔离法与整体法的灵活应用。 ★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。省去了对木楔受力分析(受力较烦),达到了简化问题的目的。 例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。求物体系的加速度a和连接m2、m3轻绳的张力F。(F1>F2) 例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( ) A.F F F F 3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解. 将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确. 例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( D ) A.有摩擦力作用,摩擦力的方向水平向右。B.有摩擦力作用,摩擦力的方向水平向左。C.有摩擦力作用,组摩擦力的方向不能确定。D.没有摩擦力的作用。 二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:b c a

牛顿第二定律经典好题

牛顿第二定律 瞬间问题 1.如图所示,一木块在光滑水平面上受一恒力F作用而运动,前方固定一个弹簧,当木块接触弹簧后( ) A.将立即做变减速运动 B.将立即做匀减速运动 C.在一段时间内仍然做加速运动,速度继续增大 D.在弹簧处于最大压缩量时,物体的加速度为零 解析:因为水平面光滑,物块与弹簧接触前,在推力的作用下做加速运动,与弹簧接触后,随着压缩量的增加,弹簧弹力不断变大,弹力小于推力时,物体继续加速,弹力等于推力时,物体的加速度减为零,速度达到最大,弹力大于推力后,物体减速,当压缩量最大时,物块静止. 答案:C 2.(2017届浏阳一中月考)搬运工人沿粗糙斜面把一个物体拉上卡车,当力沿斜面向上,大小为F时,物体的加速度为a1;若保持力的方向不变,大小变为2F时,物体的加速度为 a 2,则( ) A.a1=a2B.a1<a2<2a1 C.a2=2a1D.a2>2a1 解析:当力沿斜面向上,大小为F时,物体的加速度为a1,则F-mg sinθ-μmg cos θ=ma 1 ;保持力的方向不变,大小变为2F时,物体的加速度为a2,2F-mg sinθ-μmg cos θ=ma 2 ;可见a2>2a1;综上本题选D. 答案:D 3.(2017届天津一中月考)如图所示,A、B、C三球质量均为m,轻质弹簧一端固定在 斜面顶端、另一端与A球相连,A、B间固定一个轻杆,B、C间由一轻质细线连接.倾角为 θ的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态, 细线被烧断的瞬间,下列说法正确的是( ) A.A球的受力情况未变,加速度为零 B.C球的加速度沿斜面向下,大小为g C.A、B之间杆的拉力大小为2mg sinθ D.A、B两个小球的加速度均沿斜面向上,大小均为 1 2 g sinθ 解析:细线被烧断的瞬间,以A、B整体为研究对象,弹簧弹力不变,细线拉力突变为 0,合力不为0,加速度不为0,故A错误;对球C,由牛顿第二定律得:mg sinθ=ma,解

牛顿第二定律练习题(经典好题)

牛顿定律(提高) 1、质量为m 的物体放在粗糙的水平面上,水平拉力F 作用于物体上,物体产生的加速度为a 。若作用在物体上的水平拉力变为2F ,则物体产生的加速度 A 、小于a B 、等于a C 、在a 和2a 之间 D 、大于2a 2、用力F 1单独作用于某一物体上可产生加速度为3m/s 2,力F 2单独作用于这一物体可产生加速度为1m/s 2,若F 1、F 2同时作用于该物体,可能产生的加速度为 A 、1 m/s 2 B 、2 m/s 2 C 、3 m/s 2 D 、4 m/s 2 3、一个物体受到两个互相垂直的外力的作用,已知F 1=6N ,F 2=8N ,物体在这两个力的作用下获得的加速度为2.5m/s 2,那么这个物体的质量为 kg 。 4、如图所示,A 、B 两球的质量均为m ,它们之间用一根轻弹簧相连,放在光滑的水平面上,今用力将球向左推,使弹簧压缩,平衡后突然将F 撤去,则在此瞬间 A 、A 球的加速度为F/2m B 、B 球的加速度为F/m C 、B 球的加速度为F/2m D 、B 球的加速度为0 5如图3-3-1所示,A 、B 两个质量均为m 的小球之间用一根轻弹簧(即不计其 质量)连接,并用细绳悬挂在天花板上,两小球均保持静止.若用火将细绳烧断,则在绳刚断的这一瞬间,A 、B 两球的加速度大小分别是

A.a A=g;a B=gB.a A=2g ;a B=g C.a A=2g ;a B=0 D.a A=0 ;a B=g 6.(8分)如图6所示,θ=370,sin370=0.6,cos370=0.8。箱子重G=200N,箱子与地面的动摩擦因数μ=0.30。(1)要匀速拉动箱子,拉力F为多大? (2)以加速度a=10m/s2加速运动,拉力F为多大? 7如图所示,质量为m的物体在倾角为θ的粗糙斜面下匀速下滑,求物体与斜面间的滑动摩擦因数。 8.(6分)如图10所示,在倾角为α=37°的斜面上有一块竖直放置的档板,在档板和斜

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题 ——陈法伟 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与 运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。

牛顿第二定律经典例题

牛顿第二定律应用的问题 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气

解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向 与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2

牛顿第二定律的应用

牛顿第二定律的应用 Prepared on 22 November 2020

寒假作业4 (考查:牛顿第二定律的应用) 一、选择题(1-12单选,13-22多选) 1.如图,水平面上一个物体向右运动,将弹簧压缩,随后又被弹回直到离开弹簧,则该物体从接触弹簧到离开弹簧的这个过程中,下列说法中正确的是( ) A. 若接触面光滑,则物体加速度的大小是先减小后增大 B. 若接触面光滑,则物体加速度的大小是先增大后减小再增大 C. 若接触面粗糙,则物体加速度的大小是先减小后增大 D. 若接触面粗糙,则物体加速度的大小是先增大后减小再增大 2.静止在光滑的水平面上的物体,在水平推力F的作用下开始运动,推力F 随时间t变化的规律如图所示,则物体在 1 0~t时间内( ) A. 速度一直增大 B. 加速度一直增大 C. 速度先增大后减小 D. 位移先增大后减小 3.质量为M的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块时,其加速度为a,当拉力方向不变,大小变为2F时,木块的加速度大小为a′,则 () A. 2a>a′ B. 2a

牛顿第二定律各种典型题型

牛顿第二定律 牛顿第二定律 1.内容物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。 2.表达式F=ma。 3.“五个”性质 考点一错误!瞬时加速度问题 1.一般思路:分析物体该时的受力情况―→错误!―→错误! 2.两种模型 (1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理。 (2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变。 [例] (多选)(2014·南通第一中学检测)如图所示,A、B球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是() A.两个小球的瞬时加速度均沿斜面向下,大小均为gsin θ B.B球的受力情况未变,瞬时加速度为零 C.A球的瞬时加速度沿斜面向下,大小为2g sin θ D.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零

[例](2013·吉林模拟)在动摩擦因数μ=0.2的水平面上有一个质量为m=2 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零。当剪断轻绳的瞬间,取g=10 m/s2,以下说法正确的是( ) A.此时轻弹簧的弹力大小为20 N B.小球的加速度大小为8 m/s2,方向向左 C.若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s2,方向向右 D.若剪断弹簧,则剪断的瞬间小球的加速度为0 针对练习:(2014·苏州第三中学质检)如图所示,质量分别为m、2m的小球A、B,由轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为F,此时突然剪断细线。在线断的瞬间,弹簧的弹力的大小和小球A的加速度的大小分别为( ) A.错误!,错误!+gB.错误!,错误!+g C.错误!,错误!+g D.错误!,\f(F,3m)+g 4.(2014·宁夏银川一中一模)如图所示,A、B两小球分别连在轻线两端,B球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端.A、B两小球的质量分别为m A、m B,重力加速度为g,若不计弹簧质量,在线被剪断瞬间,A、B A.都等于错误! B.错误!和0 C.错误!和错误!·错误!?D.错误!·错误!和错误! 考点二错误!动力学的两类基本问题分析 (1)把握“两个分析”“一个桥梁”两个分析:物体的受力分析和物体的运动过程分析。一个桥梁:物体运动的加速度是联系运动和力的桥梁。 (2)寻找多过程运动问题中各过程间的相互联系。如第一个过程的末速度就是下一个过程的初速度,画图找出各过程间的位移联系。

下载高一物理牛顿第二定律应用

课题:牛顿第二定律应用(一) 目的:1、掌握应用牛顿定律分析力和运动关系问题的基本方法。 2、培养学生分析解决问题的能力。 重点:受力分析、运动和力关系的分析。 难点:受力分析、运动和力关系的分析。 方法:启发思考总结归纳、讲练结合。 过程:一、知识点析: 1.牛顿第二定律是在实验基础上总结出的定量揭示了物体的加速度与力和质量的关系。数学表达式:ΣF=ma或ΣFx=Ma x ΣF y =ma y 理解该定律在注意: (1)。瞬时对应关系;(2)矢量关系;(3)。 2.力、加速度、速度的关系: (1)加速度与力的关系遵循牛顿第二定律。 (2)加速度一与速度的关系:速度是描述物体运动的一个状态量,它与物体运动的加速度没有直接联系,但速度变化量的大小加速度有关,速度变化量与加速度(力)方向一致。 (3)力与加速度是瞬时对应关系,而力与物体的速度,及速度的变化均无直接关系。Δv=at,v=v +at,速度的变化需要时间的积累,速度的大小还需考虑初始情况。 二、例题分析: 例1。一位工人沿水平方向推一质量为45mg的运料车,所用的推力为90N,此时运料车的加速度是1.8m/s2,当这位工人不再推车时,车的加速度。 【例2】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速率都是先增大,后减小 D、物体在B点时,所受合力为零 【解析】本题主要研究a与F 合 的对应关系,弹簧这种特殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。对物体运动过程及状态分析清楚,同时对物体 正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 =0,由A→C 的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置

高中物理牛顿第二定律经典例题

牛顿第二运动定律 【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速 率都是先增大,后减小 D、物体在B点时,所受合力为零 的对应关系,弹簧这种特 【解析】本题主要研究a与F 合 殊模型的变化特点,以及由物体的受力情况判断物体的 运动性质。对物体运动过程及状态分析清楚,同时对物 =0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置mg=kx c,a=0,物体速度达最大。由C→B的过程中,由于mgf m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。 综合上述,正确答案应为A、B、D。 【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少? 【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线 中拉力T,滑块A的支持力N,如 图3-12所示,小球在这三个力作用 下产生向左的加速度,当滑块向左

牛顿第二定律典型例题

牛顿第二定律典型例题 一、力的瞬时性 1、无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变. 2、弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变,但是,当弹簧或橡皮绳被剪断时,它们所受的弹力立即消失. 【例1】如图3-1-2所示,质量为m 的小球与细线和轻弹簧连接后被悬挂起来,静止平衡时AC 和BC 与过C 的竖直 线的夹角都是600 ,则剪断AC 线瞬间,求小球的加速度;剪断B 处弹簧的瞬间,求小球的加速度. 练习 1、(2010年全国一卷)15.如右图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整 个系统置于水平放置的光滑木坂上,并处于静止状态。现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a ?重力加速度大小为g ?则有 A. 10a =,2a g = B. 1a g =,2a g = C. 120, m M a a g M +== D. 1a g =,2m M a g M += 2、一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F 的值逐渐减小到零,又马上使其恢复到原值(方向不变),则( ) A .物体始终向西运动 B .物体先向西运动后向东运动 C .物体的加速度先增大后减小 D .物体的速度先增大后减小 3、如图3-1-13所示的装置中,中间的弹簧质量忽略不计,两个小球质量皆为m ,当剪断上端的绳子OA 的瞬间.小球A 和B 的加速度多大? 4、如图3-1-14所示,在两根轻质弹簧a 、b 之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同 图3-1-13 图3-1-2 图3-1-14

2020高考物理一轮复习专题3-2 牛顿第二定律及其应用(精讲)含答案

专题3.2 牛顿第二定律及其应用(精讲) 1.理解牛顿第二定律的内容、表达式及性质。 2.应用牛顿第二定律解决瞬时问题和两类动力学问题。 知识点一牛顿第二定律、单位制 1.牛顿第二定律 (1)内容 物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比。加速度的方向与作用力的方向相同。 (2)表达式a=F m或F=ma。 (3)适用范围 ①只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系)。 ②只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。 2.单位制 (1)单位制由基本单位和导出单位组成。 (2)基本单位 基本量的单位。力学中的基本量有三个,它们分别是质量、时间、长度,它们的国际单位分别是千克、秒、米。 (3)导出单位 由基本量根据物理关系推导出的其他物理量的单位。 知识点二动力学中的两类问题 1.两类动力学问题 (1)已知受力情况求物体的运动情况。 (2)已知运动情况求物体的受力情况。 2.解决两类基本问题的方法 以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如下:

【方法技巧】两类动力学问题的解题步骤 知识点三超重和失重 1.实重和视重 (1)实重:物体实际所受的重力,与物体的运动状态无关,在地球上的同一位置是不变的。 (2)视重 ①当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重。 ②视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力。 2.超重、失重和完全失重的比较 超重现象失重现象完全失重 概念 物体对支持物的压力 (或对悬挂物的拉力)大于 物体所受重力的现象 物体对支持物的压力 (或对悬挂物的拉力)小于物 体所受重力的现象 物体对支持物的压力 (或对悬挂物的拉力)等于零 的现象 产生条件物体的加速度方向向上物体的加速度方向向下 物体的加速度方向向 下,大小a=g 原理方程 F-mg=ma F=m(g+a) mg-F=ma F=m(g-a) mg-F=mg F=0 运动状态加速上升或减速下降加速下降或减速上升 无阻力的抛体运动;绕 地球匀速圆周运动

牛顿第二定律经典好题

牛顿第二定律瞬间问题 1.如图所示,一木块在光滑水平面上受一恒力F作用而运动,前方固定一个弹簧,当木块接触弹簧后( ) A.将立即做变减速运动 B.将立即做匀减速运动 C.在一段时间内仍然做加速运动,速度继续增大 D.在弹簧处于最大压缩量时,物体的加速度为零 解析:因为水平面光滑,物块与弹簧接触前,在推力的作用下做加速运动,与弹簧接触后,随着压缩量的增加,弹簧弹力不断变大,弹力小于推力时,物体继续加速,弹力等于推力时,物体的加速度减为零,速度达到最大,弹力大于推力后,物体减速,当压缩量最大时,物块静止. 答案:C 2.(2017届浏阳一中月考)搬运工人沿粗糙斜面把一个物体拉上卡车,当力沿斜面向上,大小为F时,物体的加速度为a1;若保持力的方向不变,大小变为2F时,物体的加速度为a 2 ,则( ) A.a1=a2B.a1<a2<2a1 C.a2=2a1D.a2>2a1 解析:当力沿斜面向上,大小为F时,物体的加速度为a1,则F-mg sinθ-μmg cos θ=ma1;保持力的方向不变,大小变为2F时,物体的加速度为a2,2F-mg sinθ-μmg cos θ=ma2;可见a2>2a1;综上本题选D. 答案:D 3.(2017届天津一中月考)如图所示,A、B、C三球质量均为m,轻质弹簧一端固定在斜面顶端、另一端与A球相连,A、B间固定一个轻杆,B、C间由一轻质细线连接.倾角为θ的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态,细线被烧断的瞬间,下列说法正确的是( ) A.A球的受力情况未变,加速度为零 B.C球的加速度沿斜面向下,大小为g C.A、B之间杆的拉力大小为2mg sinθ D.A、B两个小球的加速度均沿斜面向上,大小均为 1 2 g sinθ 解析:细线被烧断的瞬间,以A、B整体为研究对象,弹簧弹力不变,细线拉力突变为0,合力不为0,加速度不为0,故A错误;对球C,由牛顿第二定律得:mg sinθ=ma,解得:a=g sinθ,方向向下,故B错误;以A、B、C组成的系统为研究对象,烧断细线前,A、B、C静止,处于平衡状态,合力为零,弹簧的弹力f=3mg sinθ,烧断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B为研究对象,由牛顿第二定律得:3mg sinθ-2mg sinθ=2ma,则B的加速度a= 1 2 g sinθ,故D正确;由D可知,B的加速度为a= 1 2 g sin θ,以B为研究对象,由牛顿第二定律得T-mg sinθ=ma.解得:T= 3 2 mg sinθ,故C错误;故选D. 答案:D 9.如图所示,质量分别为m、2m的两物块A、B中间用轻弹簧相连,A、B与水平面间的动摩擦因数均为μ,在水平推力F作用下,A、B一起向右做加速度大小为a的匀加速直线运动。当突然撤去推力F的瞬间,A、B两物块的加速度大小分别为( ) A.aA=2a+3μg B.aA=2(a+μg) C.aB=a D.aB=a+μg 答案 AC

高一物理牛顿第二定律典型例题答案及讲解

高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作[ ] A.匀减速运动 B.匀加速运动 C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动 【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动. 【答】D. 【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大若把其中一个力反向,物体的加速度又为多少【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度. (1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0. (2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为: 它的方向与反向后的这个力方向相同. 【例3】沿光滑斜面下滑的物体受到的力是[ ] A.力和斜面支持力 B.重力、下滑力和斜面支持力 C.重力、正压力和斜面支持力 D.重力、正压力、下滑力和斜面支持力

【误解一】选(B)。 【误解二】选(C)。 【正确解答】选(A)。 【错因分析与解题指导】[误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。若理解为对斜面的正压力,则是斜面受到的力。 在用隔离法分析物体受力时,首先要明确研究对象并把研究对象从周围物体中隔离出来,然后按场力和接触力的顺序来分析力。在分析物体受力过程中,既要防止少分析力,又要防止重复分析力,更不能凭空臆想一个实际不存在的力,找不到施力物体的力是不存在的。 【例4】图中滑块与平板间摩擦系数为μ,当放着滑块的平板被慢慢地绕着左端抬起,α角由0°增大到90°的过程中,滑块受到的摩擦力将[ ] A.不断增大 B.不断减少 C.先增大后减少 D.先增大到一定数值后保持不变 【误解一】选(A)。 【误解二】选(B)。 【误解三】选(D)。 【正确解答】选(C)。 【错因分析与解题指导】要计算摩擦力,应首先弄清属滑动摩擦力还是静摩擦力。 若是滑动摩擦,可用f=μN计算,式中μ为滑动摩擦系数,N是接触面间的正压力。若是静摩擦,一般应根据物体的运动状态,利用物理规律(如∑F=0或∑F = ma)列方程求解。若是最大静摩擦,可用f=μsN计算,式中的μs是静摩擦系数,有时可近似取为滑动摩擦系数,N是接触面间的正压力。 【误解一、二】都没有认真分析物体的运动状态及其变化情况,而是简单地把物体受到的摩擦力当作是静摩擦力或滑动摩擦力来处理。事实上,滑块所受摩擦力的性质随着α角增大会发生变

16牛顿第二定律及其应用 知识讲解 基础

物理总复习:牛顿第二定律及其应用 【考纲要求】 1、理解牛顿第二定律,掌握解决动力学两大基本问题的基本方法; 2、了解力学单位制; 3、掌握验证牛顿第二定律的基本方法,掌握实验中图像法的处理方法。 【知识网络】 牛顿第二定律内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。 解决动力学两大基本问题 (1)已知受力情况求运动情况。 (2)已知物体的运动情况,求物体的受力情况。 运动=F ma ???→←??? 合力 加速度是运动和力之间联系的纽带和桥梁 【考点梳理】 要点一、牛顿第二定律 1、牛顿第二定律 牛顿第二定律内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。 要点诠释:牛顿第二定律的比例式为F ma ∝;表达式为F ma =。1 N 力的物理意义是使质量为m=1kg 的物体产生21/a m s =的加速度的力。 几点特性:(1)瞬时性:牛顿第二定律是力的瞬时作用规律,力是加速度产生的根本原因,加速度与力同时存在、同时变化、同时消失。 (2)矢量性: F ma =是一个矢量方程,加速度a 与力F 方向相同。 (3)独立性:物体受到几个力的作用,一个力产生的加速度只与此力有关,与其他力无关。 (4)同体性:指作用于物体上的力使该物体产生加速度。 要点二、力学单位制 1、基本物理量与基本单位 力学中的基本物理量共有三个,分别是质量、时间、长度;其单位分别是千克、秒、米;其表示的符号分别是kg 、s 、m 。 在物理学中,以质量、长度、时间、电流、热力学温度、发光强度、物质的量共七个物理量 作为基本物理量。以它们的单位千克(kg )、米(m )、秒(s )、安培(A )、开尔文(K )、坎 德拉(cd )、摩尔(mol )为基本单位。 2、 基本单位的选定原则 (1)基本单位必须具有较高的精确度,并且具有长期的稳定性与重复性。 (2)必须满足由最少的基本单位构成最多的导出单位。 (3)必须具备相互的独立性。 在力学单位制中选取米、千克、秒作为基本单位,其原因在于“米”是一个空间概念;“千克”是一个表述质量的单位;而“秒”是一个时间概念。三者各自独立,不可替代。 例、关于力学单位制,下列说法正确的是( ) A .kg 、m/s 、N 是导出单位 B .kg 、m 、s 是基本单位 C .在国际单位制中,质量的单位可以是kg ,也可以是g D .只有在国际单位制中,牛顿第二定律的表达式才是 F ma =

关于系统牛顿第二定律的应用

关于系统牛顿第二定律的应用 眉山中学邓学军 牛顿第二定律是动力学的核心内容,它深刻揭示了物体产生的加速度与其质量、所受到的力之间的定量关系,在科研、 生产、实际生活中有着极其广泛的应用。本文就牛顿第二定律在物理解题中的应用作些分析总结, 以加深学生对该定律的认 识与理解,从而达到熟练应用的效果目的。对于连接体问题,牛顿第二定律应用于系统,主要表现在以下两方面: 其一,系统内各物体的加速度相同。 则表达式为:F =( m i +m 2+…)a ,这种情况往往以整个系统为研究对象,分析 系统的合外力,求岀共同的加速度。 例1 ?质量为m i 、m 2的两个物体用一轻质细绳连接,现对 m i 施加一个外力F ,在如下几种情况下运动,试求绳上的拉 力大小。 m 1 m 2 m i m 2 ⑶m i 、m 2放在光滑斜面上向上作加速直线运动 解析:对整体:F —( m i + m 2) g sin a=( m i + m 2) a 对 m 2: T — m 2g sin a = m 2 a 解得:T = m i m 2 ⑷m i 、m 2放在粗糙斜面上向上作加速直线运动 解析:对整体: F —( m i + m 2) g sin a — g( m i + m 2) g cos a=( m i + m 2) a 对 m 2: T — m 2g sin a — g( m i + m 2) g cos a = m 2 a 其二,系统内各物体的加速度不同。 这种题目较难,牛顿第二定律的基本表达式为: F m i a i mba 2 L ,这是一个矢量表达式,可以分为以下几种情形: 1. 系统中只有一个物体有加速度,其余物体均静止或作匀速运动。 例2?如图示,斜面体 M 始终处于静止状态,当物体 m 沿斜面下滑时,下列说法正确的是: A ?匀速下滑时,M 对地面的压力等于(M +m ) g B. 加速下滑时,M 对地面的压力小于(M + m ) g ⑵m i 、m 2放在粗糙水平面上作加速直线运动: T = m 2 —F 解得:T = m 2 m i m 2 ⑸m i 、m 2放在光滑水平面上在 F 作用下绕0i 02作匀速圆周运动 解析:对整体:F =( m i + m 2) a 对 m 2: T = m 2 a (连接绳子极短) 解得:T = m 2 > F 01 [m2 -| ml m i m 2 ⑴m i 、m 2放在光滑水平面上作加速直线运动: T = m 2

牛顿第二定律专题(含经典例题)

牛顿第二定律专题 1.考纲解读 2.考点整合 考点一牛顿第二定律 1.定律内容:物体的加速度跟物体成正比,跟物体的成反比,加速度的方向跟合外力的方向 . 2.牛顿第二定律的矢量性、瞬时性、独立性.“矢量性”是指加速度的方向取决,“瞬时性”是指加速度和合外力存在着关系,合外力改变,加速度相应改变,“独立性”是指作用在物体上的每个力都独立的产生各自的加速度,合外力的加速度即是这些加速度的矢量和. 3.牛顿第二定律的分量式:ΣFx=max,ΣFy=may

[特别提醒]:F是指物体所受到的合外力,即物体所有受力的合力.加速度与合外力是瞬时对应关系,即有合外力就有加速度,没有合外力就没有加速度. 【例1】 如图所示,小车上固定着三角硬杆,杆的端点固定着一个质量为m的小球.当小车水平向右的加速度逐渐增大时,杆对小球的作用力的变化(用F1至F4变化表示)可能是下图中的(OO'沿杆方向) 【解析】对小球进行受力分析,小球受重力和杆对小球的弹力,弹力在竖直方向的分量和重力平衡,小球在水平方向的分力提供加速度,故C正确. 【答案】C 【方法点评】本题考查牛顿第二定律,只要能明确研究对象,进行受力分析,根据牛顿第二定律列方程即可. 考点二力、加速度和速度的关系 在直线运动中当物体的合外力(加速度)与速度的方向时,物体做加速运动,若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动,当物体的合外力(加速度)方向与速度的方 向时,物体做减速运动.若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动. [特别提醒]:要分析清楚物体的运动情况,必须从受力着手,因为力是改变运动状态的原因,求解物理问题,关键在于建立正确的运动情景,而这一切都必须从受力分析开始.

牛顿第二定律经典练习题

牛顿运动定律练习题 1.用2N的水平力拉一个物体沿水平面运动时,物体可获得1m/s2的加速度; 用3N的水平力拉物体沿原地面运动,加速度是2m/s2,那么改用4N的水平力拉物体,物体在原地面上运动的加速度是______m/s2,物体在运动中受滑动摩擦力大小为______N. 2. 一轻质弹簧上端固定,下端挂一重物体,平衡时弹簧伸长4cm,现将重物体向下拉1cm然后放开,则在刚放开的瞬时,重物体的加速度大小为( ). (A)2.5m/s2 (B)7.5m/s2 (C)10m/s2 (D)12.5m/s2 3.在粗糙的水平面上,物体在水平推力作用下由静止开始作匀加速直线运动,作用一段时间后,将水平推力逐渐减小到零,则在水平推力逐渐减小到零的过程中( ) (A)物体速度逐渐减小,加速度逐渐减小 (B)物体速度逐渐增大,加速度逐渐减小 (C)物体速度先增大后减小,加速度先增大后减小 (D)物体速度先增大后减小,加速度先减小后增大 4. 物体在水平地面上受到水平推力的作用,在6s内力F的变化和速度v的变化如图所示,则物体的质量为______kg,物体与地面的动摩擦因数为______. 5.质量为20kg的物体若用20N的水平力牵引它,刚好能在水平面上匀速前进.问:若改用50N拉力、沿与水平方向成37°的夹角向斜上方拉它,使物体由静止出发在水平而上前进2.3m,它的速度多大?在前进2.3m时撤去拉力,又经过3s,物体的速度多大(g取10m/s2)?

6. 如图所示,自由下落的小球,从它接触竖直放置的弹簧开始,到弹簧被压缩到最短的过程中,小球的速度和所受外力的合力变化情况是( ). (A)合力变小,速度变小 (B)合力变小,速度变大 (C)合力先变小后变大,速度先变大后变小 (D)合力先变大后变小,速度先变小后变大 7.如图,在光滑的水平面上,推力F大小为10N,木块A的质量为3kg,木块B 的质量为2kg,在推力F的作用下,A、B从静止开始一起向右做匀加速直线运动,求: (1)第3秒末,A、B的速度大小; (2)A与B之间的相互作用力的大小。 (3)

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题 ——陈法伟 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。

例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2 2. 力和加速度的瞬时对应关系 (1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。若合外力变为零,加速度也立即变为零(加速度可以突变)。这就是牛顿第二定律的瞬时性。 (2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性: ①轻,即绳(或线)的质量和重力均可视为零。由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。

牛顿第二定律练习题经典好题

4.3牛顿第二定律练习题(经典好题) 正交分解法1: 例.1.如图5所示:三个共点力,F 1=5N ,F 2=10N ,F 3=15N , θ=60°,它们的合力的x 轴方向的分量F x 为________N , y 轴方向的分量F y 为N ,合力的大小为N ,合力方向与x 轴正方向夹角为。 12.(8分)如图6所示,θ=370,sin370=0.6,cos370=0.8。 箱子重G =200N ,箱子与地面的动摩擦因数μ= 0.30。要匀速拉动箱子,拉力F 为多大? 2如图所示,质量为m 的物体在倾角为θ的粗糙斜面下匀 速下滑,求物体与斜面间的滑动摩擦因数。 3.(6分)如图10所示,在倾角为α=37°的斜面上有一块竖直 放置的档板,在档板和斜面之间放一个重力G=20N 的光滑球,把 球的重力沿垂直于斜面和垂直于档板的方向分解为力F 1和F 2,求 这两个分力F 1和F 2的大小。 4.质量为m 的物体在恒力F 作用下,F 与水平方向之间的夹角为 θ,沿天花板向右做匀速运动,物体与顶板间动摩擦因数为μ,则 物体受摩擦力大小为多少? : 5如图所示,物体的质量kg m 4.4=,用与竖直方向成?=37θ的斜向右上方的推力F 把该物体压在竖直墙壁上,并使它沿墙壁在竖直方向上做匀速直线运动。物体与墙壁间的动摩擦因数5.0=μ,取重力加速度2/10s m g =,求推力F 的大小。(6.037sin =?,8.037cos =?6如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体, 当绳与水平面成60o 角时,物体静止,不计滑轮与绳的摩擦,求地面对人的支 持力和摩擦力。 正交分解法2: 1如图所示,一个人用与水平方向成=角的斜 θ60

相关文档