文档库 最新最全的文档下载
当前位置:文档库 › B Decays at BABAR

B Decays at BABAR

B Decays at BABAR
B Decays at BABAR

a r X i v :h e p -e x /0308069v 1 28 A u g 2003

1

Presented at QCD 02:High Energy Physics International Conference in Quantum Chromodynamics,Montpellier,France,2-9Jul 2002.

Nucl.Phys.B (Proc.Suppl.)121(2003)239-248SLAC-PUB-10138

B Decays at B A B A R

J.J.Back a ?

a

Physics Department,Queen Mary,University of London,

Mile End Road,London,E14NS,UK (on behalf of the B A B A R Collaboration)

We present branching fraction and CP asymmetry results for a variety of B decays based on up to 56.4fb ?1collected by the B A B A R experiment running near the Υ(4S )resonance at the PEP-II e +e ?B -factory.

1.The B A B A R Detector

The results presented in this paper are based on an integrated luminosity of up to 56.4fb ?1collected at the Υ(4S )resonance with the B A B A R detector [1]at the PEP-II asymmetric e +e ?col-lider at the Stanford Linear Accelerator Center.Charged particle track parameters are measured by a ?ve-layer double-sided silicon vertex tracker and a 40-layer drift chamber located in a 1.5-T magnetic ?eld.Charged particle identi?cation is achieved with an internally re?ecting ring imag-ing Cherenkov detector (DIRC)and from the av-erage d E/d x energy loss measured in the track-ing devices.Photons and π0s are detected with an electromagnetic calorimeter (EMC)consisting of 6580CsI(Tl)crystals.An instrumented ?ux return (IFR),containing multiple layers of re-sistive plate chambers,provides muon and long-lived hadron identi?cation.2.B Decay Reconstruction

The B meson candidates are identi?ed kine-matically using two independent variables.The

?rst is ?E =E ??E ?

beam ,which is peaked at zero for signal events,since the energy of the B candi-(E ?2beam ?p ?2B ),where p ?B

is the momentum of the B meson in the Υ(4S )rest frame,and must be close to the nominal B mass [5].The resolution of m ES is dominated by the beam energy spread and is approximately 2.5MeV /c 2.

Several of the B modes presented here have

decays that involve neutral pions (π0)and K 0

S particles.Neutral pion candidates are formed by combining pairs of photons in the EMC,with re-quirements made to the energies of the photons and the mass and energy of the π0.Table 1shows these requirements for various decay modes,as

well as the selection requirements for K 0

S candi-dates,which are made by combining oppositely charged pions.

Signi?cant backgrounds from light quark-antiquark continuum events are suppressed using various event shape variables which exploit the di?erence in the event topologies in the centre-of-mass frame between background events,which have a di-jet structure,and signal events,which tend to be rather spherical.One example is the

cosine of the angle θ?

T between the thrust axis of the signal B candidate and the thrust axis of the

2

Table1

Selection requirements forπ0and K0

S

candidates for various B decay modes(h=K/π).Eγis the minimum photon energy and mπ0and Eπ0the mass and energy,respectively,ofπ0candidates.The

mass of the K0

S is m K0

S

,the opening angle between the K0

S

momentum and its line-of-?ight isφK0

S

,the

transverse?ight distance of the K0

S from the primary event vertex is d K0

S

andτ/σK0

S

is the K0

S

lifetime

divided by its error.

B→DK>70[124,144]>200————B→D(?)D(?)>30[115,155]>200[473,523]<200>2—B→hπ0>30[111,159]—————B→hK0———[487,509]——>5 B→φK(?)———[487,510]<100—>3 B→ηh>50[120,150]—————B→ηK0>50[115,155]—[491,507]<40>2—B→η′K(?)0———[488,508]———B→K?γ>30[115,150]>200[489,507]———B→K(?)?+??———[480,498]—>1—

3

3.B→DK

The decays B?→D0K?and B±→D0±K±,

where D0±denotes the CP-even(+)or CP-odd

states(?)(D0±ˉD0)/√

B(B?→D0π?)

=(8.31±0.35±0.13)%,(2)

where the?rst error is statistical and the sec-

ond error is systematic.This quantity has also

been measured by the CLEO and BELLE Col-

laborations,where they get R=(5.5±1.4±

0.5)%[7]and R=(7.9±0.9±0.6)%[8],re-

spectively.Theory predicts,using factorisation

and tree-level Feynman diagrams only,a value

R≈tan2θC(f K/fπ)2≈7.4%,whereθC is the

Cabibbo angle,and f K and fπare the meson

decay constants.For the CP-even mode D0+→

K+K?we have measured

B(B?→D0+K?)+B(B+→D0+K+)

R CP=

B(B?→D0+K?)+B(B+→D0+K+)

=0.15±0.24+0.07

.(4)

4

4.B→D(?)D(?)

Time-dependent CP violating asymmetries in the decays B→D(?)D(?)can be used to measure

the CKM angleβ[9],in a way complimentary to measurements already made with decays such as

B0→J/ψK0S[10].However,the vector-vector decay of B0→D?+D??is not a pure CP eigen-state,which may cause a sizeable dilution to the

CP violation that can be observed.In principle,a full time-dependent angular analysis can remove this dilution[11].

We reconstruct exclusively the decays B0→D?+D??and B0→D?±D?,where D?±→D0π±or D±π0.The?nal states we consider for the neutral D mesons are K?π+,K?π+π0, K?π+π?π+and K0

S

π+π?,while we consider the

D+?nal states K?π+π+,K0

S

π+and K?K+π+. B0candidates are reconstructed by performing a mass-constrained?t to the D and D?candi-dates.In the case when more than one B candi-date is found for an event,we chose the B candi-date in which the D and D?mesons have invari-ant masses closest to their nominal values[5]. Signal events are required to satisfy|?E|< 25MeV and5.273

ΓdΓ

4

(1?R t)sin2θtr+

3

B(B+→π+π0),(9)

where B(B0→π0π0) CP=1

5

m ES (GeV/c 2

)

E v e n t s /2 M e V /c

2

B A B AR

5

10

5.2 5.225 5.25 5.275

5.3

Figure 3.Distribution of m ES for B +→π+π0events in on-resonance data.The solid curve rep-resents the projection of the maximum likelihood ?t result,while the dotted curve represents the background contribution.

Table 2

Two-body charmless B decay branching frac-tions (B )and CP asymmetries (A CP )based on 56.4fb ?1.Upper limits are given at the 90%con?dence level.

π+π04.1+1.1+0.8?1.0?0.7

?0.02+0.27

?0.26±0.10K +π011.1+1.3

?1.2±1.0

0.00±0.11±0.02π+K 017.5+1.8

?1.7±1.8

?0.17±0.10±0.02

K +

6.Three-body Charmless Charged B Decays The decays B +→h +h ?h +,where h =πor K ,can be used to measure the angle γ[18].The ba-sic idea is that there can be interference between resonant and non-resonant amplitudes leading to direct CP violation.A Dalitz plot analysis can,

in principle,give us information about all of the strong and weak phases in these decays.A ?rst step towards this goal is to measure the branch-ing fractions into the whole Dalitz plot.We can write these as

B =

1B

i S i

B

is the total number of B

6

Figure4.Unbinned Dalitz plots(with no back-

ground subtraction or e?ciency corrections)for B+→K+π?π+events in on-resonance sideband (top left)and signal(top right)data,and for

B+→K+K?K+events in on-resonance side-band(bottom left)and signal(bottom right) data.Open charm contributions are not removed.

measure(180±4±11)×10?6for the branch-ing fraction for the B?→D0π?control sample, which agrees with the previously measured value of(203±20)×10?6[5].

7.B→φK(?),φπ

These modes are interesting because only pen-guin diagrams contribute to the decay amplitudes (mainly b→sˉs s),and the time-dependent CP asymmetry for the neutral mode B0→φK0S can be used to measure sin2β.Comparison with sin2βresults from charmonium modes will allow Table3

Three-body charmless charged B decay branching fractions(×10?6)from B A B A R(51.5fb?1)and BELLE(29.1fb?1).

π+π?π+8.5±4.0±3.6(<15)—

K+π?π+59.2±4.7±4.955.6±5.8±7.7 K+K?π+2.1±2.9±2.0(<7)<21

K+K?K+34.7±2.0±1.835.3±3.7±4.5

7 Table4

Branching fractions(×10?6)for B→φK and B+→φπ+decays from B A B A R(56.3fb?1and20.7fb?1?), BELLE(21.6fb?1)and CLEO(9.1fb?1).

φK+9.2±1.0±0.811.2+2.2

?2.0±1.45.5+2.1?1.8±0.6

φK08.7+1.7

?1.5±0.98.9+3.4?2.7±1.0<12.3

φK?+9.7+4.2

?3.4±1.7?<36<22.5

φK?08.7+2.5

?3.7?1.7

?2.1±1.1?13.0+6.4?5.2±2.111.5+4.5+1.8

φπ+<0.6—<5

Mode B(×10?5)A C P

B0→K?0γ4.23±0.40±0.22?0.05±0.09±0.01

B+→K?+γ3.83±0.62±0.22?0.04±0.13±0.01

B(ˉB→ˉK?γ)+B(B→K?γ).(11)

Theoretical expectations for the branching frac-

tions are in agreement with the measured values.

8

Table 5

Measured branching fractions (×10?6)for B decays with ηand η′mesons from the CLEO,BELLE and B A B A R collaborations.

ηπ+1.2+2.8

?1.2(<5.7)

5.4+2.0

?1.7±0.6

2.2+1.8

?1.6±0.1(<5.2)?

ηK +2.2+2.8

?2.2(<6.9)

5.3+1.8

?1.5±0.63.8+1.8

?1.5±0.2(<6.4)?

ηK 00.0+3.2

?0.0(<9.3)

6.0+3.8

?2.9±0.4(<12)?

ηK ?013.8+5.5

?4.6±1.6

16.5+4.6?4.2±1.2

19.8+6.5

?5.6±1.5?

ηK ?+26.4+9.6

?8.2±3.326.5+7.8

?7.0±3.022.1+11.1

?9.2±3.2?η′K +80+10?9±778±6±967±5±5η′K 089+18

?16±968±10

46±6±4η′K ?0

7.8+7.7

?5.7(<24)

4.0+3.5

?2.4±1.0(<13)

9

) 2

c (GeV/ES m

)

2

c (GeV/ES m 2

c E n t r i e s /3 M e V /Figure 6.Projections from the likelihoo

d ?ts of th

e K (?)?+??modes onto m ES for the signal re-gion ?0.11

f background,while the solid lines show the sum of the signal and background contributions.

11.Conclusions

We have shown a selection of results from the B A B A R experiment based on up to 56.4fb ?1col-lected at the Υ(4S )resonance.We have made the following observations:

?B →DK .We have measured the ratio of the branching fractions for B ?→D 0K ?and B ?→D 0π?,as well as the CP asym-metry for the CP -even mode B ?→D 0

+K ?,which is the ?rst step towards measuring γ.?B →D (?)D (?)decays,which can be used to measure β,have been fully reconstructed.We have a ?rst measurement of the CP -odd

content of these decays.

?We observe B +→π+π0for the ?rst time,which,with other two body charmless modes,can be used to extract the angle α.

?Three-body charmless B decays.Signi?-cant signals have been observed for B +→K +π?π+and B +→K +K ?K +.A Dalitz plot analysis of these decays could give us information about the angle γ.

?We have made observations of the decays B +→φK +and B 0→φK 0,and we also con?rm the rather large branching fractions of ηK ?and η′K ?rst seen by CLEO,which presents a theoretical challenge.

?Radiative penguin modes.We observe a sig-nal for B 0→K?+??for the ?rst time.

Many of the results are approaching the level of predictions from the Standard Model.We ob-serve no direct CP violation in several decays,which could indicate that (the di?erences be-tween)strong phases are small.We can expect many more fruitful searches and improvements to existing measurements in the near future.REFERENCES

1.B A B A R Collaboration,B.Aubert et al.,“The

B A B A R Detector”,Nucl.Instr.and Meth.A 479,1(2002),hep-ex/0105044.

2.ARGUS Collaboration,H.Albrecht et al.,Z.

Phys.C 48,543(1990).

3.M.Gronau and D.Wyler,Phys.Lett.B 265,

172(1991);

M.Gronau and D.London,Phys.Lett.B 253,483(1991).

4. D.Atwood,I.Dunietz and A.Soni,Phys.

Rev.Lett.78,3257(1997).

5.Particle Data group,D.E.Groom et al.,,Eur.

Phys.Jour.C 15,1(2000).

6.G.C.Fox and S.Wolfram,Phys.Rev.Lett.

41,1581(1978).

7.M.Athanas et al.,Phys.Rev.Lett.80,5493

(1998),hep-ex/9802023.

8.BELLE Collaboration,K.Abe et al.,

Phys.Rev.Lett.87,111801(2001),hep-ex/0104051.

10

9.Y.Grossman and M.Worah,Phys.Lett.B

395,241(1997);

R.Fleischer,Int.Jour.Mod.Phys.A12,2459 (1997).

10.B A B A R Collaboration, B.Aubert et al.,

SLAC-PUB-9293,hep-ex/0207042(2002), submitted to Phys.Rev.Lett.

11.I.Dunietz et al.,Phys.Rev.D43,2193

(1991).

12.M.Gronau and J.Rosner,Phys.Rev.Lett.

76,1200(1996),hep-ph/9510363;

R.Fleischer and T.Mannel,Phys.Lett.B 397,269(1997),hep-ph/9610357;

13.M.Gronau and D.London,Phys.Rev.Lett.

65,3381(1990).

14.Y.Grossman and H.Quinn,Phys.Rev.D58,

017504(1998).

15.M.Neubert,Nucl.Phys.Proc.Suppl.86,477

(2000),hep-ph/9909564.

16.B A B A R Collaboration, B.Aubert et al.,

Phys,Rev.Lett.87,151802(2001), hep-ex/0105061.

17.S.L.Wu,Phys.Rep.107,59(1984).

18.R. E.Blanco, C.Gobel,R.Mendez-

Galain,Phys.Rev.Lett.86,2720(2001), hep-ph/0007105;

S.Fajfer,R.J.Oakes,T.N.Pham,Phys.

Lett.B539,67(2002),hep-ph/0203072. 19.BELLE Collaboration,K.Abe et al.,Phys.

Rev.D65,092005(2002),hep-ex/0201007.

20.H-Y.Cheng,Talk given at International Eu-

rophysics Conference on High-Energy Physics (HEP2001),Budapest,Hungary,12-18Jul 2001,hep-ph/0110026;

S.Mishima,Phys.Lett.B521,252(2001), hep-ph/0107206.

21.BELLE Collaboration,K.Abe et al.,

KEK-PREPRINT-2001-74,BELLE-CONF-0113(2001).

22.CLEO Collaboration,R. A.Briere

et al.,Phys.Rev.Lett.86,3718(2001), hep-ex/0101032.

23.CLEO Collboration,S.J.Richichi

et al.,Phys.Rev.Lett.85,520(2000), hep-ex/9912059.

24.P.Ko,Talk given at4th International Work-

shop on Particle Physics Phenomenology,

Kaohsiung,Taiwan,China,18-21Jun1998, hep-ph/9810300.

25.H.H.Asatrian,H.M.Asatrian, D.

Wyler,Phys.Lett.B470,223(1999), hep-ph/9905412.

26.A.Ali et al.,Phys.Rev.D61,074024(2000),

hep-ph/9910221.

HTD8M同步带参数

H T D-8M型号圆弧齿同步带=>? HTD-8M型号圆弧齿同步带规格、型号、尺寸表(节距=8.00mm) 规格型号节线长齿数规格型号节线长齿数规格型号节线长齿数 184-8M184.00231040-8M1040.001301936-8M1936.00242 288-8M288.00361056-8M1056.001321952-8M1952.00244 320-8M320.00401064-8M1064.001332000-8M2000.00250 328-8M328.00411080-8M1080.001352080-8M2080.00260 336-8M336.00421088-8M1088.001362096-8M2096.00262 368-8M368.00461104-8M1104.001382104-8M2104.00263 376-8M376.00471112-8M1112.001392136-8M2136.00267 384-8M384.00481120-8M1120.001402160-8M2160.00270 400-8M400.00501128-8M1128.001412208-8M2208.00276 408-8M408.00511136-8M1136.001422240-8M2240.00280 416-8M416.00521152-8M1152.001442248-8M2248.00281 424-8M424.00531160-8M1160.001452272-8M2272.00284 440-8M440.00551168-8M1168.001462304-8M2304.00288 448-8M448.00561184-8M1184.001482328-8M2328.00291 472-8M472.00591192-8M1192.001492392-8M2392.00299 480-8M480.00601200-8M1200.001502400-8M2400.00300 512-8M512.00641208-8M1208.001512504-8M2504.00313 520-8M520.00651216-8M1216.001522584-8M2584.00323 536-8M536.00671224-8M1224.001532600-8M2600.00325 560-8M560.00701240-8M1240.001552736-8M2736.00342 568-8M568.00711248-8M1248.001562800-8M2800.00350 576-8M576.00721256-8M1256.001573048-8M3048.00381 584-8M584.00731264-8M1264.001583120-8M3120.00390 600-8M600.00751272-8M1272.001593168-8M3168.00396 608-8M608.00761280-8M1280.001603200-8M3200.00400 624-8M624.00781304-8M1304.001633280-8M3280.00410 632-8M632.00791312-8M1312.001643400-8M3400.00425 640-8M640.00801320-8M1320.001653600-8M3600.00450 656-8M656.00821328-8M1328.001663720-8M3720.00465 680-8M680.00851344-8M1344.001683824-8M3824.00478 688-8M688.00861352-8M1352.001693864-8M3864.00483

HM同步带参数

HTD-8M型号圆弧齿同步带 => HTD-8M型号同步带轮 HTD-8M型号圆弧齿同步带规格、型号、尺寸表(节距=8.00mm) 规格型号节线长齿数规格型号节线长齿数规格型号节线长齿数184-8M184.00231040-8M1040.001301936-8M1936.00242 288-8M288.00361056-8M1056.001321952-8M1952.00244 320-8M320.00401064-8M1064.001332000-8M2000.00250 328-8M328.00411080-8M1080.001352080-8M2080.00260 336-8M336.00421088-8M1088.001362096-8M2096.00262 368-8M368.00461104-8M1104.001382104-8M2104.00263 376-8M376.00471112-8M1112.001392136-8M2136.00267 384-8M384.00481120-8M1120.001402160-8M2160.00270 400-8M400.00501128-8M1128.001412208-8M2208.00276 408-8M408.00511136-8M1136.001422240-8M2240.00280 416-8M416.00521152-8M1152.001442248-8M2248.00281 424-8M424.00531160-8M1160.001452272-8M2272.00284 440-8M440.00551168-8M1168.001462304-8M2304.00288 448-8M448.00561184-8M1184.001482328-8M2328.00291 472-8M472.00591192-8M1192.001492392-8M2392.00299 480-8M480.00601200-8M1200.001502400-8M2400.00300 512-8M512.00641208-8M1208.001512504-8M2504.00313 520-8M520.00651216-8M1216.001522584-8M2584.00323 536-8M536.00671224-8M1224.001532600-8M2600.00325 560-8M560.00701240-8M1240.001552736-8M2736.00342 568-8M568.00711248-8M1248.001562800-8M2800.00350 576-8M576.00721256-8M1256.001573048-8M3048.00381 584-8M584.00731264-8M1264.001583120-8M3120.00390 600-8M600.00751272-8M1272.001593168-8M3168.00396 608-8M608.00761280-8M1280.001603200-8M3200.00400 624-8M624.00781304-8M1304.001633280-8M3280.00410 632-8M632.00791312-8M1312.001643400-8M3400.00425 640-8M640.00801320-8M1320.001653600-8M3600.00450 656-8M656.00821328-8M1328.001663720-8M3720.00465 680-8M680.00851344-8M1344.001683824-8M3824.00478 688-8M688.00861352-8M1352.001693864-8M3864.00483 696-8M696.00871360-8M1360.001704000-8M4000.00500

全面同步带选型步骤及计算

同步带选型步骤及计算 一、同步带传动特点 同步带传动是由一根周表面设有等间距齿的环形带和具有相应齿的带轮组成,它是综合了带传动、链传动和齿轮传动各自优点的新型带传动,运动时,带齿与带轮的齿槽相啮合传递运动和动力。 1、传动带传动具有准确的传动比,无滑差,可获得恒定的速比,传动平稳,噪音小; 2、传动比围大,一般可达 1: 10 ,允许线速度可达 40M/S ,传动功率从几瓦到数百千瓦; 3、传动效率高,结构紧凑,还适于多轴转动,不需润滑,无污染,因而可在不允许有污染和工作环境较为恶劣的场合下正常工作; 4、广泛应用于汽车、五金、纺织、机床、办公机械、电动工具、电动门窗、家用电器、仪表仪器、食品包装机械、矿山、石油化工及其它类型的传动。

二、同步带分类及各种形式的同步带应用说明 1、模数制:同步带主要参数是模数 m( 与齿轮相同 ),根据不同的模数数值来确定带的型号及结构参数。在 60 年代该种规格制度曾应用于日、意、等国,后随国际交流的需要,各国同步带规格制度逐渐统一到节距制。目前仅前联及东欧各国仍采用模数制。 2、周节制:即同步带的主要参数是带齿节距,按节距大小不同,相应带、轮有不同的结构尺寸。该种规格制度目前被列为国际标准。 3、特殊节距制(公制 T 型齿同步带):又称特殊节距制同步带轮,除具有一般同步带传动的优点以外,由于其齿形为方形的特点,于圆弧齿形带轮相比较,则可以允许更大的线速度,也就是说公制 T 型齿同步带轮可以满足较高转速的

传动。 4、圆弧齿:近年来又发展了圆弧齿形同步带,圆弧齿形的同步带传动性能和承载能力比梯形齿好,圆弧齿同步带的问世,扩大了同步带的传动围,该同步带不但能适用于高速低扭矩的场合,也能适用于低速高扭矩的场合。 备注:汽车同步带和圆弧齿同步带也分别采用特定的节距;齿形带的工作面目前用得最多的是梯形齿。 三、同步带选型计算步骤

HTDM同步带参数

H T D M同步带参数 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

HTD-8M型号圆弧齿同步带 =>? HTD-8M型号圆弧齿同步带规格、型号、尺寸表(节距=) 规格型号节线长齿数规格型号节线长齿数规格型号节线长齿数184-8M231040-8M1301936-8M242 288-8M361056-8M1321952-8M244 320-8M401064-8M1332000-8M250 328-8M411080-8M1352080-8M260 336-8M421088-8M1362096-8M262 368-8M461104-8M1382104-8M263 376-8M471112-8M1392136-8M267 384-8M481120-8M1402160-8M270 400-8M501128-8M1412208-8M276 408-8M511136-8M1422240-8M280 416-8M521152-8M1442248-8M281 424-8M531160-8M1452272-8M284 440-8M551168-8M1462304-8M288 448-8M561184-8M1482328-8M291 472-8M591192-8M1492392-8M299 480-8M601200-8M1502400-8M300 512-8M641208-8M1512504-8M313 520-8M651216-8M1522584-8M323 536-8M671224-8M1532600-8M325 560-8M701240-8M1552736-8M342 568-8M711248-8M1562800-8M350 576-8M721256-8M1573048-8M381 584-8M731264-8M1583120-8M390 600-8M751272-8M1593168-8M396 608-8M761280-8M1603200-8M400 624-8M781304-8M1633280-8M410 632-8M791312-8M1643400-8M425 640-8M801320-8M1653600-8M450 656-8M821328-8M1663720-8M465 680-8M851344-8M1683824-8M478 688-8M861352-8M1693864-8M483 696-8M871360-8M1704000-8M500 712-8M891376-8M1724200-8M525

HTD8M同步带参数

HTD-8M型号圆弧齿同步带 =>? HTD-8M型号圆弧齿同步带规格、型号、尺寸表(节距=) 规格型号节线长齿数规格型号节线长齿数规格型号节线长齿数184-8M231040-8M1301936-8M242 288-8M361056-8M1321952-8M244 320-8M401064-8M1332000-8M250 328-8M411080-8M1352080-8M260 336-8M421088-8M1362096-8M262 368-8M461104-8M1382104-8M263 376-8M471112-8M1392136-8M267 384-8M481120-8M1402160-8M270 400-8M501128-8M1412208-8M276 408-8M511136-8M1422240-8M280 416-8M521152-8M1442248-8M281 424-8M531160-8M1452272-8M284 440-8M551168-8M1462304-8M288 448-8M561184-8M1482328-8M291 472-8M591192-8M1492392-8M299 480-8M601200-8M1502400-8M300 512-8M641208-8M1512504-8M313 520-8M651216-8M1522584-8M323 536-8M671224-8M1532600-8M325 560-8M701240-8M1552736-8M342 568-8M711248-8M1562800-8M350 576-8M721256-8M1573048-8M381 584-8M731264-8M1583120-8M390 600-8M751272-8M1593168-8M396 608-8M761280-8M1603200-8M400 624-8M781304-8M1633280-8M410 632-8M791312-8M1643400-8M425 640-8M801320-8M1653600-8M450 656-8M821328-8M1663720-8M465 680-8M851344-8M1683824-8M478 688-8M861352-8M1693864-8M483 696-8M871360-8M1704000-8M500

同步带技术参数

广州力博工业皮带有限公司 聚氨酯同步带目录 梯形齿系列 T2.5 (02) T5 (02) T10 (03) T5 (03) 梯形齿((加强型))系列 AT5 (04) AT10 (04) 梯形齿(英制齿))系列 XL (05) L (05) H (06) XH (06) 圆弧齿系列 HTD3M (07) HTD5M (07) HTD8M (08) HTD14M (08)

广州力博工业皮带有限公司 聚氨酯同步带 型号:T2.5 参数特性 * 公制节距2.5 mm * 钢丝芯聚氨酯同步带 * 梯形齿形,按DIN 7721 T1标准 * 最适用于高柔性的驱动应用场合 * 被广泛使用在输送传动、线性驱动和小功率传动 公差范围 * 宽度公差:±0.5 [mm] * 长度公差:±0.5 [mm/m] * 厚度公差:±0.2[mm] 技术参数 宽度[MM] 4 6 10 20 50 开口带额定负载[N] 120 180 240 540 1440 接驳带最大负载[N] 60 90 120 270 720 开口带断裂负载[N] 500 750 1000 2250 6000 重量[kg/m] 0.004 0.007 0.011 0.022 0.055 型号:T5 参数特性 * 公制节距5 mm * 钢丝芯聚氨酯同步带 * 梯形齿形,按DIN 7721 T1标准 * 最适用于高柔性的驱动应用场合 * 被广泛使用在输送传动、线性驱动和小功率传动 公差范围 * 宽度公差:±0.5 [mm] * 长度公差:±0.5 [mm/m] * 厚度公差:±0.2[mm] 技术参数 宽度[MM]10 16 25 32 50 75 100 开口带额定负载[N] 350 488 830 1086 1764 2530 3340 接驳带最大负载[N] 175 244 415 543 882 1265 1670 开口带断裂负载[N] 1426 2200 3450 4200 7230 9468 13260 重量[kg/m] 0.20 0.32 0.51 0.68 0.104 0.159 0.22

橡胶同步带的型号规格表

橡胶同步带的型号规格表:(一)梯型齿橡胶同步带规格型号:MXL XL L H XH XXH 梯形齿同步带参数含义 例如: 120 XL 037 表示 节线长:12*25.4=304.8mm 齿形参数型号:XL 宽度: 0.37*25.4=9.4mm (二)T型同步带规格型号:T2.5 T5 T10 T20 T型同步带参数含义

T10 1250 30 表示 节线长:1250mm 齿形参数型号:T10 宽度:30mm (三)AT型同步带规格型号:AT3 AT5 AT10 AT20 AT型同步带参数含义 AT3 450 10 表示 节线长:450mm 齿形参数型号:AT3 宽度:10mm (四)HTD圆弧齿同步带规格型号:2M 3M 5M 8M 14M 20M HTD圆弧齿同步带参数含义 例如: 111 3M 6表示

节线长:111mm 齿形参数型号:3M 宽度:6mm (五)STS/STPD圆弧齿同步带规格型号:S2M S3M S4.5 S5M S8M S14M 例如: S4.5M 396 15表示 节线长:396mm 齿形参数型号:S4.5M 宽度:15mm (六)RPP/HPPD圆弧齿同步带规格型号:RPP2M RPP3M RPP5M RPP8M RPP14M 圆弧齿同步带参数含义 例如: P3M 105 6表示 节线长:105mm

齿形参数型号:P3M 宽度:6mm 本文档是根据奇龙传动橡胶同步带系列产品而制作,并不代表橡胶同步带所有规格产品。如想更多的了解同步带技术知道,或者了解奇龙同步带。您可进入奇龙同步带专业网站,奇龙同步带网址:https://www.wendangku.net/doc/8f18472109.html, 如果您想了解其对应配套的同步带轮规格型号,或者同步带轮的相关技术知识, 可进入奇龙专业同步带轮网:https://www.wendangku.net/doc/8f18472109.html,进入了解。 奇龙传动为您生产国内最专业的优质传动产品,奇龙官方总站:https://www.wendangku.net/doc/8f18472109.html,

HTD M同步带参数

HTD-8M型号圆弧齿同步带 =>?HTD-8M型号同步带轮 HTD-8M型号圆弧齿同步带规格、型号、尺寸表(节距=8.00mm) 规格型号节线长齿数规格型号节线长齿数规格型号节线长齿数184-8M184.00231040-8M1040.001301936-8M1936.00242 288-8M288.00361056-8M1056.001321952-8M1952.00244 320-8M320.00401064-8M1064.001332000-8M2000.00250 328-8M328.00411080-8M1080.001352080-8M2080.00260 336-8M336.00421088-8M1088.001362096-8M2096.00262 368-8M368.00461104-8M1104.001382104-8M2104.00263 376-8M376.00471112-8M1112.001392136-8M2136.00267 384-8M384.00481120-8M1120.001402160-8M2160.00270 400-8M400.00501128-8M1128.001412208-8M2208.00276 408-8M408.00511136-8M1136.001422240-8M2240.00280 416-8M416.00521152-8M1152.001442248-8M2248.00281 424-8M424.00531160-8M1160.001452272-8M2272.00284 440-8M440.00551168-8M1168.001462304-8M2304.00288 448-8M448.00561184-8M1184.001482328-8M2328.00291 472-8M472.00591192-8M1192.001492392-8M2392.00299 480-8M480.00601200-8M1200.001502400-8M2400.00300 512-8M512.00641208-8M1208.001512504-8M2504.00313 520-8M520.00651216-8M1216.001522584-8M2584.00323 536-8M536.00671224-8M1224.001532600-8M2600.00325 560-8M560.00701240-8M1240.001552736-8M2736.00342 568-8M568.00711248-8M1248.001562800-8M2800.00350 576-8M576.00721256-8M1256.001573048-8M3048.00381 584-8M584.00731264-8M1264.001583120-8M3120.00390 600-8M600.00751272-8M1272.001593168-8M3168.00396 608-8M608.00761280-8M1280.001603200-8M3200.00400 624-8M624.00781304-8M1304.001633280-8M3280.00410 632-8M632.00791312-8M1312.001643400-8M3400.00425 640-8M640.00801320-8M1320.001653600-8M3600.00450 656-8M656.00821328-8M1328.001663720-8M3720.00465 680-8M680.00851344-8M1344.001683824-8M3824.00478 688-8M688.00861352-8M1352.001693864-8M3864.00483

同步带规格及型号参数大全

同步带规格及型号参数大全 时间:2010-02-18 02:00来源:未知作者:admin 点击: 729次 一、橡胶同步带梯型齿橡胶同步带规格型号 MXL XL L H XH XXH T2.5 T5 T10 T20 AT5 AT10 AT20 梯形齿同步带参数含义例如: 1 ) 120XL037 表示节线长:12*25.4= 304.8mm 齿形参数型号: XL 宽度: 0.37*25.4= 9.4mm 2 ) T10 X 1250 X30 节线长: 1250mm 一、橡胶同步带 梯型齿橡胶同步带规格型号 MXL XL L H XH XXH T2.5 T5 T10 T20 AT5 AT10 AT20 梯形齿同步带参数含义 例如: 1) 120XL037 表示 节线长:12*25.4=304.8mm 齿形参数型号:XL 宽度: 0.37*25.4=9.4mm 2)T10 X 1250 X30 节线长:1250mm 齿形参数型号:T10 宽度:30mm 圆弧齿同步带规格型号 HTD 2M 3M 5M 8M 14M 20M STS/STPD S2M S3M S4.5 S5M S8M S14M RPP/HPPD RPP2M RPP3M RPP5M RPP8M RPP14M 圆弧齿同步带参数含义 例如: HTD 1040-8M-30 表示 节线长:1040 mm 齿形参数型号:HTD 8M 宽度: 30mm 二、双面齿同步带 DA 型双面齿同步带规格型号 D-AXL D-L DA-H DA-T5 DA-T10 DA-T20 DA-3M DA-5M DA-8M DA-14M DA-S8M DA型双面齿同步带参数含义 例如: DA 2000 X T10-40 表示 节线长:2000 mm 齿形参数型号:T10 双面对称齿

同步带技术参数

广州市力肯工控设备有限公司 广州力博工业皮带有限公司 聚氨酯同步带目录 梯形齿系列 (02) T5 (02) T10 (03) T5 (03) 梯形齿((加强型))系列 AT5 (04) AT10 (04) 梯形齿(英制齿))系列 XL (05) L (05) H (06) XH (06)

圆弧齿系列 HTD3M (07) HTD5M (07) HTD8M (08) HTD14M (08) 广州市力肯工控设备有限公司 广州力博工业皮带有限公司 聚氨酯同步带 型号: 参数特性 * 公制节距 2.5 mm * 钢丝芯聚氨酯同步带 * 梯形齿形,按DIN 7721 T1标准 * 最适用于高柔性的驱动应用场合 * 被广泛使用在输送传动、线性驱动和小功率传动 公差范围 * 宽度公差:± [mm] * 长度公差:± [mm/m] * 厚度公差:±[mm] 技术参数

型号:T5 参数特性 * 公制节距 5 mm * 钢丝芯聚氨酯同步带 * 梯形齿形,按DIN 7721 T1标准 * 最适用于高柔性的驱动应用场合 * 被广泛使用在输送传动、线性驱动和小功率传动 公差范围 * 宽度公差:± [mm] * 长度公差:± [mm/m] * 厚度公差:±[mm] 技术参数 广州市力肯工控设备有限公司 广州力博工业皮带有限公司 聚氨酯同步带

型号::T10 参数特性 * 公制节距 10 mm * 钢丝芯聚氨酯同步带 * 梯形齿形,按DIN 7721 T1标准 * 最适用于高柔性的驱动应用场合 * 被广泛使用在输送传动、线性驱动和小功率传动 公差范围 * 宽度公差:± [mm] * 长度公差:± [mm/m] * 厚度公差:±[mm] 技术参数 型号:T20 参数特性 * 公制节距 20 mm * 钢丝芯聚氨酯同步带 * 梯形齿形,按DIN 7721 T1标准 * 最适用于高柔性的驱动应用场合 * 被广泛使用在输送传动、线性驱动和大功率传动 公差范围

HTD8M同步带参数

HTD-8M型号圆弧齿同步带规格、型号、尺寸表(节距=8.00mm) 规格型号节线长齿数规格型号节线长齿数规格型号节线长齿数184-8M184.00231040-8M1040.001301936-8M1936.00242 288-8M288.00361056-8M1056.001321952-8M1952.00244 320-8M320.00401064-8M1064.001332000-8M2000.00250 328-8M328.00411080-8M1080.001352080-8M2080.00260 336-8M336.00421088-8M1088.001362096-8M2096.00262 368-8M368.00461104-8M1104.001382104-8M2104.00263 376-8M376.00471112-8M1112.001392136-8M2136.00267 384-8M384.00481120-8M1120.001402160-8M2160.00270 400-8M400.00501128-8M1128.001412208-8M2208.00276 408-8M408.00511136-8M1136.001422240-8M2240.00280 416-8M416.00521152-8M1152.001442248-8M2248.00281 424-8M424.00531160-8M1160.001452272-8M2272.00284 440-8M440.00551168-8M1168.001462304-8M2304.00288 448-8M448.00561184-8M1184.001482328-8M2328.00291 472-8M472.00591192-8M1192.001492392-8M2392.00299 480-8M480.00601200-8M1200.001502400-8M2400.00300 512-8M512.00641208-8M1208.001512504-8M2504.00313 520-8M520.00651216-8M1216.001522584-8M2584.00323 536-8M536.00671224-8M1224.001532600-8M2600.00325 560-8M560.00701240-8M1240.001552736-8M2736.00342 568-8M568.00711248-8M1248.001562800-8M2800.00350 576-8M576.00721256-8M1256.001573048-8M3048.00381 584-8M584.00731264-8M1264.001583120-8M3120.00390 600-8M600.00751272-8M1272.001593168-8M3168.00396 608-8M608.00761280-8M1280.001603200-8M3200.00400 624-8M624.00781304-8M1304.001633280-8M3280.00410 632-8M632.00791312-8M1312.001643400-8M3400.00425 640-8M640.00801320-8M1320.001653600-8M3600.00450 656-8M656.00821328-8M1328.001663720-8M3720.00465 680-8M680.00851344-8M1344.001683824-8M3824.00478 688-8M688.00861352-8M1352.001693864-8M3864.00483 696-8M696.00871360-8M1360.001704000-8M4000.00500

同步带型号

同步带型号规格大全 一、橡胶同步带 梯型齿橡胶同步带的规格型号 MXL XL L H XH XXH T2.5 T5 T10 T20 AT5 AT10 AT20 梯形齿同步带参数的含义 如: 1) 120XL037 表示 节线长:12*25.4=304.8mm 齿形参数型号:XL 宽度: 0.37*25.4=9.4mm 2)T10 X 1250 X30 节线长:1250mm 齿形参数型号:T10 宽度:30mm 圆弧齿同步带规格的型号 HTD 2M 3M 5M 8M 14M 20M STS/STPD S2M S3M S4.5 S5M S8M S14M RPP/HPPD RPP2M RPP3M RPP5M RPP8M RPP14M 圆弧齿同步带参数的含义 例如: HTD 1040-8M-30 表示 节线长:1040 mm 齿形参数型号:HTD 8M 宽度: 30mm 二、双面齿同步带 DA 型双面齿同步带规格的型号 D-AXL D-L DA-H DA-T5 DA-T10 DA-T20 DA-3M DA-5M DA-8M DA-14M DA-S8M DA型双面齿同步带参数的含义

例如: DA 2000 X T10-40 表示 节线长:2000 mm 齿形参数型号:T10 双面对称齿 宽度: 40mm DB 型双面齿同步带规格和型号 DB-XL DB-L DB-H DB-T5 DB-T10 DB-T20 DB型双面齿同步带参数及含义 例如: DB 2000 X T10-40 表示 节线长:2000 mm 齿形参数型号:T10 双面错开齿 宽度: 40mm 三、汽车同步带规格及型号 R(MR) Y(MY) ZBS YU RU ZA S8M ZD ZR ZAS ZB RHD RHX RPP SL ... 汽车同步带参数含义 例如:99 RU 22 表示 齿数: 99 齿形参数型号: RU 宽度: 22mm 四、多楔带规格及型号 PH PJ PK PL PM 多楔带参数含义 例如: 1) 公制:10PJ1089 楔数: 10 有效长度: 1089 mm 2) 10PJ250 楔数: 10

同步带技术参数

同步带技术参数 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

广州市力肯工控设备有限公司 广州力博工业皮带有限公司 聚氨酯同步带目录 梯形齿系列 T2.5 (02) T5 (02) T10 (03) T5 (03) 梯形齿((加强型))系列AT5 (04) AT10 (04) 梯形齿(英制齿))系列XL (05) L (05) H (06) XH (06) 圆弧齿系列 HTD3M (07) HTD5M (07) HTD8M (08) HTD14M (08) 广州市力肯工控设备有限公司 广州力博工业皮带有限公司 聚氨酯同步带

型号:T2.5 参数特性 * 公制节距 2.5 mm * 钢丝芯聚氨酯同步带 * 梯形齿形,按DIN 7721 T1标准 * 最适用于高柔性的驱动应用场合 * 被广泛使用在输送传动、线性驱动和小功率传动 公差范围 * 宽度公差:±0.5 [mm] * 长度公差:±0.5 [mm/m] * 厚度公差:±0.2[mm] 技术参数 型号:T5 参数特性 * 公制节距 5 mm * 钢丝芯聚氨酯同步带 * 梯形齿形,按DIN 7721 T1标准 * 最适用于高柔性的驱动应用场合 * 被广泛使用在输送传动、线性驱动和小功率传动 公差范围 * 宽度公差:±0.5 [mm] * 长度公差:±0.5 [mm/m] * 厚度公差:±0.2[mm]

广州市力肯工控设备有限公司 广州力博工业皮带有限公司 聚氨酯同步带 型号::T10 参数特性 * 公制节距 10 mm * 钢丝芯聚氨酯同步带 * 梯形齿形,按DIN 7721 T1标准 * 最适用于高柔性的驱动应用场合 * 被广泛使用在输送传动、线性驱动和小功率传动 公差范围 * 宽度公差:±0.5 [mm] * 长度公差:±0.5 [mm/m] * 厚度公差:±0.2[mm] 型号:T20 参数特性 * 公制节距 20 mm * 钢丝芯聚氨酯同步带 * 梯形齿形,按DIN 7721 T1标准 * 最适用于高柔性的驱动应用场合 * 被广泛使用在输送传动、线性驱动和大功率传动 公差范围 * 宽度公差:±1.0 [mm] * 长度公差:±0.6 [mm/m] * 厚度公差:±0.4[mm]

同步带规格

一、橡胶同步带 1、梯型齿橡胶同步带规格型号 MXL XL L H XH XXH T2.5 T5 T10 T20 AT5 AT10 AT20 梯形齿同步带参数含义 例如: 1) 120XL037 表示 节线长:12*25.4=304.8mm 齿形参数型号:XL 宽度: 0.37*25.4=9.4mm 2)T10 X 1250 X30 节线长:1250mm 齿形参数型号:T10 宽度:30mm 2、圆弧齿同步带规格型号 HTD 2M 3M 5M 8M 14M 20M STS/STPD S2M S3M S4.5 S5M S8M S14M RPP/HPPD RPP2M RPP3M RPP5M RPP8M RPP14M 圆弧齿同步带参数含义 例如: HTD 1040-8M-30 表示 节线长:1040 mm 齿形参数型号:HTD 8M 宽度: 30mm 二、双面齿同步带 1、DA 型双面齿同步带规格型号 D-AXL D-L DA-H DA-T5 DA-T10 DA-T20 DA-3M DA-5M DA-8M DA-14M DA-S8M DA型双面齿同步带参数含义 例如: DA 2000 X T10-40 表示 节线长:2000 mm

齿形参数型号:T10 双面对称齿 宽度: 40mm 2、DB 型双面齿同步带规格型号 DB-XL DB-L DB-H DB-T5 DB-T10 DB-T20 DB型双面齿同步带参数含义 例如: DB 2000 X T10-40 表示 节线长:2000 mm 齿形参数型号:T10 双面错开齿 宽度: 40mm 三、汽车同步带规格型号 R(MR) Y(MY) ZBS YU RU ZA S8M ZD ZR ZAS ZB RHD RHX RPP SL ... 汽车同步带参数含义 例如:99 RU 22 表示 齿数: 99 齿形参数型号: RU 宽度: 22mm 四、多楔带规格型号 PH PJ PK PL PM 多楔带参数含义 例如: 1) 公制:10PJ1089 楔数: 10 有效长度: 1089 mm 2) 10PJ250 楔数: 10 有效长度: 25*25.4=635mm 五、切割V带 普通V带规格型号 Y Z A B C D E 普通V带参数含义:

同步带参数

公司简介 深圳市铭威(menway)带轮机械有限公司是一家生产加工、销售型企业,代理各国知名品牌。当今市场要求我们在各个方面都应具有高度的灵活性和能动性,作为优质皮带的供应商,公司时时了解客户的需要,并对现有的产品进行不断的开发和完善,还可以根据客户的不同需求,开发不同行业的特殊皮带,质量稳定交期短。因此,赢得了客户的信任和认可。 公司坚持市场定位,奉献一流的质量以及提供包括顾问咨询在内的全方位服务。当然,铭威公司的产品,其应用和服务永远与未来的需求同步。经过多年的经验积累和不懈努力,在动力传动和物料输送领域逐渐自我完善。我们不断提高产品质量和客户服务意识。从而在行业中树立良好的标兵形象,我们力求满足不同客户的需求,与我们的客户共同发展。 公司主要产品:橡胶、聚氨酯同步带,双面齿带,同步轮,PU、橡胶三角带,广角带,多沟带,PU圆带,平皮带,尼龙片基带,工业皮带,牵引带,龙带,锭带,生产线输送带,爬坡花纹输送带,塑钢链板,耐高温铁氟龙输送网带,铁氟龙布,PVC、PU、PE、硅胶、橡胶、食品级输送带,高速平皮带,彩印包装用带,塑钢网带,铝型材专用耐热毛毡,毛毡滚筒,瓦愣纸板械专用针刺带等。 产品应用范围:汽车,机床,纺织,印刷,食品包装,电线电缆,仪器仪表,石油化工,烟草,通讯等各行业的新型机械带传动之中。 代理品牌有: 阪东(BANDO)、霓塔(NITTA)、西格林(SIEGLING)、哈伯西(HABASIT)、先锋(PIONEER)、山牌(MOUNTAIN)、奥比(OPTIBELT)、盖茨(GATES)等国外知名品牌! 产品介绍 一、深圳市铭威同步带产品介绍: 1.按材质分类:橡胶(内夹尼龙绳,凯夫拉绳)聚氨酯(内夹钢丝)。 2.按齿型分类 梯型齿橡胶同步带系列MXL XL L H XH XXH T2.5T5T10T20A T3AT5AT10AT20

标准三角带、同步带尺寸表

标准三角带A,B,C,D,Z * 防油,抗静电 * 工作温度: -18℃至+70℃ * 最大线性速度: 30米/ 秒 * 顶宽: 13mm * 最小轮径: 75mm * 高度: 8mm * Li(内长)= La(外长)-50mm * 角度: 40°* Li(内长)= Lp(节园长)-36mm 型号Li mm 型号Li mm 型号Li mm 型号Li mm A15 381 A42 1067 A72 1829 A96 2438 A18 457 A43 1092 A74 1880 A98 2489 A20 508 A43 1/2 1105 A75 1905 A99 2515 A22 559 A44 1118 A76 1930 A101 2565 A23 584 A45 1143 A77 1956 A102 2591 A23 1/2 597 A45 1/2 1156 A78 1727 A103 2616 A24 610 A46 1168 A79 1753 A104 2642 A25 635 A46 1/2 1181 A80 1778 A105 2667 A26 660 A47 1194 A81 1803 A107 2718 A27 686 A48 1219 A83 1854 A108 2743 A28 711 A49 1245 A85 1905 A110 2794 A29 737 A50 1270 A86 1930 A112 2845 A29 1/2 749 A51 1295 A87 1956 A113 2870 A30 762 A52 1321 A88 1981 A114 2896 A31 787 A53 1346 A89 2007 A115 2921 A32 813 A55 1397 A91 2057 A118 2997 A32 1/2 826 A56 1422 A92 2083 A120 3048 A33 838 A57 1448 A83 2108 A124 3150 A34 864 A58 1473 A83 1/2 2121 A125 3175 A34 1/2 876 A59 1499 A84 2134 A126 3200 A35 889 A60 1524 A84 1/2 2146 A128 3251 A35 1/2 902 A61 1549 A85 2159 A130 3302 A36 914 A62 1575 A86 2184 A132 3353 A37 940 A63 1600 A87 2210 A140 3556 A38 965 A65 1651 A89 2261 A148 3759 A38 1/2 978 A66 1676 A90 2286 A154 3912 A39 991 A67 1702 A91 2311 A162 4115 A40 1016 A68 1727 A92 2337 A167 4242 A41 1041 A70 1778 A94 2388 A192 4877 A41 1/2 1054 A71 1803 A95 2413 A197 5004

相关文档