文档库 最新最全的文档下载
当前位置:文档库 › Hypack多波束数据内业处理说明书

Hypack多波束数据内业处理说明书

Hypack多波束数据内业处理说明书
Hypack多波束数据内业处理说明书

多波束内业处理用户手册

V1.32016年12月

目录

1.处理流程 (1)

2.数据处理 (2)

2.1.数据准备 (2)

2.1.1.多波束数据准备 (2)

2.1.2.潮位数据编辑 (3)

2.1.3.声速剖面数据编辑 (4)

2.2.数据处理 (5)

2.2.1.新建项目 (5)

2.2.2.数据编辑 (6)

2.3.水深成果输出 (11)

2.4.安装偏差校准 (12)

3.数据抽稀处理 (15)

3.1.网格排序 (15)

3.1.1.准备数据 (15)

3.1.2.抽稀处理 (15)

3.2.水深点压缩 (18)

3.2.1.准备数据 (18)

3.2.2.抽稀处理 (18)

4.3D建模 (20)

4.1.TIN模型 (20)

4.1.1.准备数据 (20)

4.1.2.建模 (20)

附录 (22)

附录A背景TIF文件生成 (22)

A.1Cloud点云工具生成tif (22)

A.2TIN模型工具生成tif (24)

附录B xyz数据文件合并 (26)

1.处理流程

Hypack多波束数据处理是一个简单而繁琐的过程,从初始数据到最终的产品,我们所需要经历的流程大致如图1.1所示。

图1.1多波束处理流程图

2.数据处理

2.1.数据准备

2.1.1.多波束数据准备

多波束外业采集程序较多,不同程序会将外业数据保存为不同的数据格式,采用hypack软件进行多波束数据处理前,需将外业采集的数据转换为hypack 的HSX格式数据。至于转换工具,请联系外业软件的供应商提供,其中hypack 也自带数据转换的小程序hsxconverter,支持将一些常见的数据格式转换为HSX 格式。

如图2.1所示为hypack2016转换小程序的软件界面。

图2.1hsxconverter转换程序窗口

其中,程序支持多种常见的数据格式,如图2.2所示为hypack2016里所支

持的数据类型。

图2.2hypack支持的数据格式对话框

这里,就不详细介绍此转换过程了。

2.1.2.潮位数据编辑

在Hypack主界面下,打开潮位数据编辑器(Hypack-数据处理-潮位-潮位观测),如图2.3所示。在左侧区域输入潮位观测时间和对应的潮位数据,同时窗口右侧会出现拟合的潮位曲线,您可以根据潮位曲线判断您的输入是否有明显错误。

完成后保存数据(潮位观测-文件-另存为),保存完成后,软件会自动生成tdx 和tid两个文件。

注:在Hypack数据处理中,一般采用水深模式,坐标系Z轴向下为正,而一般得到的潮位数据为高程数据,因此在水深模式下,此处应将潮位数据添加负号进行编辑。

门禁系统使用说明书

安装、使用产品前,请阅读安装使用说明书。 请妥善保管好本手册,以便日后能随时查阅。 GST-DJ6000系列可视对讲系统 液晶室外主机 安装使用说明书 目录 一、概述 (1) 二、特点 (2) 三、技术特性 (3) 四、结构特征与工作原理 (3) 五、安装与调试 (5) 六、使用及操作 (10) 七、故障分析与排除 (16) 海湾安全技术有限公司

一概述 GST-DJ6000可视对讲系统是海湾公司开发的集对讲、监视、锁控、呼救、报警等功能于一体的新一代可视对讲产品。产品造型美观,系统配置灵活,是一套技术先进、功能齐全的可视对讲系统。 GST-DJ6100系列液晶室外主机是一置于单元门口的可视对讲设备。本系列产品具有呼叫住户、呼叫管理中心、密码开单元门、刷卡开门和刷卡巡更等功能,并支持胁迫报警。当同一单元具有多个入口时,使用室外主机可以实现多出入口可视对讲模式。 GST-DJ6100系列液晶室外主机分两类(以下简称室外主机),十二种型号产品: 1.1黑白可视室外主机 a)GST-DJ6116可视室外主机(黑白); b)GST-DJ6118可视室外主机(黑白); c)GST-DJ6116I IC卡可视室外主机(黑白); d)GST-DJ6118I IC卡可视室外主机(黑白); e)GST-DJ6116I(MIFARE)IC卡可视室外主机(黑白); f)GST-DJ6118I(MIFARE)IC卡可视室外主机(黑白)。 1.2彩色可视液晶室外主机 g)GST-DJ6116C可视室外主机(彩色); h)GST-DJ6118C可视室外主机(彩色); i)GST-DJ6116CI IC卡可视室外主机(彩色); j)GST-DJ6118CI IC卡可视室外主机(彩色); k)GST-DJ6116CI(MIFARE)IC卡可视室外主机(彩色); GST-DJ6118CI(MIFARE)IC卡可视室外主机(彩色)。 二特点 2.1 4*4数码式按键,可以实现在1~8999间根据需求选择任意合适的数字来 对室内分机进行地址编码。 2.2每个室外主机通过层间分配器可以挂接最多2500台室内分机。 2.3支持两种密码(住户密码、公用密码)开锁,便于用户使用和管理。 2.4每户可以设置一个住户开门密码。 2.5采用128×64大屏幕液晶屏显示,可显示汉字操作提示。 2.6支持胁迫报警,住户在开门时输入胁迫密码可以产生胁迫报警。 2.7具有防拆报警功能。 2.8支持单元多门系统,每个单元可支持1~9个室外主机。 2.9密码保护功能。当使用者使用密码开门,三次尝试不对时,呼叫管理中 心。 2.10在线设置室外主机和室内分机地址,方便工程调试。 2.11室外主机内置红外线摄像头及红外补光装置,对外界光照要求低。彩色 室外主机需增加可见光照明才能得到好的夜间补偿。 2.12带IC卡室外主机支持住户卡、巡更卡、管理员卡的分类管理,可执行 刷卡开门或刷卡巡更的操作,最多可以管理900张卡片。卡片可以在本机进行注册或删除,也可以通过上位计算机进行主责或删除。

anusplin软件操作说明及气象数据处理

气象数据处理方法:spss和Excel 一、下载原始txt数据中的经纬度处理:将度分处理成度,Excel处 理 首先除以100,处理成小数格式,这里第一个实际是52度58分, 在Excel中用公式:=LEFT(O2,FIND(".",O2)-1)+RIGHT(O2,LEN(O2)-FIND(".",O2))/60 需注意: 当为整数时,值为空,这时需查找出来手动修改,或者将经纬度这一列的小数位改成两位再试试,可能好使(这个我没尝试) 第二步: 将经纬度转换成投影坐标,在arcgis实现 将Excel中的点导入arcgis,给定坐标系为wgs84地理坐标,然后投影转换成自己定义的等面积的albers投影(因为anusplina软件需要投影坐标,这里转换成自己需要的坐标系)

第三步:spss处理 将下载的txt数据导入spss之后,编辑变量属性,删掉不需要的列,然后将最后需要的那些变量进行数据重组 本实验下载的数据是日均温数据,全国800+个站点2012年366天的数据。相当于有800+ * 366行数据 1.变量 变量属性:变量属性这里的设置决定了在SPLINA这个模块中输入数据的格式,本实验spss处理的气象数据的格式统一用这个:(A5,2F18.6,F8.2,F8.2),一共5列。

即:台站号,字符串,5位; 经纬度:都是浮点型,18位,6个小数位海拔:浮点型,8位,2个小数位 日均温:浮点型,8位,2个小数位 2.数据重组,将个案重组成变量: 后几步都默认就行:

重组之后结果:变成了800+行,370列,就相当于数据变成了:行代表每个站点,列是代表每一天的数据。 3. 因为anusplin这个软件需要的是投影坐标,在重组完的基础上,将经纬度这两列替换成投影之后的经纬度。 方法1:直接复制粘贴即可 方法二:用合并文件,添加变量功能

多波束形成技术研究

多波束形成技术研究 陈晓萍 (中国西南电子技术研究所,四川成都610036) 摘要:讨论了跟踪与数据中继卫星系统(TDRSS)中关于多波束形成的算法,优选的有LMS自适应方式和相位调整自适应方式;并简单介绍了波束控制和波束形成的实现。 关键词:TDRSS;多波束形成;LMS自适应算法;相位调整自适应算法 一、前言 随着航天技术的发展,要求测控通信站能高覆盖地对飞船等多个目标进行测控通信。要解决这个问题靠现有地面测控网和业务接收站已不能满足要求,需要建立天基测控通信系统,即跟踪与数据中继卫星系统(TDRSS)。 TDRSS把测控通信站搬移到天上同步定点轨道的中继星上,从上向下观测中低轨卫星、飞船、航天飞机等空间飞行器,从而提高了覆盖率。为了减轻中继星的复杂性和负担,将中继卫星观测到的数据和信息传到地面,由地面中心站进行处理。TDRSS中继星相控阵天线同时与多个用户航天器保持跟踪,地面站到航天器的正向通讯为时分多波束,反向通讯为码分和同时多波束。为了减轻中继星的负担,中继星上只装有形成正向天线波束扫描所需的电调移相器,由地面终端计算并发出指令,调节星上移相器相位,让天线波束以时分方式扫描对准各用户航天器,在对准期间完成正向数传。多个用户航天器送到中继星的反向数传信号在星上进行多波束形成会大大增加中继星的复杂性,反向信号经星上阵列天线接收和变换,各阵元收到的信号用频分多路方式相互隔离送往地面,由地面接收前端将频分多路还原成同频多路阵元输出,交由终端进行相控阵多波束形成处理。所谓波束形成, 就是利用开环控制或闭环自适应跟踪方法,对不同反向到达的信号用不同的权系数矢量对各阵元输出进行幅度和相位加权, 使各阵元收到的同一用户信号在合成器中得以同相相加, 输出信号最大, 干扰和噪声最小。当存在多个目标时, 地面终端利用码分多址方法和利用多个波束形成器并行地完成各目标的波束合成处理完成各用户的数传与测控。 二、多波束形成算法 数据中继卫星系统在多址方式下,服务对象一般分布在较低的地球轨道上,当用户星离地面的轨道高度在3 000 km以下时,中继星各阵元波束宽度只要26°就可覆盖地球周围的所有用户星。 当用户星以最大速度10 km/s运动,用户星穿过3.5°宽的合成波束所需的时间最短为205 s,所以中继星跟踪用户星所需的波束移动角速度是很小的。假定波束移动步进量为阵合成波束宽度3.5°的5%即0.175°,波束步进间隔时间长达10.5 s。只要计算机能在10.5 s 内依据用户星位置更新相控阵的相位加权系数,就会使合成波束移动并时刻对准目标。 按照目标的捕获与跟踪过程,多波束形成应有3种工作方式:主波束控制方式(开环)、扫描方式(开环)及自跟踪方式(闭环)。 当有先验信息如根据目标的轨道方程计算出目标在空中的当前位置时,可采用开环的主波束控制方式, 由用户星的实时俯仰角和方位角,计算机算出加权系数矢量,送到多波束处理器完成波束加权合成。用户星相对中继星来说角度移动缓慢,随着用户星的移动,计算机实时逐点计算出权系数矢量,可维持主波束的开环跟踪。主波束控制方式一般用于目标的初始捕获,完成后进入自动跟踪状态。 如果没有先验信息不知道目标的起始位置,可以采用波束扫描方式,根据事先制定的空

F6门禁管理系统用户手册

F6门禁管理系统用户手册 目录 1.系统软件 (2) 2.服务器连接 (2) 3.系统管理 (3) 3.1系统登录 (3) 3.2修改密码 (3) 4.联机通讯 (4) 4.1读取记录 (4) 4.2自动下载数据 (5) 4.3手动下载数据 (5) 4.4实时通讯 (6) 4.5主控设置 (6) 5.辅助管理 (8) 5.1服务器设置 (8) 5.2系统功能设置 (9) 5.3读写器设置 (10) 5.4电子地图 (13) 6.查询报表 (14) 6.1开锁查询 (14) 7.帮助 (18) 7.1帮助 (18)

1.系统软件 图1 门禁管理软件主界面 F6版门禁管理系统的软件界面如上图,顶端菜单栏包括“系统管理”、“联机通讯”、“辅助管理”、“查询报表”和“帮助”菜单;左侧快捷按钮包括“系统管理”、“联机通讯”、“辅助管理”、“查询报表”、“状态”等主功能项,每个主功能项包含几个子功能,在主界面上可以不依靠主菜单,就可在主界面中找到每个功能的快捷按钮。以下按照菜单栏的顺序进行介绍。 2.服务器连接 如图2点击设置则进入远程服务器设置,此处的远程服务器IP地址不是指数据库服务器,而是指中间层Fujica Server服务管理器的IP地址。 图2 服务连接

图2 远程服务器设置 3.系统管理 3.1系统登录 系统默认的操作员卡号为“0001”,密码为“admin”,上班人员输入管理卡号和密码后可以进入系统,进行授权给他的一切操作。 图3 系统登录 3.2修改密码 修改密码是指操作员登录成功后,可以修改自己登录的密码。先输入操作员的旧密码,再输入新密码并确认,则密码修改成功。

微震监测数据处理系统详细设计说明书

微量元素肥料的营销策略分析市场营销 页脚内容 25 软件详细设计说明书 学生姓名 王建旭 学号 0808140505 学生姓名 王智杰 学号 0808140512 学生姓名 汤玉杰 学号 0808140119 学生姓名 毕国兴 学号 0808140727 专 业 电子信息科学与技术 年级 08级 指导教师 劳彩莲 职称 副教授 学 院 信息与电气工程学院 中国农业大学教务处制 2011年 7月

目录 1 目的 (3) 2 代码框架描述 (3) 2.1 源文件说明 (3) 2.2 系统配置文件说明 (3) 3 系统结构关系图 (4) 4 单文档多视的创建与通讯子模块详细设计说明 (4) 4.1 数据结构 (5) 4.2 处理流程详细说明 (5) 4.3 编码设计 (7) 5 OpenGL子模块详细设计说明 (8) 5.1 数据结构 (9) 5.2 处理流程详细说明 (11) 5.3 部分重要编码设计 (11) 5.3.1函数 SetGoal(float x,float y,float z,float color) (12) 5.3.2函数RenderScene() (13) 6 微震列表子模块详细设计说明 (13) 6.1 数据结构 (14) 6.2 处理流程详细说明 (14) 6.3 编码设计 (19) 7 SQL Server数据库详细设计说明 (20) 7.1 数据结构 (22) 7.1.1 数据库信息模型: (22) 7.1.2数据库逻辑模型 (22) 7.1.3数据库结构的详细设计 (22) 7.2 数据库系统的建立 (23) 7.2.1 数据库建立 (23) 7.2.2表的建立和管理 (23) 8 详细微震情报表子模块详细设计说明 (23) 8.1 数据结构 (24) 8.2 处理流程详细说明 (24) 8.3 编码设计 (25)

两种深水多波束测深技术的对比

刘方兰余平肖波罗伟东 (广州海洋地质调查局广州 510760) E-mail:lflhome@https://www.wendangku.net/doc/8b18609427.html, 摘要:近年来,在深水进行多波束水深测量使用最多的是SeaBeam2112系统和EM120系统。本文作者根据这两套系统在相同海域的实测资料,进行了数据密度、地形剖面以及不同比例尺成果图的对比,两套不同系统在深水测量具有较好的一致性,但EM120系统测量数据相对密度较大,分布均匀,可以绘制更大比例尺地形图。 关键词:EM120 SeaBeam 多波束测深比较 中图分类号: P24 至2006年底,我国海域200m以深海域已经完成了大约80%面积的多波束全覆盖水深测量,主要使用的测深系统有SeaBeam2112、SeaBat 8150以及EM120系统。随着国土资源大调查项目的开展,深水海域多波束水深测量仍将继续进行。目前,多波束测深技术的已经普及,专业海洋调查船一般都会固定安装的多波束测深系统,而且多波束测深技术还在不断发展与更新,这样,用于水深测量的多波束系统的种类还会越来越多。不同种类的多波束系统的实际测量效果如何?它们的测量精度如何?它们的测量结果有何区别?这些都是我们关心的问题。本文利用2004年6月SeaBeam2112和Em120两套多波束系统在南海北部相同海域测量资料,对两系统测量数据密度、测量精度以及成果图等进行了比较。 1.深水多波束系统简介 测深范围在5000m以上的深水多波束测深系统主要有SeaBeam系列、EM系列、SeaBat 系列和DS系列四种,我国目前拥有其中前三个系列的深水系统:SeaBeam 2112系统、EM120多波束系统和SeaBat8150系统。SeaBeam2112多波束系统是美国SeaBeam公司声纳技术军转民的第二代产品,工作频率12kHz,测量水深10~11000m,波束大小为2.0°×2.0°,最大波束数151个。80年代以来,SeaBeam2112系列多波束系统大量应用于海洋地形地貌测量。EM120多波束系统是Kingsberg Simrad公司90年代中后期产品,工作频率与测深范围与SeaBeam2112系统一样,波束大小有1°×1°~2.0°×2.0°,最大条幅开角140°,最多可以接收191个波束。由于该系统良好的的技术性能,很快成为全球海洋测量使用较多的深水多波束系统,目前在世界上拥有最多的用户。新的SeaBat8150系统技术指标相对其他系统,其深水测量的分辨率具有明显的优势,但因国内用户少,没有实际应用的资料。 广州海洋地质调查局于1994年在国内率先引进SeaBeam2112多波束系统,安装于“海洋四号”船上。多年来,“海洋四号”船多波束测深的范围遍及南海、东海、太平洋,覆盖的面积超过了40万平方公里,取得了大量的实际资料,特别是在南海,由于使用了差分GPS 定位,多波束测量资料精度高,质量可靠。中国大洋协会属下“大洋一号”科学考察船早期于1995安装了同样的SeaBeam系统,但2003年把SeaBeam2112系统更新为现在的EM120系统,2004年已经正式投入使用。国内还有一些海洋调查和研究机构也装备有不同型号的深水或中深水多波束系统,但公开的资料少,特别是很少有可进行对比的测量资料。2004年6月,拥有EM120系统的德国太阳号来到南海进行调查,为SeaBeam2112、EM120这两套深水多波束系统的实测对比提供了条件。

智能门禁管理系统说明书.doc

ID一体式/嵌入式门禁管理系统 使用说明书

1 软件使用说明 (1)配置要求 在安装软件之前,请先了解您所使用的管理电脑的配置情况。本软件要求安装在(基本配置): Windows 2000,windows xp操作系统; 奔腾II600或更高的处理器(CPU); 10GB以上硬盘; 128MB或更大的内存; 支持分辨率800*600或更高的显示器。 (2)安装说明 在光盘中运行“智能一卡通管理系统”安装程序(ID版),按照安装提示依次操作即可。 安装数据库以后,有两种创建数据库的方式,手动创建和自动创建。手动创建:在数据库SQL Server2000的数据库企业管理器中,建立一个database(数据库)。进入查询分析器/Query Analyzer 运行智能一卡通管理系统的脚本文件,形成门禁数据库表;自动创建:在安装智能一卡通管理软件中自动创建默认门禁数据库,默然数据名:znykt。 上述安装完后,在安装目录下,在first.dsn 文件中设置其参数,计算机server的名字(无服务器时即本机名)和数据库database的名字。 在桌面运行智能一卡通管理系统运行文件,选择卡号888888,密码为123456即可进入系统。 2 人事管理子系统 部门资料设置 首先运行‘智能一卡通管理系统’软件后,进入软件主界面,如下图所示:

然后点击进入“人事管理子系统”,如图所示: 选择<人事管理>菜单下的<部门管理>或点击工具栏内的‘部门管理’按钮,则会出现如下所示界面: 在<部门管理>中可以完成单位内部各个部门及其下属部门的设置。如果公司要成立新的部门,先用鼠标左键单击最上面的部门名,然后按鼠标右键弹出一菜单,在菜单中选择“增加部门”,则光标停留在窗口右边的“部门编号”输入框中,在此输入由用户自己定义的部门编号后,再在“部门名称”输入框中输入部门名称,最后按 <保存>按钮,此时发现窗口左边的结构图中多了一个新增的部门。如果要给部门设置其下属部门,则首选用鼠标左键选中该部门,再按鼠标右键弹出一菜单,在菜单中选择“增加”,最后输入、保存。同时也可以对选中的部门或下属部门进行“修改”或“删除”。特别要注意的是,如果是“删除”,则被选中的部门及其下属部门将被全部删除,所以要特别谨慎。

地下管线数据处理系统Zyspps Ver3.0-使用说明

目录 一、功能简介 (3) 1.强大的物探数据录入功能 (3) 2.全面的数据查错功能 (3) 3.快速的管线成图功能 (3) 4.方便的图形、数据维护功能 (3) 5.灵活的自定义设置功能 (3) 二、系统安装与卸载 (4) 1.系统安装 (4) 2.系统启动 (4) 3.系统卸载 (4) 三、系统设置 (5) 1.系统设置页 (5) 2.一般设置页 (6) 3.界面设置页 (12) 4.查错设置页 (13) 5.成图设置页 (14) 四、数据录入 (20) 1.系统主界面 (20) 2.新建测区数据库 (21) 3.打开测区数据库 (21) 4.新建管种 (22) 5.打开管种录入窗口 (23) 6.图库联动图形点线录入方式 (27) 7.点坐标数据录入和修改 (29) 五、数据查错 (29) 六、管线成图 (30) 1.补充点库坐标数据 (31) 2.生成管线图 (31) 七、管线分幅 (37) 八、管线标注 (38) 1.编排图上点号 (38) 2.专业管线标注 (40) 3.综合管线标注 (40) 4.综合管线扯旗 (41) 5.插入排水流向 (41) 6.沟渠边线绘制 (42) 九、管线编辑 (42)

1.保存注记位置 (42) 2.读取注记位置 (43) 3.属性查询与修改 (43) 4.插入管线点 (45) 5.移动管线点 (46) 6.删除管线段 (47) 7.删除管线点 (47) 8.属性复制 (48) 9.图库联动图形属性编辑 (49) 十、管线统计与查询 (51) 1.管线信息实时查询 (51) 2.管线点号查找 (51) 3.管线点数量统计 (52) 4.管线点数量统计 (53) 5.图元扩展属性查询 (53)

多波束数据

Processing of High-Frequency Multibeam Echo Sounder Data for Seafloor Characterization Laurent Hellequin,Jean-Marc Boucher ,Member,IEEE ,and Xavier Lurton Abstract—Processing simultaneous bathymetry and backscatter data,multibeam echosounders (MBESs)show promising abilities for remote seafloor characterization.High-frequency MBESs pro-vide a good horizontal resolution,making it possible to distinguish fine details at the water–seafloor interface.However,in order to accurately measure the seafloor influence on the backscattered en-ergy,the recorded sonar data must first be processed and cleared of various artifacts generated by the sonar system itself.Such a preprocessing correction procedure along with the assessment of its validity limits is presented here and applied to a 95-kHz MBES (Simrad EM1000)data set.Beam pattern effects,uneven array sen-sitivities,and inaccurate normalization of the ensonified area are removed to make possible further quantitative analysis of the cor-rected backscatter images.Unlike low-frequency data where the average backscattered energy proves to be the only relevant fea-ture for discriminating the nature of the seafloor,high-frequency MBES backscatter images exhibit visible texture patterns.This ad-ditional information involves different statistical distributions of the backscattered amplitudes obtained from various seafloor types.Non-Rayleigh statistics such as -distributions are shown to fit correctly the skewed distributions of experimental high-frequency data.Apart from the effect of the seafloor micro-roughness,a sta-tistical model makes clear a correlation between the amplitude sta-tistical distributions and the signal incidence angle made available by MBES bathymetric abilities.Moreover,the model enhances the effect of the first derivative of the seafloor backscattering strength upon statistical distributions near the nadir and at high incidence angles.The whole correction and analysis process is finally applied to a Simrad EM 1000data set. Index Terms—Backscatter model,-distribution,multibeam echo sounder (MBES),seafloor classification. I.I NTRODUCTION M ANY marine activities (marine geology,commercial fishing,offshore oil prospecting and drilling,cable and pipeline laying and maintenance,and underwater warfare)need tools and methods to remotely characterize the seafloor.Modern swath-mapping sonars are well designed for this task;they have quickly evolved upwards over the last 40years and nowadays are beginning to meet most of the requirements needed to reliably characterize the seafloor.Among the ex-isting acoustical mapping systems,multibeam echo sounders (MBESs)are currently the main focus of attention because of their ability to provide both a bathymetric map and a backscatter image of the surveyed area. Manuscript received February 5,2001;revised June 11,2002. L.Hellequin and X.Lurton are with IFREMER,TMSI/AS,Technop?le Iroise,BP 70,29280Plouzané,France. J.-M.Boucher is with ENST Bretagne,BP 832,29285Brest Cedex,France.Digital Object Identifier 10.1109/JOE.2002.808205 Usually installed under a ship’s hull,an MBES transmits a sound pulse inside a wide across-track and narrow along-track angular sector;then a beamforming process simultaneously cre-ates numerous receiving beams steered at different across-track directions.This spatial filtering allows us to pick up echoes coming from adjacent seafloor portions independently.One sounding is accurately computed inside each beam by simulta-neously measuring the beam steering angle and the echo travel time,according to various estimation methods based on either amplitude or phase.A high density of sounding points is thus generated along the survey swath,and new “pings”are trans-mitted as the ship proceeds on her way.Taking into account the ship’s navigation and attitude,the data from successive pings are finally gridded together in order to create an accurately georeferenced digital terrain model (DTM). In addition to measuring the echo travel times and angles for bathymetry,an MBES also records the echo amplitudes con-taining information about the nature and geoacoustical proper-ties of the seafloor.The echo amplitude is typically remapped to a color or gray scale and forms a coregistered backscatter image.The short pulse length provides the high resolution needed for imaging seafloor backscatter with a sufficient amount of details.For low-resolution MBESs (working in deep water at lower frequencies,typically 12kHz [1]),it seems that the mean backscattering strength (BS),recorded as a function of the incident angle,is the only measured parameter usable to characterize the interface acoustical properties [2].However,for MBESs with better resolution (designed for shallow depths with higher frequencies,typically 100kHz [3]),more infor-mation is available from the backscattered signals for a better seafloor characterization. A typical example of a BS image with a good resolution (Fig.1)shows various textures and spatial organizations of pixels that are clearly related to variations in the nature of the seafloor.In addition to its average level,the BS variability within subareas makes it possible to improve seafloor character-ization using statistical techniques [4],[5].Better classification results are expected when the MBES characteristics (frequency,beamwidth,and incidence angle)and an appropriate BS model are used to refine the analyses. Analyzing a backscatter image in detail reveals several arti-facts that degrade the image and corrupt BS measurements.The strong specular echo,causing a high-level line under the ship’s track,is linked to the backscattering physics and is not to be considered,properly speaking,as an artifact;however,it is a pe-nalizing feature,quite difficult to erase from sonar images.The main artifact comes from the directivity patterns of arrays used for the signal transmission and reception,that are usually not 0364-9059/03$17.00?2003IEEE

多波束勘测系统工作基础学习知识原理及其结构

第二章多波束勘测系统工作原理及结构 多波束系统是70年代兴起、80年代中、末期又得到飞速发展的一项全新的海底地形精密勘测技术。它是当前兴趣的焦点,因为它既有条带测深数据,又同时可获取反映底质属性的回波强度数据(Laurent Hellequin et al.,2003)。该技术采取广角度定向发射和多通道信息接收,获得水下高密度具有上百个波束的条幅式海底地形数据,彻底改变了传统测深技术概念,使测深原理、勘测方法、外围设备和数据处理技术诸方面都发生了巨大变化,大大提高了海底地形勘测的精度、分辨率和工作效率,实现了测深技术史上的一次革命性突破(李家彪等,2000)。多波束系统的工作原理与传统的单波束回声测深仪工作原理类似,都是根据声波在水下往返传播的时间与声速的乘积得到距离,从而得到水深。不同的是单波束测深仪一般采用较宽的发射波束(8°左右)向船底垂直发射,声传播路径不会发生弯曲,来回的路径最短,能量衰减很小,通过对回声信号的幅度检测确定信号往返传播的时间,再根据声波在水介质中的平均传播速度计算测量水深。在多波束系统中,换能器配置有一个或者多个换能器单元的阵列,通过控制不同单元的相位,形成多个具有不同指向角的波束,通常只发射一个波束而在接收时形成多个波束。除换能器天底波束外,外缘波束随着入射角的增加,波束在倾斜穿过水层时会发生折射,同时由于多波束沿航迹方向采用较窄的波束角而在垂直航迹方向采用较宽的覆盖角,要获得整个测幅上精确的水深和位置,必须要精确地知道测量区域水柱的声速剖面和波束在发射和接收时船的姿态和船艏向。因此,多波束测深在系统组成和测量时比单波束测深仪要复杂得多(周兴华等,1999)。 §2.1 多波束勘测系统的工作原理 2.1.1 单波束的形成 2.1.1.1 发射阵和波束的形成 一个单波束在水中发射后,是球形等幅度传播,所以方向上的声能相等。这种均匀传播称为各向同性传播(isotropic expansion),发射阵也叫各向同性源(isotropic source)。例如,一个小石头扔进池塘时就是这种情况,如图2.7所示。

地震数据处理vista软件使用手册

Vista 5.5的基本使用方法 数据输入 地震分析窗口 一维频谱 二维频波谱 观测系统 工作流 一、数据输入 1.1 把数据文件加入Project 首先选择File/New Project,新建一个Project,按住不放,出现按钮组合,可以选择不同类型 的数据集,选择,向Project中增加一个新的2-D数据集,按住不放,出现按钮组合, 可以选择加入不同类型的地震数据,选择,选择一个SEG-Y数据,即可将该数据文件加入新建的数据集。 1.2 命令流中数据的输入 双击进入如下界面 1.2.1 Input Data List 数据输入列表,选择已加入到Project的数据集,下面的文本框中会显示选择的数据的基本信息。 1.2.2 Data Order 选择输入数据的排列方式,对不同的处理步骤可以选择不同的数据排列方式 Sort Order a. NO SORT ORDER 输入数据原始排列方式 b. SHOT_POINT_NO 输入数据按炮点排列方式 c. FIELD_STATION_NUMBER d. CMP_NO 输入数据按共中心点排列方式 e. FIELD_STATION_NUMBER 1.2.3 Data Input Control 数据输入控制 右键-->Data Input Control a. Data Input 进入Flow Input Command(见上) b. Data Sort List 查看数据排列方式的种类 c. Data/header Selection 输入数据的选择,可以控制输入数据的道数和CMP道集 查看所有已经选择的数据 如果没有定义任何可选的数据信息,则如下图所示: 可以选择一种选择方式,单击并设置选择信息。定义有可选的数据信息后,在查看,则如下图所示,会显示选择的信息。 选择共炮点集 单击后,会弹出如下界面:

博克门禁系统使用说明书

《门禁系统使用说明书》

陕西********科技有限公司 单位地址:**************************** 联系电话:**************************** 目录 ( 1.1)软件系统---------------------------------------------------------------------------------------1-135 第一章软件基本操作...................................................................................................................... - 5 - 2.1进入操作软件 (5) 2.4人事管理 (7) 2.4.1 企业信息.................................................................................................................................................................. - 7 - 2.4.2添加/编辑部门信息 ................................................................................................................................................ - 9 - 2.4.2.1添加部门 ............................................................................................................................................................... - 9 - 2.4.2.2修改部门 ............................................................................................................................................................ - 10 - 2.4.2.3 删除部门 ........................................................................................................................................................... - 11 -

多波束测深系统声速校正

多波束测深系统声速校正 3 何高文 (广州海洋地质调查局二海,510760) 摘要 海水声速是多波束测深系统进行水深测量的基本参数之一,声速剖面正确与否直接影响测量结果的精度和可靠性。本文阐述了声速对多波束水深测量的影响机理,并通过对南海SA 12试验区采集的声速资料的分析,以SeaBeam 2100多波束测深系统为例,对声速校正的技术方法进行了探讨。 关键词  海洋 声速校正 多波束测深 SeaBeam 2100测深系统中图分类号:P 73312 文献标识码:B 前言 自1994年原地矿部引进第一套多波束测深仪(SeaB eam 2100系统,安装于“海洋四号”船)以来,我国先后引进了多套深、浅水多波束测深系统,在大洋矿产资源调查和目前正在开展的近海大陆架及专属经济区的地形勘测中,发挥了巨大作用,引发了一场海底地形测量的革命,为有效地维护国家权益和即将开展的海域划界作出了很大贡献。 如何保证测量数据的精度及其可靠性,是任何测量仪器必须关注的问题,多波束测深仪也不例外。作为一种有别于传统单波束测深仪的水深测量仪器,影响多波束测深数据的因素 有很多,其中海水声速(简称“声速” )是重要的因素之一。下面以SeaB eam 2100系统为例,探讨声速对多波束测量数据的影响以及声速校正的技术方法。 由于SeaB eam 多波束测深系统的水深测量值是根据发射声波的往返时间与声波在海水中的传播速度来确定的,因此,及时为系统提供当时当地准确的声速值是获取可靠水深测量数据的基本保证之一;此外,多波束测深系统对所输入的声速数据量有一定的限制,不同的数据取点,也将对测量结果产生影响。与传统的单波束测深仪相比,多波束测深仪对声速的要求更为严格(见后述)。所以,为了获得准确可靠的多波束测深数据,必须进行声速校正。通过对南海SA 12试验区海水声速系统测量结果的研究,获得了声速变化规律的认识,从而为SeaB eam 系统的声速校正提供科学依据。 1 声速影响因素 海洋中的声速是一个比较活跃的海洋学变量,它取决于介质中的许多声传播特性,随季 收稿日期:2000204220第19卷 第4期2000年12月 海 洋 技 术O CEAN T ECHNOLO GY V o l 119,N o 14 D ec,2000

(完整版)多波束测深与测扫声呐的比较

多波束测深与测扫声呐的比较: (1)侧扫声纳是目前常用的海底目标(如沉船、水雷、管线等)探测工具,在测深领域,多波束以全覆盖和高效率证明了它的优越性。由于多波束具有很高的分辨率,目前在工程上已经开始应用多波束进行海底目标物的探测。 (2)多波束的最大优点在于定位精度高,但其适用范围不如侧扫声纳广泛,尤其受到水深和波束角的限制,多波束和侧扫声纳在探测海底目标时具有很好的互补性,同时应用可以提高目标解译的准确性。 (3)侧扫声纳能直观地提供海底形态的声成像,但这种声像只能由目标影子长度等参数估计目标的高度,所以对数据解译人员的要求很高。多波束测深系统主要用于进行水下地形测量。 (4)探测目标机制的差异:多波束是一种测深工具而并非成像系统,无法直接在记录纸上进行打印,必须先构建数字地形模型(digital terrainmode,l DTM),再根据DTM构建地貌影像图,从而能够反映细微的地形起伏所导致的坡度和坡向变化;此外,多波束的中央波束探测效好,边缘波束效果差;多波束采用三维可视化的方法进行目标判断,在3D GIS系统中可以直接提取目标物的平面位置和高度,还能够从不同的角度进行观察,便于掌握目标物的形状特征。但是,除非我们在进行测深的同时采集反向散射强度信息,否则我们无法得到与目标物的底质类型相关的信息,因此,多波束比较适合于沉船或者管线等容易根据形状进行判断的目标。 现在的侧扫声纳技术有两个缺点,首先它的横向分辨率取决于声纳阵的水平角宽,分辨率随距离的增加而线性增大,其次它给不出海底的准确深度。当前只有两种声纳可做海底三维成像,即等深线成像和反向散射声成像,前一种是多波束测深声纳(如Multi -beamSonarSystem) ,后一种是测深侧扫声纳。总体说来,前者适宜于安装在船上做大面积测量,后者适宜于安装在各类水下载体上,包括拖体、水下机器人(AUV) 、遥控潜水器( ROV ) 和载人潜水器(HUV) ,进行细致的测量。 侧扫声纳通常安装在拖体上,其到海底面的距离是可以调节的,而多波束换能器大多数固定安装在船体上,随着水深的增大,换能器至海底的距离增加,导致波束与海底面的接触面即脚印 变大,所以多波束垂直于航行方向的分辨率降低。此外,水深增大也导致换能器单位时间内能够接收到的有效声信号数目(即采样更新率)减少,因此沿着航行方向的分辨率同样降低。 侧扫声纳不存在波束角的问题,而Seabat8101的波束角为115b,每个声波波束与海底面的接触面被视为一个水深点,因此波束角的影响与水深是正相关的。 在同样的海况条件下,多波束数据的信噪比常常比侧扫声纳图像要高,这是因为多波束的旁瓣波束被有效压制,因而没有假回波。 多波束的定位精度比侧扫声纳要高2~5m。这是因为,一方面多波束的平面位置误差传递方程比侧扫声纳系统要简单;另一方面多波束系统中的电罗经和船资测量传感器具有很高的精度,可以精确地测定船体的姿态和船首向;此外,多波束系统的校正比超短基线要容易,各种系统 误差的消除也更为彻底。因此,对于多波束靠近中央波束所探测到的海底目标,可以认为其定位精度近似地等于GPS本身所能提供的精度。

相关文档
相关文档 最新文档