文档库 最新最全的文档下载
当前位置:文档库 › 谐振耦合式无线电力传输系统matlab建模

谐振耦合式无线电力传输系统matlab建模

谐振耦合式无线电力传输系统matlab建模
谐振耦合式无线电力传输系统matlab建模

Modeling Resonant Coupled Wireless Power Transfer System

谐振耦合式无线电力传输系统建模

This example shows how to create and analyze resonant coupling type wireless power transfer(WPT) system with emphasis on concepts such as resonant mode, coupling effect, and magnetic field pattern. The analysis is based on a 2-element system of spiral resonators.

这个例子显示了如何创建和分析谐振耦合式无线电力传输系统(WPT)的概念如谐振模式,强调耦合效应和磁场模式。此分析是基于两螺旋谐振器系统。

This example requires the following product:

这个例子需要以下产品:

Partial Differential Equation Toolbox?

Design Frequency and System Parameters设计频率和系统参数

Choose the design frequency to be 30MHz. This is a popular frequency for compact WPT system design. Also specify the frequency for broadband analysis, and the points in space to plot near fields.

选择的设计频率为30MHz。这是便携式WPT系统设计的一个流行的频率。还指定了宽带分析的频率,和在附近的空间中的点。

fc=30e6;

fcmin = 28e6;

fcmax = 31e6;

fband1 = 27e6:1e6:fcmin;

fband2 = fcmin:0.25e6:fcmax;

fband3 = fcmax:1e6:32e6;

freq = unique([fband1 fband2 fband3]);

pt=linspace(-0.3,0.3,61);

[X,Y,Z]=meshgrid(pt,0,pt);

field_p=[X(:)';Y(:)';Z(:)'];

The Spiral Resonator螺旋谐振器

The spiral is a very popular geometry in resonant coupling type wireless power transfer system for its compact size and highly confined magnetic field. We will use such a spiral as the fundamental element in this example.

螺旋是一种非常流行的几何形状在谐振耦合型无线功率传输系统,其紧凑的尺寸和高度密闭的磁场。我们会使用这样一个螺旋的基本元素在这个例子中。

Create Spiral Geometry The spiral is defined by its inner and outer radius, and number of turns. Express the geometry by its boundary points, then import its boundary points into pdetool. The mesh is generated in pdetool and exported. The mesh is described by points and triangles.

创建螺旋几何形状的螺旋是由它的内部和外部半径定义,和数量的圈数。由边界点的几何表达,那么进口边界点为有效。网格产生有效和出口。网格是由点和三角形描述的。

Rin=0.05;

Rout=0.15;

N=6.25;

[p,t]=createSpiral(Rin,Rout,N);

Create custom antenna Use customAntennaMesh to import the mesh. The feed is created at the inner circle of the spiral mesh. This structure is now ready for analysis.

创建自定义的天线,使用customAntennaMesh 输入网格。反馈是在螺旋网格的内圆上创建的。这种结构现在已经准备好进行分析。

spiralobj=customAntennaMesh(p,t);

spiralobj.Tilt=90;

spiralobj.TiltAxis='Y';

createFeed(spiralobj,[0.0525 0.0025],[0.0675 0.0025]);

Resonance Frequency and Mode谐振频率和模式

It is important to find the resonant frequency of the designed spiral geometry. A good way to find the resonant frequency is to study the impedance of the spiral resonantor. Since the spiral is a magnetic resonator, a lorentz shaped reactance is expected and observed in the calculated impedance result.

重要的是要找到所设计的螺旋几何的谐振频率。找到谐振频率的好方法是研究螺旋谐振器的阻抗。由于螺旋是一个磁电磁谐振腔,洛伦兹形电抗预计和计算的阻抗结果观察。

figure;

impedance(spiralobj,freq);

Since the spiral is a magnetic resonator, the dominant field component of this resonance is the magnetic field. A strongly localized magnetic field is observed when the near field is plotted.

由于螺旋是一个磁谐振器,这种共振的占主导地位的磁场分量是磁场。绘制近场时,观察到一个强局部磁场。

figure;

EHfields(spiralobj,fc,field_p,'ViewField','H','ScaleFields',[0 5]);

Create Spiral to Spiral Power Transfer System创建螺旋到螺旋动力传输系统

The complete wireless power transfer system is composed of two parts: the transmitter(Tx) and receiver(Rx). Choose identical resonators for both transmitter and receiver to maximize

the transfer efficiency. Here, the wirelesspower transfer system is modeled as a linear array.

完整的无线电力传输系统是由两部分组成:发射机(Tx)和接收机(RX)。选择发射器和接收器的最大传输效率相同的谐振器效率。这里的无线电能传输系统建模为一个线性阵列。

wptsys=linearArray('Element',[spiralobj spiralobj]);

wptsys.ElementSpacing=Rout*2;

figure;

show(wptsys);

Variation of System Efficiency with Transfer Distance

系统效率随传输距离的变化

One way to evaluate the efficiency of the system is by studying the S21 parameter. As presented in [1], the system efficiency changes rapidly with operating frequency and the coupling strength between the transmitter and receiver resonator. Peak efficiency occurs when the system is operating at its resonant frequency, and the two resonators are strongly coupled. The results for s-parameter analysis has been precomputed and stored in a MAT-file.

评估系统的效率的一个方法是研究的S21参数。在[ 1 ]中,系统的效率迅速变化与工作频率和耦合强度之间发射机和接收机谐振器。峰值效率发生时,该系统是在其谐振频率工作,和两个谐振器的强耦合。参数分析结果已预先计算并存储在一个mat文件。

load arraysparam

figure;

rfplot(sparam,2,1,'abs');

Critical Coupled Point临界耦合点

The coupling between two spirals increases with decreasing distance between two resonators. This trend

is approximately proportional to . Therefore, the system efficiency increases with

shortertransfer distance till it reaches the critical coupled regime [1]. When the two spirals are over

coupled, exceeding the critical coupled threshold, system efficiency remains at its peak, as shown in

Fig.3 in[1]. We observe this critical coupling point and over coupling effect during modeling the system.

Perform a parameteric study of the system s-parameters as a function of the transfer distance.

双螺旋线的增加与减少之间的距离两谐振器之间的耦合。这种趋势是近似成正比。因此,系统效率随shortertransfer 距离直到它达到临界耦合机制[ 1 ]。当两螺线是耦合的,超过临界耦合阈值,系统效率保持在峰值,如图3所示的[ 1 ]。我们观察到这个关键的耦合点和超耦合效应建模过程中的系统。执行系统的S参数,一个参数化的研究的一个转移距离函数。

The transfer distance is varied by changing the ElementSpacing. It is varied from half of spiral dimension to one and half times of the spiral dimension, which is twice of the spiral's outer radius. The frequency range is expanded and set from 25 MHz to 36 MHz.

传输距离是通过改变elementspacing变化。它是从螺旋尺寸的一半变化到一个和半倍的螺旋尺寸,这是螺旋的外半径的两倍。他的频率范围扩大,并设置从25兆赫至36兆赫。

freq=(25:0.1:36)*1e6;

dist=Rout*2*(0.5:0.1:1.5);

load('wptData.mat');

s21_dist=zeros(length(dist),length(freq));for i=1:length(dist)

s21_dist(i,:)=rfparam(sparam_dist(i),2,1);end

figure;

[X,Y]=meshgrid(freq/1e6,dist);

surf(X,Y,abs(s21_dist),'EdgeColor','none');

view(150,20);

shading(gca,'interp');

axis tight;

xlabel('Frequency [MHz]');

ylabel('Distance [m]');

zlabel('S_{21} Magnitude');

Coupling Mode between Two Spiral Resonator

双螺旋谐振腔的耦合模

The dominant energy exchange mechanism between the two spiral resonators is through the magnetic field. Strong magnetic fields are present between the two spirals at the resonant frequency.

两个螺旋谐振器之间的占主导地位的能量交换机制是通过磁场。强磁场存在于两个在谐振频率螺旋。

wptsys.ElementSpacing=Rout*2;

figure;

EHfields(wptsys,fc,field_p,'ViewField','H','ScaleFields',[0 5]);

view(0,0);

Conclusion

The results obtained for the wireless power transfer system match well with the results published in [1].

所获得的无线功率传输系统的结果相匹配,以及与在[ 1 ]发表的结果。(见下文)

References

[1] A. P. Sample, D. T. Meyer, and J. R. Smith, "Analysis, Experimental Results, and Range Adaptation

of Magnetically Coupled Resonators for Wirelss Power Transfer", IEEE Transations on Industrial Electronics, pp.544-554, 58, 2, 2011.

[ 1 ] A. P. Sample,D. T. Meyer,J. R. Smith,”分析,实验结果,和无线电力传输的“磁耦合谐振器系列

改编,IEEE工业电子交易电子、pp.544-554,58,2,2011。

Magnetically coupled resonant structures offer a unique set of benefits as well as design challenges when used for wireless power transfer. One of the remarkable results is the existence of the ‘magic regime’, where efficiency remains nearly constant over distance, as long as the receiver is within the operating range of the transmitter. This is not the case for conventional far-field and near-field wireless power systems, whose efficiencies decline sharply with range. The work in this paper provides a deeper understanding of the underlying principles of coupled magnetic resonance, as well as a simple circuit model of the system. A derivation of the transfer function of this model reveals which concepts play a critical role in system performance: frequency splitting, operating range, and impedance matching. In order to accurately characterize the wireless

power system, measurement techniques that use a network analyzer for circuit parameter extraction have been implemented. Excellent agreement between the circuit model and measurements has been demonstrated, with a coefficient of determination of 0.9875. Lastly, the issue of receiver alignment sensitivity is addressed with an adaptive tuning algorithm. We demonstrate that for any receiver position and/or orientation, a frequency can be identified that maximizes power transfer efficiency. Additionally, a tracking algorithm allows for the peak efficiency to be maintained as the receiver is moved in space.

磁耦合的谐振结构提供了一个独特的好处,以及设计的挑战时,用于无线功率传输。其中一个显著的结果就是“魔术”的存在政权,在那里效率保持几乎恒定的距离,只要接收器是在发射机的工作范围内。这不是传统的远场和近场的情况下无线电力系统,其效率急剧下降的范围内。本文的工作提供了一个更深入的了解耦合磁共振的基本原则,以及系统的一个简单的电路模型。这个模型的传递函数的推导揭示了概念在系统性能中起着至关重要的作用:频率分裂,工作范围,和I阻抗匹配。为了准确地描述的无线电力系统,测量技术,使用网络分析仪的电路参数提取已实施。优秀的电路模型和测量之间的协议已被证明,与一个系数的测定0.9875。最后,接收器对准灵敏度的问题是解决与一个适应调整算法。我们表明,对于任何接收器的位置和/或方向,可以确定一个频率,最大限度地提高功率传输效率。此外,跟踪算法允许当接收机在空间移动时保持峰值效率。 One compelling usage scenario is a workspace where devices such as laptops, cells phones, and USB peripherals are seamlessly powered and recharged as easily as data is transmitted through the air. As a final demonstration of the potential of this type of wireless power system, Fig.15 shows a laptop being continuously powered via the magnetically coupled resonators. Here the laptop battery has been removed and the wireless power system is providing all the power needed for operation. The signal generator, amplifier, and directional coupler can be seeing in the background (top left corner) and are controlled by a computer. The amplifier dives the same 28 cm transmit loop and 59 cm transmit coil from the early experiments. The receiver is placed 0.7 meters for the transmitters and consists of a smaller 28 cm coil and a 30 cm loop, seen in the foreground. A simple bridge rectifier is used to provide DC power to the modified laptop power brick. In this demonstration removed battery is visible place next to the laptop (lower right). The RF amplifier output to DC laptop input efficiency is 50% (which includes the efficiency of the non-optimized rectifier and power brick)

一个引人注目的使用场景是一个工作区设备如笔记本电脑,手机,和USB外设供电和充电的无缝数据是通过空气传播一样容易。作为最后演示了这种无线电力系统的潜力,显示笔记本电脑不断的动力通过磁耦合谐振器。这里的笔记本电脑电池删除和无线电力系统提供的所有运行所需的电源。信号发生器,放大器和定向耦合器可以看到在背景(左上角)和一个由计算机重新控制。放大器跳水相同的28厘米的发射回路和59厘米的发射线圈从早期的实验。接收器放置0.7米的发射器和由一个较小的28厘米的线圈和一个30厘米的循环,在前景中看到。一个简单的桥式整流器是用来提供直流电源的修改后的笔记本电脑电源砖。在这个演示中移除电池自旁边的笔记本电脑(右下)。射频放大器的输出到直流笔记本电脑的输入效率为50%

(其中包括效率的非优化整流器和电源砖)

浅谈无线电力传输

浅谈无线电力传输 张业邹代宇陈昊 内容摘要:无线电力传输技术是一项新兴的科技,这项技术未来将很大程度的造福人类。本文将对无线电力传输技术的历史,基本原理,研究现状以及未来前景进行介绍,让人们更好地认识这门新兴技术。 关键词:无线电力传输,电磁感应,耦合,共振,无线充电,改变世界。 一、无线电能传输的发展历史 1820年:安培,安培定理表明电流可以产生磁场。1831年:法拉第,法拉第电磁感应定律是电磁学的一个重要的基本规律。1864年:麦克斯韦建立了统一的电磁场方程,用数学的方法描述电磁辐射。1864年:赫兹证实了电磁辐射的存在。赫兹产生电磁波的设备是VHF和UHF 波段的放电发射机。1891年:特斯拉(NikolaTesla)改善了赫兹的微波发射器的射频功率供应,并申请专利。1893年:特斯拉在芝加哥的哥伦比亚世界博览会展示了他的无线传输的荧光照明灯。1894年:勒布朗(Hutin&LeBlanc)相信可以感应传输电能,并申请了关于一个能传输3KHz电能的系统的美国专利。1894年:特斯拉分别在纽约的第五大道南35号的实验室和休斯敦街46号的实验室通过无线方式点亮了一个单极白炽灯,实验手段用到电力感应、无线共振感应耦合等技术。1894年:钱德拉玻(JagdishChandraBose)使用电磁波信号远距离点燃火药和

触响铃铛,表明不用电线也能传递能量。1895年:钱德拉玻无线传输信号将近一英里远的距离。1896年:特斯拉发射了约48公里(30英里)距离的信号。1897年:马可尼(GuglielmoMarconi)使用超低频无线电发射器传送6公里的摩尔斯电码信号。1897年:特斯拉申请了无线传输的专利。自此,无线电力传输技术真正走上了历史的舞台。 一、无线电能传输的基本原理 无线输电技术根据其应用场合的变化有不同的原理,技术方案也不尽相同。 1.电磁感应原理 此原理与电力系统中常用的变压器原理类似。在变压器的原边通入交变电流,副边会由于电磁感应原理感应出电动势,若副边电路连通,即可出现感应电流,其方向的确定遵从楞次定律,大小可由麦克斯韦电磁理论解出。电力系统中的电压、电流互感器也是采用了类似的原理。相对于无线输电而言,变压器的原边相当于电能发射线圈,副边相当于电能接收线圈,这样就可以实现电能从发射线圈到接收线圈的无线传输。虽然电磁感应原理在电力系统中应用的初衷并不侧重于电能的传输,而是利用能量的转化改变电压、电流的数量级,但其对无线输电确实产生了一定的启发作用, 尤其是电能的小功率、短距离传送。目前使用电磁感应传递电能的主要有电动牙刷, 以及手机、相机、MP3等小型便携式电子设备,由充电底座对其进行无线充电。电能发射线圈安装在充电底座内,接收线圈则安装在电子设备中。这种原理的无

磁耦合谐振式无线电能传输

磁耦合谐振式无线电能传输 DOI:10.16640/jki.37-1222/t.2016.12.137 1磁耦合谐振式无线电能传输 (1)无线电能传输。无线电能传输,简称WP■技术,是根据能量传输过程中中继能量形式的不同,在不使用导线连接的情况下通过电场等进行进行传输的新型技术。其主要包括:磁(场) 耦合式、电(场)耦合式、电磁辐射式(如太阳辐射)、机械波耦合式(超声)。其中,磁耦合式是目前研究最为火热的一种无线电能传输方式,也就是将高频电源加载到发射线圈,使发射线圈在电源激励下产生高频磁场,接收线圈在此高频磁场作用下,耦合产生电流,实现无线电能传输。这项技术开创了人类通信的新纪元,基于能源供给而产生的无线电技术将会创造出人类能源史的新里程,其给大众带来的意义与影响也非同凡响。这项技术的使用具有以下的特点: 1 )通用性电波的传输不需要导线进行连接一旦普及,将会使电子产品从导线的束缚中解脱出来,电器接口、兼容性的问题将得到解决,供电更方便,便捷人们的生活,提高人们的生活水平,提高人们的生活质量。 2)便携性、实用性目前的生活状况下实现无线电能传输依旧面临这挑战,但这项技术的推广,将会极大的提高传输的速度、传输

的量,对彻底解决人民生活中电力的供给问题提供有力的帮助,方便生活,提高效率。同时,对于目前很多缺乏或者无法布置电线造成的供电困难现象,无线电能传输的普及将会使这难题得到解决,紧急情况下快速地供电模式也是未来发展的必然趋势,例如加拿大等国开始尝试使用辐射式供电驱动的无人飞机作为电视转播台。 3)美观性不以导线连接的无线电能传输,将会推动电子设备的体积进一步的减小,电子设备的数据线将不再需要,便捷人们生活的同时,营造一种美观性。在能效转化效率、电磁人体辐射安全的情况下,无线供电时代的普及,将能够有效解决家庭布线、家电固定化等破坏问题,节省铜、塑料等资源。 4)安全性无线电能传输技术的普及,将会消除电子设备接触产生的电火花、电火花可能引起的爆炸、插头损坏和接触不良等安全隐患。如使用无线充电技术的电动牙刷和电动剃须刀的防水性将进一步得到提高。 5)绿色性、永久性若空间太阳能发电实现真正的商业运作化,人类将能从太阳能得到巨大的能量,在能源不缺乏的基础上,无线电能传输将而真正解决能源问题,实现绿色能源,提高能源供给,解决能源危机,造福后代。 (2)磁耦合谐振式磁耦合谐振式,作为新的无线电能传输方式,主要工作原理是利用物理学的"谐振" 原理,两个振动频率相同的物体能高效传输能量。基于磁场谐振耦合的无线电力传输,实际上是将磁场作为传输的介质,当电源发送端的振荡磁场频率和接收端

高效无线电力传输系统

高效无线电力传输系统 摘要——本文提出了基于自动引导车辆的无线电力传输系统的概念,该系统在车上装有充电电池,并在特定的地方进行充电。当给车辆充电时,要接近蓄电池充电器进行自动充电,因此,蓄电池充电器的初级变压器与车上的次级变压器之间需要较大的间隙,用以防止碰撞损坏。这样的话就要设法预防由于这个较大距离产生的变压器耦合率的降低,传统的无线电力传输技术由于电力需要通过拾波电圈从电线获得,就要装备一个大尺寸的变压器,并且当距离超过车行驶的长度铜的损失也会加大。先进的系统采用一个高频率的应用软开关方法变极器减小变压器尺寸,变压器间隙每10mm耦合率0.88,并且可达到91%的运行效率。 1.引言 最近,研究者对基于诸如自动引导车辆等运动机械的无线电力传输系统进行了测试,自动引导车辆通常使用带台车的供电系统,但好的金属粒子是通过供电时的摩擦产生的,由于无线电力传输系统不产生摩擦,其严格要求在清洁的室内或医院里,并且因为没有磨损从而该系统有减低维修频率的有点。 传统的带有无线电力传输系统的自动引导车辆需要一条与轨道平行的电线并且通过拾波电圈获得电能,但是因为拾波电圈在结构上与变压器的第一圈相似,所以为了在次级变压器端(车辆端)获得足够的电能,在初级变压器一端(电线端)需要超额的电流,特别是当车辆行驶一段长距离,铜损失不能被忽略,并且由于发生磁通量的大量泄漏,耦合率不足,所以拾波线圈也需要大型的变压器和较大的电能供应设备。 本文提出了基于自动引导车辆的无线电力传输系统的概念,在无线变压器见有10mm间隙的情况下,得到不同变压器结构的仿真和实验结果,从这些结果中给出了一种高耦合率的变压器结构,此外采用了0V变换方式的回荡变极器作为供电设备(蓄电池充电器)的变极器,选取100kHz变换频率以减小变压器尺寸。对充电器和变压器的实验评价显示该提出的系统可以高效率运行。 2.无线电力传输系统的概念 图1.表示基于自动引导车辆的无线电力传输系统的新概念,该系统的充电电池装载在车

无线电能传输实验报告

实验报告 1.实验原理 与无线通信技术一样摆脱有形介质的束缚,实现电能的无线传输是人类多年的一个美好追求。无线电能传输技术 (Wireless Power Transfer, WPT )也称之为非接触电能传输技术(Contactless PowerTransmission, CPT ),是一种 借于空间无形软介质(如电场、磁场、微波等)实现将电能由电源端传递至用电设备的一种供电模式,该技术是集电磁场、电力电子、高频电子、电磁感应和耦合模理论等多学科交叉的基础研究与应用研究,是能源传输和接入的一次革命性进步。 无线电能传输技术解决了传统导线直接接触供电的缺陷,是一种有效、安全、便捷的电能传输方法,因而它被美国技术评论》杂志评选为未来十大科研方向之一。该技术不仅在军事、航空航天、油田、矿井、水下作业、工业机器人、电动汽车、无线传感器网络、医疗器械、家用电器、RFID识别等领域具有重要的应用价值,而且对电磁理论的发展亦具有重要科学研究价值和实际意义。在中国科协成立五十周年的系列庆祝活动中,无线能量传输技术被列为“0 项引领未来的科学技术”之一。 到目前为止,根据电能传输原理,无线电能传输大致可以分为三类:感应耦合式、微波辐射式、磁耦合谐振式。作为一个新的无线电能传输技术,磁耦合谐振式是基于近场强耦合的概念,基本原理是两个具有相同谐振频率的物体 学习参之间可以实现高效的能量交换,而非谐振物体之间能量交换却很微弱。

磁耦合谐振式无线电能传输的传输尺度介于前两者之间,因此也被称之为中尺度(mid-range)能量传输技术,其尺度为几倍的接收设备尺寸(可扩展到几米到几十米)。 除了较大的传输距离,还存在以下优势:由于利用了强耦合谐振技术,可以实现较高的功率(可达到kW)和效率;系统采用磁场耦合(而非电场,电场会发生危险)和非辐射技术,使其对人体没有伤害;良好的穿透性,不受非金属障碍物的影响。因此该技术已经成为无线电能传输技术新的发展方向。 基于磁耦合谐振技术的无线电能传输技术主要利用的是近场磁耦合共振技术,共振系统由多个具有相同本征频率的物体构成,能量只在系统中的物体间 传递,与系统之外的物体基本没有能量交换,在达到共振时,物体振动的幅度达到最大。 基于磁耦合谐振技术的无线电能传输系统一般由高频发射源、发射系统、接收系统、负载等部分组成,其中发射系统和电磁接收系统,是无线电能传输系统的关键部分。 其典型模型如下图所示。由下图可知发射系统包括励磁线圈和发射线圈,它们之间是通过直接耦合关系把能量从励磁线圈传到发射线圈,励磁线圈所需能量直接从高频电源处获得。电磁接收系统包括接收线圈和负载线圈,它们之间也是通过直接耦合关系把能量从接收线圈传到负载线圈。发射线圈与接收线圈之间通过空间磁场的谐振耦合实现电能的无线传输。 学习参

谐振耦合式无线电力传输系统matlab建模

Modeling Resonant Coupled Wireless Power Transfer System 谐振耦合式无线电力传输系统建模 This example shows how to create and analyze resonant coupling type wireless power transfer(WPT) system with emphasis on concepts such as resonant mode, coupling effect, and magnetic field pattern. The analysis is based on a 2-element system of spiral resonators. 这个例子显示了如何创建和分析谐振耦合式无线电力传输系统(WPT)的概念如谐振模式,强调耦合效应和磁场模式。此分析是基于两螺旋谐振器系统。 This example requires the following product: 这个例子需要以下产品: Partial Differential Equation Toolbox? Design Frequency and System Parameters设计频率和系统参数 Choose the design frequency to be 30MHz. This is a popular frequency for compact WPT system design. Also specify the frequency for broadband analysis, and the points in space to plot near fields. 选择的设计频率为30MHz。这是便携式WPT系统设计的一个流行的频率。还指定了宽带分析的频率,和在附近的空间中的点。 fc=30e6; fcmin = 28e6; fcmax = 31e6; fband1 = 27e6:1e6:fcmin; fband2 = fcmin:0.25e6:fcmax; fband3 = fcmax:1e6:32e6; freq = unique([fband1 fband2 fband3]); pt=linspace(-0.3,0.3,61); [X,Y,Z]=meshgrid(pt,0,pt); field_p=[X(:)';Y(:)';Z(:)']; The Spiral Resonator螺旋谐振器 The spiral is a very popular geometry in resonant coupling type wireless power transfer system for its compact size and highly confined magnetic field. We will use such a spiral as the fundamental element in this example. 螺旋是一种非常流行的几何形状在谐振耦合型无线功率传输系统,其紧凑的尺寸和高度密闭的磁场。我们会使用这样一个螺旋的基本元素在这个例子中。 Create Spiral Geometry The spiral is defined by its inner and outer radius, and number of turns. Express the geometry by its boundary points, then import its boundary points into pdetool. The mesh is generated in pdetool and exported. The mesh is described by points and triangles. 创建螺旋几何形状的螺旋是由它的内部和外部半径定义,和数量的圈数。由边界点的几何表达,那么进口边界点为有效。网格产生有效和出口。网格是由点和三角形描述的。 Rin=0.05; Rout=0.15; N=6.25; [p,t]=createSpiral(Rin,Rout,N);

无线电能传输

Frequency dependence of magnetic flux profile in the presence of metamaterials for wireless power transfer Boopalan G School of Electronics Engineering VIT University Vellore, Tamil Nadu, India boopalan@vit.ac.in Subramaniam C K School of Advance Sciences VIT University Vellore, Tamil Nadu, India subramaniam@vit.ac.in Abstract— We discuss the change in the magnetic flux profile by introducing a negative refractive index material (metamaterial) in between the source and receiver. The environment parameters, ε and μ , has a significant effect on the propagation of electromagnetic wave. The behavior of Transverse Magnetic (TM) wave when the medium in the path of propagation is changed to negative permittivity and permeability is simulated and discussed. The effect of size, shape and anisotrophy of the metamaterials, for near-field regions, on the magnetic flux density has been studied using finite element analysis. An enhancement in the magnetic flux density when a metamaterial is introduced in between the source and receiver was observed. The results show that the static and quasi-static behavior of the system is same. Keywords—metamaterials, quasi static, magnetic flux transverse magnetic I.I NTRODUCTION The idea of charging on the go is an exciting option for various high power applications like Electric Vehicle. Wireless power charging can be done by radiative or non-radiative processes. Use of microwave and optical frequencies falls into the radiative category while non-radiative process refers to the near-field domain. This concept was put forward by Nikola Tesla when he invented an apparatus for transmitting electrical energy wirelessly [1]. Later, with the advent of microwave transmission technology in 1960’s researchers dreamed power transfer from satellite space station to earth [2]. For short distances inductive coupling is very convenient [3-4]. The enhancement in coupling efficiency is obtained by replacing coils with resonators [5-7]. The efficiency can further be improved by introducing a negative refractive index material between the source and the receiver [8-12]. The negative refractive index material or metamaterial has the unique property of enhancing the evanescent as well as non-evanescent waves [10]. In this paper we present the magnetic flux density variations for quasi-static scenarios when a metamaterial is introduced in between the source and the receiver. The model used for simulation is a 2-dimensional one as we are interested only in the profile in that direction which is in the direction of propagation. II.T HEORY Our system consists of a source, receiver and a metamaterial as shown in fig. 1. The source is a circular loop of radius ‘a’ located in free space. The receiver is a point of interest ‘P’ where the magnetic flux density enhancement is observed. The metamaterial in between the source and the receiving point is a rectangular block which enhances the magnetic flux density at the point ‘P’. The transmitter is a single turn coil carrying current ‘I’ which in turn generates the magnetic field H in the surrounding medium. The magnetic field H at a distance ‘z’ from the center of the coil is given by I (1) The coil is fed with a current of ‘I’ amperes as given by the equation below I . (2) Fig. 1. Schematic of Wireless Power transfer y x z

无线电能传输系统报告.doc

摘要 随着电子产品的快速发展,越来越多的电源连接线开始困扰人们的生活,为改善传统导线电路电能传输的弊端,给出了一种基于近距离无线电能传输原理的传输系统,而电磁谐振耦合无线电能传输技术正可以很好解决对距离有较高要求的这类问题。 本设计主要包括发射模块、传输模块和接收模块三大部分。首先由有源晶振产生1MHZ的方波,通过驱动IR2110及MOS管提高了交流信号,加强后的信号源经发送线圈通过磁耦合谐振感应到接收线圈,再经过半波整流和滤波后得到稳定直流电压,带动负载工作,即实现了无线电能的传输。在本实验中,我们采用单片机STC89C52控制液晶屏LC1602来显示负载短的的实时电压和电流值。 关键字:无线电能有源晶振驱动电路谐振半波整流 Abstract In this paper, With the rapid development of electronic products, more and more power cables on people's lives, to improve the disadvantages of traditional power transmission conductor circuit, presents a transmission system based on can close radio transmission principle, and the electromagnetic resonance coupling can radio transmission technology is very good to solve this kind of problem have higher request for the distance. This design mainly includes the transmitting module, transmission module and receiving module three parts. First 1 MHZ square wave generated by the active crystals, driven by IR2110 and MOS tube improve the signal communication, strengthen the signal source approved by the sending coil magnetic coupling resonant induction to the receiving coil, and after a half-wave rectifier and filter get steady dc voltage, drive the work load, which can realize the radio transmission. In this experiment, we adopt LC1602 STC89C52 MCU LCD screen to display the real-time voltage and current value of load short. Key words: radio can active vibration crystal driver circuit resonance half-wave rectifier

国外无线电力传输技术进展

86 上 海信息 化 无线电力传输(Wireless Power Transmission,WPT)也称无线能量传输或无线功率传输,主要通过电磁感应、电磁共振、射频、微波、激光等方式实现非接触式的电力传输。随着电力电子器件、功率变换和控制技术的发展,无线电力传输技术在转换率、低辐射等方面逐渐取得突破,无线电力传输在军事、通信、工业、医疗、运输、电力、航空航天、节能环保等领域呈现良好应用前景。 近年来,全球无线电力传输市场规模逐年递增,据IHS iSuppli数据显示,2010年无线充电设备市场收入达到1.2亿美元,到2015年将达到237亿美元。从2011 年开始,全球无线充电模块销量急剧增长,2019年将增长到9.23亿个(见表1)。手机、笔记本电脑等是无线电力传输的主要应用对象,厂商正将无线电力传输技术嵌入到包括智能手机、平板电脑、蓝牙耳机在内的终端。 十九世纪末,尼古拉?特斯拉发明了“特斯拉”线圈,使无线电力传输成为可能。近年来,无线电力传输技术发展迅猛,在军事、通信、工业等各大领域都拥有十分广阔的应用前景。对于消费者来说,无线充电的意义还不仅仅是带来充电方式的便捷化,随着无线充电技术从手机、平板等小功率设备向笔记本电脑、智能电视甚至电动汽车等大型设备的拓展,可以说,无线电力传输技术必将为人们的日常生活带来更多的惊喜。 文/陈 骞 美日两国处于领先地位 美国、日本等国众多企业或研究机构竞相研发无线电力传输技术,探索无线电力传输系统在不同领域的应用,致力于将其实用化,目前,已获得了一定的技术突破,相应产品也陆续面世。 美国电子信息企业对短距离电力传输技术给予极大投入。Power Cast 公司利用电磁波损失小的天线技术,借助二极管、非接触IC 卡和无线电子标签等,实现了效率较高的无线电力传输,将无线电波转化成直流电,并在约1 米范围内为不同电子装置的电池充电。Palm 公司将无线充电应用在手机上,推出充电设备“触摸石”,利用电磁感应原理为手机进行无线充电。Powermat 推出的充电板有桌面式和便携式等多种,主要由底座和无线接收器组成。Fulton 公司开发的eCoupled 无线充电技术,充电器能够自动地通过超高频电波寻找待充电电器,动态调整发射功率。Visteon 公司计划为摩托罗拉手机和苹果的iPod 生产eCoupled 无线充电器。Power 公司开发的电波接收型电能储存装置以美国匹兹堡大学研发的无源型 RFID 技术为基础,通过射频发射 装置传递电能。WildCharge 公司开发的无线充电系统,充 电板的外观像一个鼠标垫,能够放置在桌椅等任何平坦表 数据来源:IHS iSuppli 单位:百万个 表1 全球无线充电应用数量 Oversea View 他山之石

磁耦合谐振式无线电能传输技术研究进展

1 综 述 作者简介:程丽敏(1988- ),女,硕士研究生,研究方向为无线电能传输技术。 磁耦合谐振式无线电能传输技术研究进展 程丽敏,崔玉龙 (北京化工大学 信息科学与技术学院,北京 100029) 摘 要:作为一种无线电能传输(WPT)方式,磁耦合谐振式无线电能传输距离为几十厘米,传输效率 可以达到90%,传输功率可以达到千瓦级。对磁耦合谐振式WPT 系统的整体结构类型,谐振器的拓扑结构类型,提高传输距离、传输效率和传输功率的方法及谐振频率分裂等几方面进行了研究。总结了国内相关高校的研究成果,并给出了该技术的应用前景及存在问题。 关键词:磁耦合谐振式;无线电能传输;发展现状;存在问题;应用前景中图分类号:TM724 文献标识码:A 文章编号:1007-3175(2012)12-0001-05 Abstract: As a mean of wireless power transmission (WPT), magnetic coupling resonant wireless power transmission distance can be from scores of centimeters to several meters, transmission ef ? ciency can reach 90%, and transmission power can reach kilowatt grade. Study was carried out for whole structure category of magnetic coupling resonant WPT system, topologic structure category of resonator, improvement of transmis-sion distance, transmission ef ? ciency and transmission power methods and resonant frequency split etc aspects. Summary was made for study results of related colleges and universities at home and the application prospect of the technology and existing problems was given. Key words: magnetic coupling resonant type; wireless power transmission; present development situation; existing problem; application prospect CHENG Li-min, CUI Yu-long (College of Information Science&Technology, Beijing University of Chemical Technology, Beijing 100029, China ) Magnetic Coupling Resonant Type Wireless Power Transmission Technology Study Progress 0 引言 无线电能传输(WPT)技术是不使用导线连接而通过电场、磁场、激光等软介质实现的电能传输方式。1890年,尼古拉?特斯拉提出了把地球作为内导体、距离地面约60km 的电离层作为外导体,在地球与电离层之间建立起大约8Hz 的低频共振,再利用环绕地球表面的电磁波来远距离传输电力[1]。2006年11月,在美国物理学会工业物理论坛上,麻省理工学院(MIT)的Marin Soljacic 首次提出了磁耦合谐振式WPT 技术[2]。WPT 技术主要有3种,即电磁感应式、磁耦合谐振式和电磁辐射式。电磁辐射式WPT 技术是利用电磁波能量可以通过天线发送和接收的原理而实现的能量传输。电磁感应式无线电能传输技术(简称IPT)主要利用电磁感应原理,采用松耦合变压器或者可分离变压器方式实现 电能无线传输。磁耦合谐振式WPT 的理论基础是耦合模式理论,两个相同谐振频率的振荡电路,在波长范围内是通过近场瞬逝波耦合的,感应器产生的驻波在远远小于损耗时间内,允许能量高效地从一个物体传到另一物体。而与周围不同频率的物体之间的相互作用很弱,电能传输的介质是中高频的磁场。 1 磁耦合谐振式WPT技术研究现状 1.1 国外研究现状 1.1.1 WPT系统的整体结构类型 从磁耦合谐振式W P T系统的整体结构来看,可分为单发射器、单接收器的系统,单发射器、多接收器的系统,有中继谐振器的系统。 1)单发射器、单接收器的WPT系统 对于单发射器、单接收器系统,也有不同的实

无线电力传输技术

无线电力传输技术 无线电力传输技术 人类追逐自由的本能,在现实面前屡屡受挫。自从广泛使用电能以来,许多人都为了那些电器拖着的长长电线而绞尽脑汁,但无线供电却一直只能作为一个在前方远远招手的梦想。现在,我们也许看到了一线曙光。 在2008年8月的英特尔开发者论坛(IDF,Intel Developer Forum)上,西雅图实验室的约书亚·史密斯(Joshua R. Smith)领导的研究小组向公众展示了一项新技术——基于“磁耦合共振”原理的无线供电,在展示中成功地点亮了一个一米开外的60瓦灯泡,而在电源和灯泡之间没有使用任何电线。他们声称,在这个系统中无线电力的传输效率达到了75%。 大刘在《三体II·黑暗森林》中描绘了一个两百年后的世界。因为人们掌握了可控核聚变技术,可以提供极大丰富的能源,无线供电的损失在可接受范围之内,所以大部分电器都可以采用无线方式来供电,从电热杯一直到个人飞行器都是如此。电像空气一样无处不在,人类再也不用受电线的拖累了。 正如书中所提到的那样,无线供电技术现在也已经出现了。实际上,近距离的无线供电技术早在一百多年前就已经出现,而我们现在生活中的很多小东西,都已经在使用无线供电。也许不远的未来,我们还会看到远距离和室内距离的无线供电产品,而不会看到电线杆和高压线,“插头”也将会变成一个历史名词。 好兆头 英特尔的这种无线供电技术,是基于麻省理工大学的一项研究成果而开发的。 2007年6月,麻省理工大学的物理学助理教授马林·索尔贾希克(Marin Soljacic)和他的研究团队公开做了一个演示。他们给一个直径60厘米的线圈通电,6英尺(约1.9米)之外连接在另一个线圈上的60瓦灯泡被点亮了。这种马林称之为“WiTricity”技术的原理是“磁耦合共振”,而他本人也因为这一发明获得了麦克阿瑟基金会2008年的天才奖。 新技术所消耗的电能只有传统电磁感应供电技术的百万分之一,不由让人们对室内距离的无线供电重新燃起了希望。而它的关键在于“共振”。 科学家们早就发现,共振是一种非常高效的传输能量方式。我们都听过诸如共振引起的铁桥坍塌、雪崩或者高音歌唱家震碎玻璃杯的故事。无论这些故事可信度如何,但它们的基本原理是正确的:两个振动频率相同的物体之间可以高效传输能量,而对不同振动频率的物体几乎没有影响。在马林的这种新技术中,将发送端和接收端的线圈调校成了一个磁共振系统,当发送端产生的振荡磁场频率和接收端的固有频率相同时,接收端就产生共振,从而实现了能量的传输。根据共振的特性,能量传输都是在这样一个共振系统内部进行,对这个共振系统之外的物体不会产生什么影响。这就像是几个厚度不同的玻璃杯不会因为同一频率的声音而同时炸碎一样。 最妙的就是这一点了。当发射端通电时,它并不会向外发射电磁波,而只是在周围形成一个非辐射的磁场。这个磁场用来和接收端联络,激发接收端的共振,从而以很小的消耗为代价来传输能量。在这项技术中,

DIY 磁耦合谐振式无线电力传输实验

DIY磁耦合谐振式无线电力传输实验 一、实验内容 1.了解磁耦合无线电力传输的基本原理; 2.自组装和调试磁耦合式无线电力传输系统; 3. 探索频率和距离对无线电力传输的影响 二、实验方法 1.确定LC电路的共振频率 以下为确定LC电路的共振频率的几种方法,任选其中一种。 方法一:利用实验室提供的LC电表分别测量线圈的电感和电容,然后利用公式(1)计算共振频率。 方法二:如果线圈绕线比较规则,可以利用实验室提供的工具测量铜线的直径、线圈直径等参数,然后利用公式(3)计算线圈的电感,最后利用公式(1)计算共振频率。 方法三:利用信号发生器和示波器观察LC电路的充放电过程,测量其共振频率,具体方法参考实验十七RLC串联电路的暂态过程。 三、实验任务 1.研究工作频率对电力传输效率的影响 按照下图在九孔面包板上完成实验系统的连接。 E 固定接收线圈与发射线圈的距离,如5厘米。改变工作频率,利用示波器测量接收电路的信号幅度和频率,完成如下表格并绘制幅度-频率曲线。 表1 接收信号幅度与频率关系 频率(kHz) 幅度(V) 2.研究无线电力传输的距离对传输效果影响 调节R1的大小使得电路工作在共振频率之下,改变接收线圈与发射线圈的距离,利用示波器测量接收电路的信号幅度,完成如下表格并绘制幅度-距离曲线。 表2 接收信号幅度与距离关系

距离(cm) 幅度(V) 3.自制电感线圈(可以和实验室提供的形状、匝数不同),并联电容形成LC电路,分别测量电感线圈的电感L和电容C的数值;计算其固有共振频率,接入上图所示电路,观察其共振情况和电力传输效果,做记录。 四、报告要求 1.用坐标纸绘制上面的两条曲线,总结传输规律。 2.对自制的LC并联谐振电路的传输效果做分析和总结;对比实验室提供的LC电路,总结两者的特性和优劣。 补充讲义 实验七十七 DIY磁耦合谐振式无线电力传输实验 你知道吗,不用电线就可以传输电力,点亮一个灯泡,这样的事情是利用什么原理和技术实现的?摒弃杂乱的输电导线,实现电力的无线传输一直以来都是人们追求的梦想。早在1890年,美国物理学家尼古拉斯?特斯拉就提出并设计了无线电力传输实验模型。2007年,一种新型的可实用化的磁耦合谐振式无线能量传输技术由MIT的一组科学家得以实现。这种传输技术具有传输距离长,穿透能力强的特点。随后在2010年青岛海尔公司就研制出了“无尾”电视,可以肯定的是随着人们对生活品质要求的日益提高,各种家电设备会逐渐采用这种新型的无线传电技术,它会为人们生活带来很大的便利。 本实验为同学们自己动手实验探索利用磁耦合谐振原理进行无线电力传输提供了实验平台,通过实验你会深切地感到自己就可以研制这样一种实用的无线电力传输仪器。 实验目的 1.了解磁耦合无线电力传输的基本原理; 2.自组装和调试磁耦合式无线电力传输系统; 3. 探索频率和距离对无线电力传输的影响 实验系统 本实验采用磁耦合谐振方式进行电力传输,系统的工作原理图如图1所示。 ·1·

无线电力传输系统

郑州大学毕业设计(论文)题目无线电力传输系统 院系电气工程学院 专业电气工程及其自动化 班级四班 学生姓名苏淑珍 学号20100240423 指导教师职称 2012年 4 月16 日

目前世界广泛采用的电力传输系统是靠金属等媒介等,例如铜,铝等,铺设管道极其麻烦,出现问题后解决费时间,而且价格昂贵由于电阻的存在消耗大量电能,利用无线电力传输系统,通过产生特定频率的震动以电磁波的形式发射,节约了铜铝等非可再生资源,而且节省了大量的能源,如果能大范围的实施,人们便可以利用廉价能源,很方面的解决生活问题。 本实验中用到了电磁场的传播问题,以及电磁的接受,利用共振产生巨大的电磁波,经大气离子层反射,传播能量。 其实所有的物质都是能源,物质和能源是一体的,只是如何利用的问题,例如风能核能太阳能水电站潮汐地热,地球本事就是一个巨大的能量场,我们应该积极开发新的能源,避免特定能能源的枯竭,从而保持地球能量场及磁场的平衡。 关键字:电磁场,磁共振,特斯拉线圈

摘要 1.绪论 1.1实现无线电力传输的目的和意义 1.2电力传输的发展和现状 1.3无线电力传输的内容,过程 1.4本文的主要工作 2.特斯拉线圈 2.1特斯拉线圈的物理结构 2.2特斯拉线圈共振的产生 2.3特斯拉线圈产生电能原理 2.4特斯拉线圈电磁波的发射 2.5本章小结 3.电磁波的传播和反射 3.1电磁波在大气的传播 3.2电磁波的稳定性 3.3大气离子层反射电磁波 3.4本章小结 4.电磁波的接受及控制 4.1电磁波的接受 4.2电磁波的控制 4.3电磁波转化为电能

5结论 参考文献

无线电力传输技术的发展

无线电力传输技术的发展 人类追逐自由的本能,在现实面前屡屡受挫。自从广泛使用电能以来,许多人都为了那些电器拖着的长长电线而绞尽脑汁,但无线供电却一直只能作为一个在前方远远招手的梦想。现在,我们也许看到了一线曙光。 在2008年8月的英特尔开发者论坛(IDF,Intel Developer Forum)上,西雅图实验室的约书亚·史密斯(Joshua R. Smith)领导的研究小组向公众展示了一项新技术——基于“磁耦合共振”原理的无线供电,在展示中成功地点亮了一个一米开外的60瓦灯泡,而在电源和灯泡之间没有使用任何电线。他们声称,在这个系统中无线电力的传输效率达到了75%。 大刘在《三体II·黑暗森林》中描绘了一个两百年后的世界。因为人们掌握了可控核聚变技术,可以提供极大丰富的能源,无线供电的损失在可接受范围之内,所以大部分电器都可以采用无线方式来供电,从电热杯一直到个人飞行器都是如此。电像空气一样无处不在,人类再也不用受电线的拖累了。 正如书中所提到的那样,无线供电技术现在也已经出现了。实际上,近距离的无线供电技术早在一百多年前就已经出现,而我们现在生活中的很多小东西,都已经在使用无线供电。也许不远的未来,我们还会看到远距离和室内距离的无线供电产品,而不会看到电线杆和高压线,“插头”也将会变成一个历史名词。 好兆头 英特尔的这种无线供电技术,是基于麻省理工大学的一项研究成果而开发的。 2007年6月,麻省理工大学的物理学助理教授马林·索尔贾希克(Marin Soljacic)和他的研究团队公开做了一个演示。他们给一个直径60厘米的线圈通电,6英尺(约1.9米)之外连接在另一个线圈上的60瓦灯泡被点亮了。这种马林称之为“WiTricity”技术的原理是“磁耦合共振”,而他本人也因为这一发明获得了麦克阿瑟基金会2008年的天才奖。

无线电力传输技术复习课程

无线电力传输技术

无线电力传输技术 无线电力传输技术 人类追逐自由的本能,在现实面前屡屡受挫。自从广泛使用电能以来,许多人都为了那些电器拖着的长长电线 而绞尽脑汁,但无线供电却一直只能作为一个在前方远远招手的梦想。现在,我们也许看到了一线曙光。 在2008年8月的英特尔开发者论坛(IDF , Intel Developer Forum )上,西雅图实验室的约书亚史密斯(Joshua R. Smith )领导的研究小组向公众展示了一项新技术一一基于磁耦合共振”原理的无线供电, 在展示中成功地点亮了一个一米开外的60瓦灯泡,而在电源和灯泡之间没有使用任何电线。他们声称,在 这个系统中无线电力的传输效率达到了75%。 大刘在《三体II黑暗森林》中描绘了一个两百年后的世界。因为人们掌握了可控核聚变技术,可以提供极大丰富的能源,无线供电的损失在可接受范围之内,所以大部分电器都可以采用无线方式来供电,从电热杯一直到个人飞行器都是如此。电像空气一样无处不在,人类再也不用受电线的拖累了。 正如书中所提到的那样,无线供电技术现在也已经岀现了。实际上,近距离的无线供电技术早在一百多年前就已经出现,而我们现在生活中的很多小东西,都已经在使用无线供电。也许不远的未来,我们还会看到远距离和室内距离的无线供电产品,而不会看到电线杆和高压线,插头”也将会变成一个历史名词。 好兆头 英特尔的这种无线供电技术,是基于麻省理工大学的一项研究成果而开发的。 2007年6月,麻省理工大学的物理学助理教授马林索尔贾希克(Marin Soljacic )和他的研究团队公开做 了一个演示。他们给一个直径60厘米的线圈通电,6英尺(约1.9米)之外连接在另一个线圈上的60瓦灯 泡被点亮了。这种马林称之为WiTricity ”技术的原理是磁耦合共振”,而他本人也因为这一发明获得了麦 克阿瑟基金会2008年的天才奖。 新技术所消耗的电能只有传统电磁感应供电技术的百万分之一,不由让人们对室内距离的无线供电重新燃起了希望。而它的关键在于共振”。 科学家们早就发现,共振是一种非常高效的传输能量方式。我们都听过诸如共振引起的铁桥坍塌、雪崩或者高音歌唱家震碎玻璃杯的故事。无论这些故事可信度如何,但它们的基本原理是正确的:两个振动频率相同的物体之间可以高效传输能量,而对不同振动频率的物体几乎没有影响。在马林的这种新技术中,将发送端和接收端的线圈调校成了一个磁共振系统,当发送端产生的振荡磁场频率和接收端的固有频率相同时,接收端就产生共振,从而实现了能量的传输。根据共振的特性,能量传输都是在这样一个共振系统内部进行,对这个共振系统之外的物体不会产生什么影响。这就像是几个厚度不同的玻璃杯不会因为同一频率的声音而同时炸碎一样。 最妙的就是这一点了。当发射端通电时,它并不会向外发射电磁波,而只是在周围形成一个非辐射的磁场。这个磁场用来和接收端联络,激发接收端的共振,从而以很小的消耗为代价来传输能量。在这项技术中,磁场的强度将不过和地球磁场强度相似,人们不用担心这种技术会对自己的身体和其他设备产生不良影响。

相关文档