文档库 最新最全的文档下载
当前位置:文档库 › 几何发展简介

几何发展简介

几何发展简介
几何发展简介

解析几何简介

一、几何学发展简史

几何,是由希腊文演变而来,其原意是土地测量。

依据很多的实证,几何是埃及人创造的,并且产生于土地测量。由于尼罗河泛滥,经常冲毁界限,这样测量变成了必要的工作。无可置疑的,这类科学和其它科学一样,都发生于人类的需要。

几何学最先发展起来的是欧几里得几何。

到17世纪的文艺复兴时期,几何学上第一个重要成果是法国数学家笛卡儿(R..descartes,1596~1650)和费马(P.de Fermat,1601~1665)的解析几何。他们把代数方法应用于几何学,实现了数与形的相互结合与沟通。

随着透视画的出现,又诞生了一门全新的几何学——射影几何学。

到19世纪上半叶,非欧几何诞生了。人们的思想得到很大的解放,各种非欧几何、微分几何、拓扑学都相继诞生,几何学进入一个空前繁荣的时期。

二、从欧几里得几何到非欧几何

欧几里得的《几何原本》是一部划时代的著作。

公元7世纪以前的所谓几何学,都只限于一些具体问题的解答,主要依赖于直观和经验。但是直观和经验也有不可靠的时候,于是排除直观性,建立合乎逻辑的几何学体系,就显得十分必要了。欧几里得就是在这种思想的基础上,编著完成了他的《几何原本》。

《几何原本》的第一卷是全书逻辑推理的基础,给出全书最初出现的23个定义,5条公设,5条公理。

欧几里得在此基础上运用逻辑推理,导出了许许多多的命题(在《几何原本》中包含了465个命题),从而构成了欧几里得几何学。

自《几何原本》问世以来,直到19世纪大半段以前,数学家一般都把欧几里得的著作看成是严格性方面的典范,但也有少数数学家看出了其中的严重缺点,并设法纠正。在纠正欧几里得几何的过程中,俄国数学家罗巴切夫斯基、匈牙利的波尔约和高斯几乎同时各自独立地发现了另一种几何学——非欧几何。并且数学家利用在欧氏几何之内构造模型的办法,证明了如果欧氏几何内部无矛盾,非欧几何也无矛盾,非欧几何就这样产生了。

另一种非欧几何的发现者是德国数学家黎曼,称为黎曼的非欧几何(椭圆几何)。

三、解析几何的诞生

欧氏几何是一种度量几何,研究的是与长度和角度有关的量的学科。它的方法是综合的,没有代数的介入,为解析几何的发展留下了余地。

解析几何的诞生是数学史上的一个伟大的里程碑。它的创始人是17世纪的法国数学家笛卡儿和费马。他们都对欧氏几何的局限性表示不满:古代的几何过于抽象,过多地依赖于图形。他们对代数也提出了批评,因为代数过于受法则和公式的约束,缺乏直观,无益于发展思想的艺术。同时,他们认识到几何学提供了有关真实世界的知识和真理,而代数学能用来对抽象的未知量进行推理,是一门潜在的方法科学。因此,把代数学和几何学中的精华结合起来,取长补短,一门新的学科——解析几何诞生了。

笛卡儿从轨迹开始,找出它的方程,费马则从方程出发,来研究轨迹。

基本思想:在平面上建立直角坐标系,在平面上的点与有序实数对(x,y)之间建立一一对应关系,从而,将代数方程f(x,y)=0与平面上的曲线对应起来,于是几何问题便可归结为代数问题,并反过来通过代数问题的研究发现新的几何结果。

解析几何包括平面解析几何和立体解析几何两部分。平面解析几何通过平面直角坐标系,建立点与实数(x,y)对之间的一一对应关系,以及曲线与方程之间的一一对应关系。为了确定空间任意一点的位置,我们需要在平面直角坐标系的基础上,增加一条数轴,建立空间直角坐标系。

1

几何原本与九章算术的异同

《几何原本》与《九章算术》的异同 《几何原本》和《九章算术》都是经典的数学著作,一部是西方的著作,一部是中国的古代著作,这两部著作都对后来的数学发展做出了很大的贡献,并对人类文明产生深远的影响。《几何原本》和《九章算术》本身是关于纯数学的专著,但高度抽象化的数学是必定是需要和其它的学科相结合的。 下面,我就《几何原本》和《九章算术》的异同做一些阐述,首先,《几何原本》和《九章算术》产生的背景不同: 《几何原本》产生的背景: 欧几里得的生平,现在知道的甚少,欧几里得在公元前300年左右,来到亚历山大里亚教学.人们称赞欧几里得治学精神严谨、谦虚,是一个温良敦厚的数学教育家.欧几里得在从事数学教育中,总是循循善诱地启发学生,提倡刻苦钻研,弄懂弄通,反对投机取巧、急功近利的狭隘思想.欧几里得在从事数学教育中,善于积累数学知识,并进行了拓宽与创新.他的巨著《几何原本》是一生中最重要的工作,这部著作的形成具有无以伦比的历史意义.他精僻地总结了人类长时期积累的数学成就,建立了数学的科学体系,为后世继续学习和研究数学提供了课题和资料,使几何学的发展充满了活的生机.这部著作长时期被人崇拜、信仰,从来没有一本教科书,像《几何原本》那样长期广为传颂.从1482年到19世纪末,欧几里得《几何原本》的印刷本竟用各种文字印刷1000版以上,在此之前,它的手抄本统御几何学也已达近1800年之久.欧几里得继承和发展了前人的数学知识,《几何原本》所用到的材料大部分是希腊前期各学派创建的成果.欧几里得是柏拉图的门徒,他的著作基本沿续了柏拉图的传统思想,承袭了《共和国》中所论及的科学方法.欧几里得在《几何原本》中,发展了柏拉图的以哲学为基础,“数论、几何、音乐、天文”4科为内容的科学思想. 另外,欧几里得还采用了欧多克索斯等学者的一些定理,并加以完善.《几何原本》所采用的公理、定理都是经过细致斟酌、筛选而成,并按严谨的科学体系进行编排,使之系统化、理论化,超过了以前的所有著作,因此,当《几何原本》问世之后,其它诸类逐渐消声匿迹了.

几何学的发展简史

几何学的发展简史 上海市第十中学数学教研组王沁 [课前设计] 中国古代是一个在世界上数学领先的国家,用近代数学科目来分类的话,可以看出:无论是算术、代数还是几何、三角,中国古代数学在各方面都十分发达。而且在数学理论与实际需要的联系中,创造出了与古希腊等欧洲国家风格迥异的实用数学。 可惜的是,现行的教材对中国古代数学家的成就介绍得很少。即使教材中有,但是也基本上出现在阅读材料中,几乎没有老师会去介绍,当然,学生也很少去看。 我本人接触这些数学历史知识也是拜赐学校提供的再学习机会。我校有一个由秦一岚校长总负责、全校老师共同参与的市级课题:史情教育与各学科校本课程的整合。如何在数学学科上整合史情教育,在数学课中充分挖掘数学学科的民族精神内涵,弘扬中华民族精神和上海城市精神,渗透德育教育,探索出一条符合学生特点的教学方法,通过师生互动,能提高学生团结协作精神,并提高学生的科学素养,是摆在我面前的一个重要课题。为此,我做了以下几方面的准备。 第一步,确定课题。高二正在上立体几何,于是确定上几何学(偏重立体几何)的发展简史。 第二步,收集资料。主要是阅读大量有关数学史的书籍。 第三步,理清脉络。把看到的大量信息进行梳理,按照时间顺序、

内容与教材内容的相关程度、在几何史上地位的重要性等方面进行选取。 第四步,组织教案。确定前一部分讲几何学发展简史,后一部分让学生用学习过的几何知识(主要是立体几何)来解决一些实际问题。 数学应用能力是基础数学教育的重要组成部分,同时它也是学生比较薄弱的环节。中学里的数学内容多半是纯粹的数学基础知识,而现在国家提倡数学素质教育,那么提高数学应用能力是其中重要的一环。为了提高同学对立体几何的兴趣,提高学生应用立体几何知识解决实际问题的能力,我选择了四道应用性较强的例题:平改坡问题,遮阳篷的角度,飞机高度测量和蜂巢表面积最小问题。鉴于学生的实际数学水平与能力,我没有让学生从数学实际问题出发自行建立数学模型,而是在帮助他们建立了数学模型后,指导学生如何看懂模型,如何联系学习过的数学知识解决数学问题。 我希望通过我的课,能让更多的学生了解数学的历史,了解中国数学的历史,为我国古代数学家的杰出贡献而自豪。同时让同学看到数学是多么有用的一门学科,多么有趣的一门学科,希望无论是数学成绩好还是数学成绩不理想的同学都能对数学永远保持一分兴趣。 [教案] 教学目标: (1)让学生大致了解几何学(主要是立体几何)学在中外的发展简史;

几何学基础简介

几何学基础简介 Lex Li 几何原本简介 古希腊大数学家欧几里德是与他的巨著——《几何原本》一起名垂千古的。这本书是世界上最著名、最完整而且流传最广的数学著作,也是欧几里德最有价值的一部著作。欧几里德把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。而这本书,也就成了欧式几何的奠基之作。 作为基础的五条公理和公设 五条公理 1.等于同量的量彼此相等; 2.等量加等量,其和相等; 3.等量减等量,其差相等; 4.彼此能重合的物体是全等的; 5.整体大于部分。 五条公设 1.过两点能作且只能作一直线; 2.线段(有限直线)可以无限地延长; 3.以任一点为圆心,任意长为半径,可作一圆; 4.凡是直角都相等; 5.同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。 《几何原本》的主要内容 欧几里得的《几何原本》共有十三卷。 目录 第一卷几何基础 第二卷几何与代数 第三卷圆与角 第四卷圆与正多边形 第五卷比例

第六卷相似 第七卷数论(一) 第八卷数论(二) 第九卷数论(三) 第十卷无理量 第十一卷立体几何 第十二卷立体的测量 第十三卷建正多面体 各卷简介 第一卷:几何基础。重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是毕达哥拉斯定理的正逆定理; 第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。 第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。 第四卷:讨论圆内接和外切多边形的做法和性质; 第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为是"最重要的数学杰作之一" 第六卷:讲相似多边形理论,并以此阐述了比例的性质。 第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。 第十一卷、十二、十三卷:最后讲述立体几何的内容. 从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。 《几何原本》的意义和影响 在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。《几何原本》的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。 论证方法上的影响 关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。

《几何原本》读后感3000字

《几何原本》读后感3000字 导读:读书笔记《几何原本》读后感3000字,仅供参考,如果觉得很不错,欢迎点评和分享。 《几何原本》读后感3000字: 公理化结构是近代数学的主要特征。而《原本》是完成公理化结构的最早典范,它产生于两千多年前,这是难能可贵的。不过用现代的标准去衡量,也有不少缺点。首先,一个公理系统都有若干原始概念,或称不定义概念,作为其他概念定义的基础。点、线、面就属于这一类。而在《原本》中一一给出定义,这些定义本身就是含混不清的。其次是公理系统不完备,没有运动、顺序、连续性等公理,所以许多证明不得不借助于直观。此外,有的公理不是独立的,即可以由别的公理推出。这些缺陷直到1899年希尔伯特(Hilbert)的《几何基础》出版才得到了补救。尽管如此,毕竟瑕不掩瑜,《原本》开创了数学公理化的正确道路,对整个数学发展的影响,超过了历史上任何其他著作。 《原本》的两个理论支柱--比例论和穷竭法。为了论述相似形的理论,欧几里得安排了比例论,引用了欧多克索斯的比例论。这个理论是无比的成功,它避开了无理数,而建立了可公度与不可公度的正确的比例论,因而顺利地建立了相似形的理论。在几何发展的历史上,解决曲边围成的面积和曲面围成的体积等问题,一直是人们关注的重要课题。这也是微积分最初涉及的问题。它的解决依赖于极限理论,

这已是17世纪的事了。然而在古希腊于公元前三四世纪对一些重要的面积、体积问题的证明却没有明显的极限过程,他们解决这些问题的理念和方法是如此的超前,并且深刻地影响着数学的发展。 化圆为方问题是古希腊数学家欧多克索斯提出的,后来以“穷竭法”而得名的方法。“穷竭法”的依据是阿基米得公理和反证法。在《几何原本》中欧几里得利用“穷竭法”证明了许多命题,如圆与圆的面积之比等于直径平方比。两球体积之比等于它们的直径的立方比。阿基米德应用“穷竭法”更加熟练,而且技巧很高。并且用它解决了一批重要的面积和体积命题。当然,利用“穷竭法”证明命题,首先要知道命题的结论,而结论往往是由推测、判断等确定的。阿基米德在此做了重要的工作,他在《方法》一文中阐述了发现结论的一般方法,这实际又包含了积分的思想。他在数学上的贡献,奠定了他在数学史上的突出地位。 作图问题的研究与终结。欧几里得在《原本》中谈了正三角形、正方形、正五边形、正六边形、正十五边形的作图,未提及其他正多边形的作法。可见他已尝试着作过其他正多边形,碰到了“不能”作出的情形。但当时还无法判断真正的“不能作”,还是暂时找不到作图方法。 高斯并未满足于寻求个别正多边形的作图方法,他希望能找到一种判别准则,哪些正多边形用直尺和圆规可以作出、哪些正多边形不能作出。也就是说,他已经意识到直尺和圆规的“效能”不是万能的,可能对某些正多边形不能作出,而不是人们找不到作图方法。1801

《几何原本》读后感

万物皆有秩序 ——《几何原本》读后感 几何,是空间之秩序,是物质之规律,是造化之解析,是宇宙之始基,是逻辑之诗篇,是理性之美感。——题记 几何证明的引入,是初中数学的一个分水岭,许多同学的成绩出现了明显的下滑,也逐渐产生了对数学的恐惧,这不再只是一门计算的课程,而要开始与那些老师口中“大同小异”但学生眼中“大相径庭”的各类几何图形作斗争。学生们把对几何的困惑归结为“没感觉”,甚至开始有了遇到几何题就放弃的思想;一些家长也开始“妖魔化”几何,在孩子还没学几何时就开始不断吓唬他们:“不要以为数学很简单,等以后学了几何就困难了”云云。那究竟几何是否真的如此难学?还有无挽回学生学习几何的热情的可能?我想回到几何学的本源,从两千多年前伟大的数学家欧几里得的巨著《几何原本》中去寻找答案。 欧几里得,是一个熟悉的名字,常常出现在与数学有关的各个角落,我也曾在课堂上为学生演示“勾股定理”的证明时,使用过“欧几里得证法”;这也是一个陌生的名字,他的生平已经失传,仅存的著作便是这部《几何原本》,但仅凭这部著作便足以让他被冠以“几何之父”的头衔。 中国古代的数学体系以算术、代数为主,重视应用,如《九章算术》提出的谷物粮食按比例分配的算法、如何解决合理摊派赋税等问题。而古希腊的数学体系脱胎于哲学,对计算类问题涉及不深,旨在寻找宇宙的基本构成和数量关系。也许是因为古希腊的数学家们在面对浩瀚的星空时感受到了自身的渺小,所以想藉由建立起物质与精神世界的确定体系来获得些许自信。于是通过自明的简单公理进行演绎推理得出结论的方法诞生了,逻辑的三段论由亚里士多德提出,并被欧几里得应用于实际知识体系构建,这也是我们现在所运用的几何证明的推理演绎法的起源。 书中提出了五条公设和五条公理,这些都是无需证明的显在事实,如“凡直角都相等”、“整体大于部分”……这些都不需要什么数学基础,只要稍有生活常识的人都很明了。就是靠着这些简单的基础原理,通过演绎推理的方法,在本书中论证了465个命题。我在此不愿过多赘述这些论证的过程,因为这并不是一本数学教本,我更愿把它作为一本建立秩序的书。万物都要依托空间而存在,《几何原本》是一部建立空间秩序最久远的方案之书,也意味着为万物的秩序建立树立了标榜。 几何中的空间秩序是客观存在的,欧几里得不满足于发现这些秩序,更试图去证明这些秩序的正确性。我们生活中常有这样的现象:我们常被告知要遵守某些秩序,但在不明就里时我们会有一种抵触情绪;一旦我们了解了这些秩序的由来或原因后,往往会更愿意遵守。一个简单的例子,有些国家习惯靠左行,有些国家习惯靠右行,仅仅以“因为大家都这样所以你也要这样”来解释实在太牵强,一些人尤其是孩子就不容易接受。如果告诉了他们英国人靠右行因为骑士骑马习惯左脚先上马镫,所以要靠路左上马;而法国本来也是这个习惯,后来拿破仑大革命后,为了彻底打破贵族习俗,开创了靠右行的习惯并沿用至今,那么知道这些后,有理可循,自然更容易接受这些秩序。所以有理有据的秩序才更容易被人接受,这个道理早在两千多年前就被欧几里得表述在了《几何原本》中。再联系到我们几何的教学,一些学生记不住定理或者不会用定理,也许也是因为在学习定理的初始阶段,没有向他们阐述清楚定理证明的过程,对定理的证明理解得越透彻,也就会越理解在怎样的情况下更适合运用哪些定理。先学会证明定理,再学会应用它,这就是学习几何的秩序。 每个人都有求知欲、都有探索客观世界的意愿、都有对美的向往,因此不应该有人对几

欧几里得与欧几里得几何

欧几里得与欧几里得几何 亚历山大里亚的欧几里得(约公元前330年—前275年),古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。 欧几里得是古希腊著名数学家、欧氏几何学的开创者。欧几里得生于雅典,当时雅典就是古希腊文明的中心。浓郁的文化气氛深深地感染了欧几里得,当他还是个十几岁的少年时,就迫不及待地想进入“柏拉图学园”学习。他在有攀滋入学园之后,便全身心地沉潜在数学王国里。他潜心求索,以继器粕拉图的学术为奋斗目标,除此之外,他哪儿也不去,什么也不干。熬翻阅和研究了柏拉图的所有著作和手稿,可以说,连柏拉图的亲传攀擎也没有谁能像他那样熟悉柏拉图的学术思想、数学理论。经过对柏拉图思想的深入探究,他得出结论:图形是神绘制的,所有一切籀象的逻辑规律都体现在图形之中。因此,对智慧的训练,就应该从戡图形为主要研究对象的几何学开始。他确实领悟到了柏拉图思想的要旨,并开始沿着柏拉图当年走过的道路,把几何学的研究作为自醺羽主要任务,并最终取得了世人敬仰的成就。 最早的几何学兴起于公元前7年的古埃及,后经古希腊等人传到古希腊的都城,又借毕达哥拉斯学派纂糯典。在欧几里得以前,人们已经积累了许多几何学的知识,然黔这些知识当中,存在一个很大的缺点和不足,就是缺乏系统性。大多数是片断、零碎的知识,公理与公理之问、证明与证明之间并没有什么很强的联系性,更不要说对公式和定理进行严格的逻辑论证和说明。因此,随着社会经济的繁荣和发展,特别是随着农林畜牧业的发展、土地开发和利用的增多,把这些几何学知识加以条理化和系统化,成为一整套可以自圆其说、前后贯通的知识体系,已经是刻不容缓,成为科学进步的大势所趋。欧几里得通过早期对柏拉图数学思想,尤其是几何学理论系统而周详的研究,已敏锐地察觉到了几何学理论的发展趋势。他下定决心,要在有生之年完成这一工作。为了完成这一重任,欧几里得不辞辛苦,长途跋涉,从爱琴海边的雅典古城,来到尼罗河流域的埃及新埠—亚历山大城,为的就是在这座新兴的,但文化蕴藏丰富的异域城市实现自己的初衷。在此地的无数个日日夜夜里,他一边收集以往的数学专著和手稿,向有关学者请教,一边试着著书立说,阐明自己对几何学的理解,哪怕是尚肤浅的理解。经过欧几里得忘我的劳动,终于在公元前300年结出丰硕的果实,这就是几经易稿而最终定形的《几何原本》一书。这是一部传世之作,几何学正是有了它,不仅第一次实现了系统化、条理化,而且又孕育出一个全新的研究领域——欧几里得几何学,简称欧氏几何。 不朽的平面几何学著作 《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作。传到今天的欧几里得著作并不多,然而我们却可以从这部书详细的写作笔调中,看出他真实的思想底蕴。 全书共分13卷。书中包含了5条“公理”、5条“公设”、23个定义和467个命题。在每一卷内容当中,欧几里得都采用了与前人完全不同的叙述方式,即先提出公理、公设和定义,然后再由简到繁地证明它们。这使得全书的论述更加紧凑和明快。而在整部书的内容安排上,也同样贯彻了他的这种独具匠心的安排。它由浅到深,从简至繁,先后论述了直边形、圆、比例论、相似形、数、立体几何以及穷竭 法等内容。其中有关穷竭法的讨论,成为近代微积分思想的来源。仅仅从这些卷帙的内容安排上,我们就不难发现,这部书已经基本囊括了几何学从公元前7世纪的古埃及,一直到公元前4世纪——欧几里得生活时期——前后总共400多年的数学发展历史。这其中,颇有代表性的便是在第1卷到第4卷中,欧几里得对直边形和圆的论述。正是在这几卷中,他总结和发挥了前人的思维成果,巧妙地论证了毕达哥拉斯定理,也称“勾股定理”。即在一直角三角形中,斜边上的正方形的面积等于两条直角边上的两个正方形的面积之和。他的这一证明,从此确定了勾股定理的正确性并延续了2000多年。《几何原本》是一部在科学史上千古流芳的巨著。它不仅保存了许多古希腊

几何原本读后感

几何原本读后感 《几何原本》是古希腊数学家欧几里得的一部不朽之作,大约成书于公元前 300 年左右,下面是关于几何原本读后感的内容,欢迎阅读! 几何原本读后感1 读《几何原本》的作者欧几里得能够代表整个古希腊人民,那么我可以说,古希腊是古代文化中最灿烂的一支——因为古希腊的数学中,所包含的不仅仅是数学,还有着难得的逻辑,更有着耐人寻味的哲学。 《几何原本》这本数学著作,以几个显而易见、众所周知的定义、公设和公理,互相搭桥,展开了一系列的命题:由简单到复杂,相辅而成。其逻辑的严密,不能不令我们佩服。 就我目前拜访的几个命题来看,欧几里得证明关于线段“一样长”的题,最常用、也是最基本的,便是画圆:因为,一个圆的所有半径都相等。一般的数学思想,都是很复杂的,这边刚讲一点,就又跑到那边去了;而《几何原本》非常容易就被我接受,其原因大概就在于欧几里得反复运用一种思想、使读者不断接受的缘故吧。 不过,我要着重讲的,是他的哲学。 书中有这样几个命题:如,“等腰三角形的两底角相等,将腰延长,与底边形成的两个补角亦相等”,再如,“如果在一个三角形里,有两个角相等,那么也有两条边相等”。这

些命题,我在读时,内心一直承受着几何外的震撼。 我们七年级已经学了几何。想想那时做这类证明题,需要证明一个三角形中的两个角相等的时候,我们总是会这么写:“因为它是一个等腰三角形,所以两底角相等”——我们总是习惯性的认为,等腰三角形的两个底角就是相等的;而看《几何原本》,他思考的是“等腰三角形的两个底角为什么相等”。想想看吧,一个思想习以为常,一个思想在思考为什么,这难道还不够说明现代人的问题吗? 大多数现代人,好奇心似乎已经泯灭了。这里所说的好奇心不单单是指那种对新奇的事物感兴趣,同样指对平常的事物感兴趣。比如说,许多人会问“宇航员在空中为什么会飘起来”,但也许不会问“我们为什么能够站在地上而不会飘起来”;许多人会问“吃什么东西能减肥”,但也许不会问“羊为什么吃草而不吃肉”。 我们对身边的事物太习以为常了,以致不会对许多“平常”的事物感兴趣,进而去琢磨透它。牛顿为什么会发现万有引力?很大一部分原因,就在于他有好奇心。 如果仅把《几何原本》当做数学书看,那可就大错特错了:因为古希腊的数学渗透着哲学,学数学,就是学哲学。 哲学第一课:人要建立好奇心,不仅探索新奇的事物,更要探索身边的平常事,这就是我读《几何原本》意外的收获吧!

简述三大几何难题

三大几何难题 古希腊是世界数学史上浓墨重彩的一笔,希腊数学的成就是辉煌的,它为人类创造了巨大的精神财富。其中,几何是希腊数学研究的重心,柏拉图在他的柏拉图学院的大门上就写着“不懂几何的人,勿入此门”。历史上第一个公理化的演绎体系《几何原本》阐述的也基本上为几何内容。 古希腊的几何发展得如此繁荣,但有一个问题一直没有得到解决,那就是著名的尺规作图三大难题。它们分别是化圆为方、三等分任意角以及倍立方问题。这三个问题首先是“巧辨学派”提出并且研究的,但看上去很简单的三个问题,却困扰了数学家们两千多年之久。 这些问题的难处,是作图只能用直尺和圆规这两种工具,其中直尺是指只能画直线,而没有刻度的尺。在欧几里得的《几何原本》中对作图作了规定,只有圆和直线才被承认是可几何作图的,因此在这本书的巨大影响下,尺规作图便成为希腊几何学的金科玉律。并且,古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值。因此,在作图中对规、矩的使用方法加以很多限制,在这里,就是要在有限的次数中解决这三个问题。化圆为方 圆和正方形都是常见的几何图形,人们自然会联想到可否作一个正方形和已知圆等积,这就是化圆为方问题。 三等分任意角 用尺规二等分一个角很容易就可以作出来,那么三等分角呢?三等分180,90角也很容易,但是60,45等这些一般角可以用尺规作出来吗? 倍立方 关于倍立方问题是起源于一个祭祀问题,第罗斯岛上流行着一种可怕的传染病,一时人心惶惶,不可终日.人们来到阿波罗神前,请求阿波罗神像的指示.阿波罗神给了祈求人这样一个指示:“神殿前有一个正方体祭坛,如果能不改变它的形状而把它的体积增加1倍,那么就能消灭传染病.”人们连夜赶造了一个长、宽、高都比正方体祭坛大一倍的祭坛,可是,那传染病传播得更加厉害了.人们又来到阿波罗神像前祈求.神说:“我要你们增加一倍的是祭坛的体积,你们把长、宽、高都增加1倍,祭坛的体积不是要比原来体积大7倍了吗?”人们绞尽脑汁想找出一个答案,可是始终没有人能解答这个难题. 由三大问题的起源,可以看出,化圆为方和三等分角是人们在已有知识的基础上,向更深层次,更一般的方向去思考、探索,这也是希腊数学的理论性的演绎推理与抽象性的表现。而倍立方则是起源于建筑的需要,这也反应了数学的发展是离不开现实社会的推动的。 三个几何难题提出后,有很多人都为之做了不懈的努力。可以说,但凡是数学史上称得上是数学家的人,都研究过这个问题。由三大难题引出的各种结论与发现也数不胜数,例如割圆曲线、阿基米德螺线等。但这些解法并没有完全遵从尺规作图的要求,因此也不算解决了三大难题。但是由19世纪所证出的三大几何难题的不可解,可以发现,只有冲破尺规的限制才能解决问题。正如很多事情,我们觉得无论如何也找不到解决的办法,就是因为有太多的枷锁罩在我们身上,只有打破这些桎梏,才会豁然开朗,找到一片新天地。 三大几何问题的真正解决是在19世纪解析几何创立之后,人们知道了直线与圆分别是二元一次方程和二元二次方程的轨迹,交点则是方程组的解,因此一个几何量是否能用尺规作出,则是它能否由已知量经过有限次加、减、乘、除、开平方运算得到。那么三大难题就可以转换成代数的语言来表示: 1化圆为方设圆的半径为一个单位,要作一面积等于单位圆的正方形,设这个正方形连长为x,则x2=π.集能否用尺规作出一条长为π的线段?

世界数学发展史

第一节数学发展的主要阶段 2009-10-12 10:05:28 来源:中外数学网浏览:7次 乔治·萨顿曾说过:“科学史是人类认识自然的经验的历史回顾。”数学史是数学发展历史的回顾,它研究数学产生发展的历史过程,探求其发展的规律。研究数学史,可以通过历史留下的丰富材料,了解数学何时兴旺发达,何时停滞衰退,从中总结经验教训,以利于数学更进一步的发展。关于数学发展史的分期,一般来说,可以按照数学本身由低级到高级分阶段进行,也就是分成四个本质不同的发展时期,每一新时期的开始都以卓越的科学成就作标志,这些成就确定了数学向本质上崭新的状态过渡.这里我们主要介绍世界数学史的发展。 一、数学的萌芽时期 这一时期大体上从远古到公元前六世纪.根据目前考古学的成果,可以追溯到几十万年以前.这一时期可以分为两段,一是史前时期,从几十万年前到公元前大约五千年;二是从公元前五千年到公元前六世纪. 数学萌芽时期的特点,是人类在长期的生产实践中,逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识.由于土地丈量和天文观测的需要,几何知识初步兴起,但是这些知识是片断和零碎的,缺乏逻辑因素,基本上看不到命题的证明.这个时期的数学还未形成演绎的科学. 这一时期对数学的发展作出贡献的主要是中国、埃及、巴比伦和印度.从很久以前的年代起,我们中华民族勤劳的祖先就已经懂得数和形的概念了. 在漫长的萌芽时期中,数学迈出了十分重要的一步,形成了最初的数学概念,如自然数、分数;最简单的几何图形,如正方形、矩形、三角形、圆形等.一些简单的数学计算知识也开始产生了,如数的符号、记数方法、计算方法等等.中小学数学中关于算术和几何的最简单的概念,就是在这个时期的日常生活实践基础上形成的. 总之,这一时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段. 二、初等数学时期 从公元前六世纪到公元十七世纪初,是数学发展的第二个时期,通常称为常量数学或初等数学时期.这一时期也可以分成两段,一是初等数学的开创时代,二是初等数学的交流和发展时代. 1.初等数学的开创时代. 这一时代主要是希腊数学.从泰勒斯(Thales,公元前636—前546)到公元641年亚历山大图书馆被焚,前后延续千余年之久,一般把它划分为以下几个阶段: (1)爱奥尼亚阶段(公元前600—前480年); (2)雅典阶段(公元前480—前330年); (3)希腊化阶段(公元前330—前200年); (4)罗马阶段(公元前200—公元600年). 爱奥尼亚阶段的主要代表有米利都学派、毕达哥拉斯(Pythagoras,公元前572—前497)学派和巧辩学派.在这个阶段上数学取得了极为重要的成就,其中有:开始了命题的逻辑证明,发现了不可通约量,提出了几何作图的三大难题——三等分任意角、倍立方和化圆为方,并且试图用“穷竭法”去解决化圆为方的问题.所有这些成就,对数学后来的发展产生了深远的影响. 雅典阶段的主要代表有柏拉图(Plato,公元前427—前347)学派、亚里斯多德(Aristotle,公元前384—前322)的吕园学派、埃利亚学派和原子学派.他们在数学上取得的成果,十分令人赞叹,如柏拉图强调几何对培养逻辑思维能力的重要作用;亚里斯多德建立了形式逻辑,并且把它作为证明的工具.所有这些成就把数学向前推进了一大步. 上述两个阶段称为古典时期.这一时期的数学发展,在希腊化阶段上开花结果,取得了

几何原本48个命题

48个几何命题 1.在一个已知有限直线上作一个等边三角形。 2.由一个已知点(作为端点)作一线段等于已知线段。 3.已知两条不相等的线段,试由大的上边截取一条线段使它等于另外一条。 4.如果两个三角形有两边分别等于两边,而且这些相等的线段所夹的角相等,那么,它们的底边等于底边,三角形全等于三角形,而且其余的角等于其余的角,即那等边所对的角。 5.在等腰三角形中,两底角彼此相等;并且,若向下延长两腰,则在底以下的两角也彼此相等。 6.如果在一个三角形中,有两角彼此相等,则等角所对的边也彼此相等。 7.在已知线段上(从它的两个端点)作出相交于一点的二线段,则不可能在该线段(从它的两个端点)的同侧作出相交于另一点的另二条线段,使得作出的二线段分别等于前面二线段。即每个交点到相同端点的线段相等。 8.如果两个三角形的一个有两边分别等于另一个的两边,并且一个的底等于另一个的底,则夹在等边中间的角也相等。 9.一个角可切分成两个相等的角。 10.一条线段可以被分成两条相等的线段。 11.由已知直线上一已知点可以作一直线和已知直线成直角。 12.由已知直线外一已知点可以作该直线的垂线。 13.一条直线和另一条直线所交成的邻角,或者是两个直角或者它们等于两个直角的和。 14.如果过任意直线上点有两条直线不在这一直线的同侧,且和直线所成邻角和等于二直角,则这两条直线在同一直线上。 15.如果两直线相交,则它们交成的对顶角相等。 16.在任意的三角形中,若延长一边,则外角大于任何一个内对角。 17.在任何三角形中,任何两角之和小于两直角。 18.在任何三角形中,大边对大角。 19.在任何三角形中,大角对大边。 20.在任何三角形中,任意两边之和大于第三边。 21.如果由三角形的一条边的两个端点作相交于三角形内的两条线段,由交点到两端点的线段的和小于三角形其余两边的和。但是,其夹角大于三角形的顶角。 22.试由分别等于已知三条线段的三条线段作一个三角形:在这样的三条已知线段中,任二条线段之和必须大于另外一条线段。 23.在已知直线和它上面一点,作一个角等于己知角。 24.如果两个三角形中,一个的两条边分别与另一个的两条边相等,且一个的夹角大于另一个的夹角,则夹角大的所对的边也较大。

几何《原本》简介.

几何《原本》简介 欧几里得(Euclid,希腊人,生于公元前300年前后),著名的数学家. 欧几里得以数学经典名著几何《原本(Elements)》闻名于世.但他的生平后世所知并不多,从一些典籍中知道他是托勒密一世时代的人(公元前323—公元前285在位),他对柏拉图(Plato,公元前427—前347)的学说颇有研究,曾给托勒密讲授几何学.当托勒密问他说,除了几何原本之外,还有没有什么学习几何的快捷方式时,他说出了“几何无王者之道!”(“There is no royal road to geometry.”)的千古名言. 几何原本前6卷讲几何,7至10卷是用几何方式来叙述数论,其余各卷也是几何,基本上一本几何书.它的内容和中国传统的算学书大异其趣,为了区别起见,所以应创新词来代表,由于“几何”二字既和geometric的字音相近,又反映了数量大小的意思,采用它可以音意兼顾. 第1卷,首先给出23个定义.如“点是没有部分的”,“线只有长度而没有宽度”等,以及平面、直角、垂直、锐角、钝角、平行线等定义.接着是5个公设,前4个是显而易见的,第5个就很复杂:“一直线与两直线相交,所构成的同侧内角和若小于两直角,则这两直线延长后一定会在这两个同侧内角的那一侧相交”,这就是后来引起许多纠纷的“欧几里得平行公设”或简称第5公设.公设之后有5个公理,之后给出48个命题.第47命题就是著名的勾股定理:“直角三角形斜边上的正方形等于两股上正方形的和”.第2卷,包括14个命题,用几何的语言叙述代数的恒等式.第11命题是分线段为中末比,也就是后来所称的黄金分割;第12、13命题相当于余弦定理. 第3卷,包含37个命题,讨论圆、弦、切线、圆周角、圆内接四边形及与圆有关的图形. 第4卷,有16个命题,包括圆内接与外切三角形、正方形的研究,及圆内接正多边形(5边、10边、15边)的作图. 第5卷,比例论,有25个命题. 第6卷,把第5卷中已建立的理论用到平面图形上,共33个命题. 第7、8、9卷,这三卷是数论,分别有39、27、36个命题,完全用几何的方法来叙述.第7卷,第1命题是欧几里得辗转相除法的出处.第9卷第20命题是数论中的欧几里得定理:“质数的个数有无限多.” 第10卷,包含115个命题,分量占全书的四分之一,主要讨论无理量.第1命题“给

几何学发展史简介

“几何”一词,拉丁文是geometric,其源于希腊文ycouerpua(土地测量术)。我国明末科学家徐光启(1562-1637)与意大利传教士利玛窦(R.Matteo,1553- 1610)1607年合译《几何原本》时首次采用。几何学是一门古老而崭新的数学分支,其产生可追溯到距今8000年前的新石器时代。最早始于人类生存及生产的需要,在长期生活、生产实践中,人们逐渐对图形有了一定的认识,形成了一些粗略的几何概念,归纳出一些有关图形的知识和经验,产生了初步的几何。再经历代数学家的提炼和加工,逐渐形成了一门研究现实世界空间形式,即物体形状、大小和位置关系的数学分支,进而发展成为研究一般空间结构的数学分支。 几何学的发展大致经历了4个基本阶段。 1.实验几何的形成与发展 几何学最早的产生可以用“积累几何事实,并企图建立起各个事实间的某种联系”来概括和描述。源于人们观察天体位置、丈量土地、测量容积、制造生产工具等实践活动。据考古资料记载,出土的十万年前的一些器皿上已出现的简略几何图案。相传公元前2000年前大禹治水时,就已经能够使用规和矩等绘图工具进行测量和设计工作。另外,从现存的古埃及、古巴比伦等国的史料可看出,在天文、测量中也大量地反映了几何图形与计算的知识。 然而,这一历史时期,尽管人们在观察实验的基础上积累了丰富的几何经验。 但在现存的史料中,未见这一时期总结出几何知识真实性的推理证明;某些计算公式仅是粗略和近似的;直至公元前7世纪以前,可以说是单纯地由经验积累,通过归纳而产生几何知识的阶段,被称为实验(归纳)几何阶段。 2.理论几何的形成与发展 到了公元前7世纪,随着古埃及、古希腊之间贸易与文化的交流,埃及的几何知识逐渐传入希腊并得到巨大的发展。这一时期,人们对几何知识开始了逻辑推理与论证,古希腊的泰勒斯(Thales,约公元前625一前547)首先证明了“对顶角相等”、“等腰三角形两底角相等”、“半圆上的圆周角是直角”等,因而被人们称为第一位几何学家;毕达哥拉斯(Pythagoras,公元前580一前501)学派首先证明了“三角形内角和等于二直角”、“勾股定理”、“只有五种正多面体”等。特别是柏拉图(Plato,公元前427-前347)学派把形式逻辑的思想方法引入几何学,确立了缜密的定义和明晰的公理作为几何学基础。后来古希腊大数学家欧几里得(Euclid,约公元前330一前275)在前人研究的基础上,按照严密地逻辑公理系统编写成了不朽的巨著《几何原本》13卷,至此理论几何已基本形成。 尽管《几何原本》存在公理不够完善、论证有时借助于直观等不足,但它集古代数学之大成,论证严密,影响深远,所运用的公理化方法为以后的数学发展指出了方向,以至成为整个人类文明发展史上的里程碑、人类文化遗产中的瑰宝。 3.解析几何的产生与发展 公元前3世纪,《几何原本》的出现,为理论几何奠定了基础。与此同时,人们对圆锥曲线也作了一定的研究,发现了圆锥曲线的许多性质。在后来较长时间里,由于封建社会中神学占有统治地位,科学得不到应有的重视,几何学也一直没有得到突破性的进展。直到16世纪随着欧洲文艺复兴运动的发展,生产实际的需要,自然科学才得到迅速发展。法国数学家笛卡儿(R.Descartes,1596-1650)在研究中发现,欧氏几何过分依赖于图形,而代数又完全受公式、法则所左右,他竭力主张几何、代数结合起来取长补短,认为这是促进数学发展的一个新的途径。笛卡儿把以往对立着的两个研究对象“数”与“形”统一起来了,并在数学中引入了变量的概念,从而完成了数学史上一项划时代的变革——解析几何产生

《几何原本》 第一卷《几何基础》

《几何原本》第一卷《几何基础》 23条定义 1、点是没有部分的 2、线只有长度而没有宽度 3、一线的两端是点 4、直线是它上面的点一样地平放着的线 5、面只有长度和宽度 6、面的边缘是线 7、平面是它上面的线一样地平放着的面 8、平面角是在一平面内但不在一条直线上的两条相交线相互的倾斜度. 9、当包含角的两条线都是直线时,这个角叫做直线角. 10、当一条直线和另一条直线交成邻角彼此相等时,这些角的每一个叫做直角,而且称这一条直线垂直于另一条直线。 11、大于直角的角叫钝角。 12、小于直角的角叫锐角 13、边界是物体的边缘 14、图形是一个边界或者几个边界所围成的 15、圆:由一条线包围着的平面图形,其内有一点与这条线上任何一个点所连成的线段都相等。 16、这个点(指定义15中提到的那个点)叫做圆心。 17、圆的直径是任意一条经过圆心的直线在两个方向被圆截得的线段,且把圆二等分。 18、半圆是直径与被它切割的圆弧所围成的图形,半圆的圆心与原圆心相同。(暂无注释,可能是接着17的) 19、直线形是由线段围成的,三边形是由三条线段围成的,四边形是由四条线围成的,多边形是由四条以上线段围成的。 20、在三边形中,三条边相等的,叫做等边三角形;只有两条边相等的,叫做等腰三角形;各边不等的,叫做不等边三角形. 21、此外,在三边形中,有一角是直角的,叫做直角三角形;有一个角是钝角的,叫做钝角三角形;有三个角是锐角的,叫做锐角三角形。 22、在四边形中,四边相等且四个角是直角的,叫做正方形;角是直角,但四边不全相等的,叫做长方形;四边相等,但角不是直角的,叫做菱形;对角相等且对边相等,但边不全相等且角不是直角的,叫做斜方形;其余的四边形叫做不规则四边形. 23、平行直线是在同一个平面内向两端无限延长不能相交的直线. 五条公理

几何发展史

几何发展史 组长:杨锦波高一13班 组员:李晓、梁荣华、徐丽敏、林伟文、梁博文、郭碧云 指导老师:李朗庭 英语摘要 As a middle school student, has learned a good few years of the geometry. However, we geometric understanding of the historical status Have great deficiencies. We do not know its civilization What is the significance, I do not know why we should learn from this class (other That is to the college entrance examination! ), Let us look into its history! However, there are really some massive object, ` Therefore, we only research papers of the guidelines 1、问题提出: 作为一名中学生,已经学了好几年几何了。可是,我们对几何的历史地位的认识有很大的不足。我们不知道它对文明的意义是什么,不知道为什么要学习这门课(别说是为了高考!)那么,就让我们来研究一下它的历史吧!然而对象确实有些庞大,`因此我们的研究论文只是指引性的。 2、研究目的:(三个有助于) (1)有助于对几何的总体的结构认识 (2)有助于认清几何学在人类文明中的地位 (3)有助于文、理科方法的综合(历史和数学) 3、研究方法: (1)搜集资料,阅读文献,记下心得; (2)各组员按上述要求研究,最后由组长汇总; (3)认真分析总结,写成论文. 4、正文 几何史研究 杨锦波

《几何原本》读后感3篇

《几何原本》读后感3篇 《几何原本》读后感一 《几何原本》读后感一 今天我读了一本书,叫《几何原本》。它是古希腊数学家、哲学家欧几里德的一本不朽之作,集合希腊数学家的成果和精神于一书。 《几何原本》收录了原著13卷全部内容,包含了5条公理、5 条公设、23个定义和467个命题,即先提出公理、公设和定义,再由简到繁予以证明,并在此基础上形成欧氏几何学体系。欧几里德认为,数学是一个高贵的世界,即使身为世俗的君主,在这里也毫无特权。与时间中速朽的物质相比,数学所揭示的世界才是永恒的。 《几何原本》既是数学著作,又极富哲学精神,并第一次完成了人类对空间的认识。古希腊数学脱胎于哲学,它使用各种可能的描述,解析了我们的宇宙,使它不在混沌、分离,它完全有别于起源并应用于世俗的中国和古埃及数学。它建立起物质与精神世界的确定体系,致使渺小如人类也能从中获得些许自信。 本书命题1便提出了如何作等边三角形,由此产生了三角形全等定理。即角、边、角或边、角、边或边、边、边相等,并进一步提出了等腰三角形——等边即等角;等角即等边。就这样欧几里德分别从点、线、面、角四个部分,由浅入深,提出了自己的几何理论。前面的命题为后面的铺垫;后面的命题由前面的推导,环环相扣,十分严谨。 这本书博大精深,我只能看懂十分之一左右,非常震撼,欧几里

德不愧为几何之父!他就是数学史上最亮的一颗星。我要向他学习,沿着自己的目标坚定的走下去。 《几何原本》读后感二 《几何原本》读后感二 《几何原本》的作者欧几里得能够代表整个古希腊人民,那么我可以说,古希腊是古代文化中最灿烂的一支——因为古希腊的数学中,所包含的不仅仅是数学,还有着难得的逻辑,更有着耐人寻味的哲学。 《几何原本》这本数学著作,以几个显而易见、众所周知的定义、公设和公理,互相搭桥,展开了一系列的命题:由简单到复杂,相辅而成。其逻辑的严密,不能不令我们佩服。 就我目前拜访的几个命题来看,欧几里得证明关于线段“一样长”的题,最常用、也是最基本的,便是画圆:因为,一个圆的所有半径都相等。一般的数学思想,都是很复杂的,这边刚讲一点,就又跑到那边去了;而《几何原本》非常容易就被我接受,其原因大概就在于欧几里得反复运用一种思想、使读者不断接受的缘故吧。 不过,我要着重讲的,是他的哲学。 书中有这样几个命题:如,“等腰三角形的两底角相等,将腰延长,与底边形成的两个补角亦相等”,再如,“如果在一个三角形里,有两个角相等,那么也有两条边相等”。这些命题,我在读时,内心 一直承受着几何外的震撼。 我们七年级已经学了几何。想想那时做这类证明题,需要证明一个三角形中的两个角相等的时候,我们总是会这么写:“因为它是一

解析几何的发展简史

绪论 “解析几何”又名“坐标几何”,是几何学的一个分支。解析几何的基本思想是用代数的方法来研究几何问题,基本方法是坐标法。就是通过坐标把几何问题表示成代数形式,然后通过代数方程来表示和研究曲线。它包括“平面解析几何”和“空间解析几何”两部分。前一部分除研究直线的有关性质外,主要研究圆锥曲线(椭圆、抛物线、双曲线)的有关性质。后一部分除研究平面、直线的有关性质外,主要研究二次曲面(椭球面、抛物面、双曲面等)的有关性质。 1.解析几何产生的实际背景和数学条件 解析几何的实际背景更多的是来自对变量数学的需求。解析几何产生数学自身的条件:几何学已出现解决问题的乏力状态;代数已成熟到能足以有效地解决几何问题的程度.解析几何的实际背景更多的是来自对变量数学的需求。从16世纪开始,欧洲资本主义逐渐发展起来,进入了一个生产迅速发展,思想普遍活跃的时代。生产实践积累了大量的新经验,并提出了大量的新问题。可是,对于机械、建筑、水利、航海、造船、显微镜和火器制造等领域的许多数学问题,已有的常量数学已无能为力,人们迫切地寻求解决变量问题的新数学方法。 解析几何产生前的几何学 平面几何,立体几何(欧几里得的《几何原本》),圆锥曲线论(阿波罗尼斯的《圆锥曲线论》),特点:静态的几何, 既不把曲线看成是一种动点的轨迹,更没有给它以一般的表示方法. 几何学出现解决问题的乏力状态 16世纪以后,哥白尼提出日心说,伽利略得出惯性定律和自由落体定律,这些都向几何学提出了用运动的观点来认识和处理圆锥曲线及其他几何曲线的课题.几何学必须从观点到方法来一个变革,创立起一种建立在运动观点上的几何学. 16世纪代数的发展恰好为解析几何的诞生创造了条件.1591年法国数学家韦达第一个在代数中有意识地系统地使用了字母,他不仅用字母表示未知数,而且用以表示已知数,包括方程中的系数和常数.这样,代数就从一门以分别解决各种特殊问题的侧重于计算的数学分支,成为一门以研究一般类型的形式和方程的学问.这就为几何曲线建立代数方程铺平了道路.代数的符号化,使坐标概念的引进成为可能,从而可建立一般的曲线方程,发挥其具有普遍性的方法的作用. 2.解析几何的创立 17世纪前半叶,解析几何创立,其中法国数学家笛卡尔(Descartes,1596-1650)和费尔玛(fermat,1601-1665)作出了最重要的贡献,成为解析几何学的创立者。1637年,笛卡尔发表哲学著作《更好地指导和寻求真理的方法论》(简称《方法论》),《几何学》作为其附录之一发表.笛卡尔的《几何》虽然不像现在的解析几何那样,给读者展现出一个从建立坐标系和方程到研究方程的循序过程,但是他通过具体的实例,确定表达了他的新思想和新方法.这种思想和方法尽管在形式上没有现在的解析几何那样完整,但是在本质上它却是地道的解析几何. 笛卡尔的解析几何有两个基本思想:(1)用有序数对表示点的坐标;(2)把互相关联的两个未知数的代数方程,看成平面上的一条曲线。 费尔玛是一位业余数学家,但他的数学成就在17世纪数学史上非常突出,为微积分、概率论和数论的创立和发展都作出了最重要的贡献。早在笛卡尔的《几何学》发表以前,费尔玛已经用解析几何的方法对阿波罗尼斯某些失传的关于轨迹的证明作出补充.他通过引进坐标,以一种统一的方式把几何问题翻译为代数的语言——方程,从而通过对方程的研究来揭示图形的几何性质.费尔玛所用的坐标系与现在常用的直角坐标系不同,它是斜坐标,而

相关文档