文档库 最新最全的文档下载
当前位置:文档库 › Needleless Electrospinning. I. A Comparison of Cy

Needleless Electrospinning. I. A Comparison of Cy

Needleless Electrospinning. I. A Comparison of Cy
Needleless Electrospinning. I. A Comparison of Cy

Needleless Electrospinning.I.A Comparison of Cylinder and Disk Nozzles

Haitao Niu,Tong Lin,Xungai Wang

Centre for Material and Fibre Innovation,Deakin University,Geelong,Victoria 3217,Australia

Received 2November 2008;accepted 3June 2009DOI 10.1002/app.30891

Published online 12August 2009in Wiley InterScience (https://www.wendangku.net/doc/8a18730446.html,).ABSTRACT:In this study,we demonstrated the needle-less electrospinning of poly(vinyl alcohol)(PVA)nano?bers with two nozzles,a rotating disk and a cylinder,and exam-ined the effect of the nozzle shape on the electrospinning process and resultant ?ber morphology.The disk nozzle needed a relatively low applied voltage to initiate ?ber for-mation,and the ?bers were mainly formed on the top disk edge.Also,the PVA concentration had little in?uence on the disk electrospinning process (up to 11wt %).In compar-ison,the cylinder electrospinning showed a higher depend-ence on the applied voltage and polymer concentration.The ?bers were initiated from the cylinder ends ?rst and then from the entire cylinder surface only if the applied voltage were increased to a certain level.With the same polymer so-lution,the critical voltage needed to generate nano?bers from the disk nozzle was lower than that needed to generate nano?bers from the cylinder.Both electrospinning systems could produce uniform nano?bers,but the ?bers produced from the disk nozzle were ?ner than those from the cylinder when the operating conditions were the same.A thin disk

(8cm in diameter and 2mm thick)could produce nano?b-ers at a rate similar to that of a cylinder of the same diameter but 100times wider (i.e.,20cm long).Finite element analy-sis of electric ?eld pro?les of the nozzles revealed a concen-trated electric ?eld on the disk edge.For the cylinder nozzle,an uneven distribution of the electric ?eld intensity pro?le along the nozzle surface was observed.The ?eld lines were mainly concentrated on the cylinder ends,with a much lower electric ?eld intensity formed in the middle sur-face area.At the same applied voltage,the electric ?eld in-tensity on the disk edge was much higher than that on the cylinder end.These differences in the electric ?eld intensity pro?les could explain the differences in the ?ber ?neness and rate of the nano?bers produced from these two nozzles.These ?ndings will bene?t the design and further develop-ment of large-scale electrospinning systems for the mass

production of nano?bers for advanced applications.V

C 2009Wiley Periodicals,Inc.J Appl Polym Sci 114:3524–3530,2009

Key words:extrusion;?bers;nanotechnology

INTRODUCTION

As a simple and ef?cient nano?ber-making tech-nique,electrospinning has substantial adaptability

for processing a variety of polymers with possible control of the ?ber ?neness,1–4orientation,5surface morphology,6and bicomponent cross-sectional con-?guration.7,8Electrospun nano?bers have enormous application potential in areas as diverse as tissue en-gineering scaffolds,9,10wound healing,11release con-trol,12–14?ltration,15,16reinforcement,17protective clothing,18,19sensors,20,21catalysis,22and energy con-version and storage.23

A conventional electrospinning setup typically comprises a high-voltage power supply,a collector,and a spinneret (or nozzle).24A hollow needle (e.g.,

a syringe needle or glass Pasteur pipette)is normally

used as a nozzle to produce polymer jets/?laments.Because each needle can produce only one polymer jet,needle electrospinning systems have very low productivity (<300mg/h per needle).How to elec-trospin nano?bers on a large scale has been an issue of concern,and further development is warranted to facilitate the commercial application of nano?bers.The main strategy for improving electrospinning production has been based on increasing the number of needle nozzles.25,26However,a multineedle spin-neret needs a large operating space and careful design of the relative spacing between the needles so that strong charge repulsion between the jets and adjacent needles and associated uneven ?ber deposi-tion can be avoided.In addition,using a gas jacket has been reported to enhance the processability of a single-needle nozzle.27,28The gas jacket,however,in?uences the nano?ber morphology and ?neness.Recently,needleless electrospinning setups have been developed.Without a needle nozzle,a number of jets can be generated even from a widely open liquid surface.The pioneering work was reported by Yarin and Zussman,29who used a magnetic ?uid to

Journal of Applied Polymer Science,Vol.114,3524–3530(2009)V C 2009Wiley Periodicals,Inc.Correspondence to:T.Lin (tong.lin@https://www.wendangku.net/doc/8a18730446.html,.au).

Contract grant sponsor:Australian Research Council;contract grant number:ARC LP0776751.

Contract grant sponsor:Deakin University Central Research Grant

scheme.

agitate the uppermost polymer solution to initiate the concurrent production of multiple jets from a?at polymer solution https://www.wendangku.net/doc/8a18730446.html,ter,Jirsak et al.30 described the generation of multiple jets from a liq-uid uploaded on a slowly rotating horizontal cylin-der,which was subsequently commercialized by Elmarco under the brand name Nanospider.In addi-tion,Dosunmu et al.31reported the formation of multiple jets using a tubular plastic foam spinneret. The generation of multiple jets from a needleless spinneret has been explained as follows:the waves of an electrically conductive liquid self-organize on a mesoscopic scale and?nally form jets when the applied electric?eld intensity is above a critical value.32Therefore,the jet initiation and resulting ?ber morphology are highly in?uenced by the elec-tric?eld intensity pro?le around the spinneret and in the electrospinning zone,which is governed by the applied voltage and the shape of the needleless spinneret.Nevertheless,little has been reported in the literature on how the applied voltage and nozzle structure in?uence the needleless electrospinning

process and resulting?ber morphology.

In this article,we report the electrospinning of poly(vinyl alcohol)(PVA)with two different needle-less nozzles,a cylinder and a disk.In comparing the electrospinning process and as-spun?ber morphology, we have found that the disk nozzle requires a lower applied voltage in electrospinning to initiate jets/?la-ments than the cylinder nozzle,and the?bers electro-spun from the disk nozzle are?ner than those from the cylinder nozzle.These differences are discussed in terms of differences in the electric?eld intensity pro?le between the two electrospinning systems.

EXPERIMENTAL

Materials and measurement

PVA(weight-average molecular weight?146,000–186,000,98–99%hydrolyzed)was obtained from Aldrich(USA)and used as received.A PVA solution was prepared by the dissolution of PVA in distilled water followed by vigorous stirring for6h at85 C.The PVA concentration was in the range of8.0–11.0wt%. The?ber morphologies were observed by scan-ning electron microscopy(SEM;S440,Leica,Cam-bridge,England),and the average?ber diameters were calculated on the basis of the SEM images with image analysis software(ImagePro Plus 4.5).The electric?elds were calculated by the?nite element method with the program FEMLAB3.4. Electrospinning

Figure1illustrates the needleless electrospinning setups,which contained a rotary aluminum spin-neret(disk or cylinder),a Te?on solution vessel,a high-voltage direct-current power supply(ES50P-20 W/DAM,Gamma High Voltage Research,USA), and a grounded drum collector.The cylinder nozzle was20cm long and8cm in diameter,whereas the disk nozzle had the same diameter as the cylinder, but the thickness was2mm.The edges of both the cylinder and disk were beveled,and the radius of the beveled curve was about5mm.

During electrospinning,the vessel was?lled with the PVA solution so that nearly half of the spinneret was immersed in the polymer solution,and the unimmersed part of the spinneret was covered with a thin layer of the PVA solution via rotation.When the PVA solution was charged with a high electrical voltage via a copper wire inside the solution vessel, numerous jets/?laments were generated from the spinneret,which were deposited on the rotating drum collector.With the rotation of the spinneret, the PVA solution was loaded onto the spinneret sur-face constantly,and this led to the continuous gener-ation of polymer jets/?laments.

RESULTS AND DISCUSSION

The electrospinning processes for both the cylinder and disk electrospinning systems are also demon-strated in Figure1.During electrospinning,a num-ber of jets were observed to be generated simultaneously from both nozzles,and the formation of jets/?laments was in?uenced by the spinneret rotating speed,the applied voltage,and the polymer

concentration.

Figure1Apparatuses for disk and cylinder electrospin-ning and photos of the two electrospinning processes. [Color?gure can be viewed in the online issue,which is available at https://www.wendangku.net/doc/8a18730446.html,.]

NEEDLESS ELECTROSPINNING.I3525

Journal of Applied Polymer Science DOI10.1002/app

The spinneret rotating speed affected the loading of the PVA solution on the nozzle surface.When the rotating speed was less than 20rpm,uneven solu-tion coverage became apparent,and jets could not be generated continuously.Higher rotating speeds,in the range of 40–50rpm,enabled the nozzle sur-face to be covered evenly with a thin layer of the PVA solution,and jets/?laments were thus gener-

ated in a continuous way.However,further increas-ing the rotating speed could throw the polymer solution off the spinneret.

The applied voltage is a very important parameter affecting the formation of jets/?laments.For the disk nozzle,no jet was formed when the applied voltage was lower than 42kV.When the applied voltage was higher than such a critical voltage,the jets were generated mainly on the edge side of the disk,about 5mm in width.Increasing the applied voltage showed little in?uence on the electrospinning pro-cess until the voltage reached 62kV,above which the working current in the power supply was too high to allow normal operation of the power supply.In comparison,electrospinning using the cylinder nozzle showed a higher dependence on the applied voltage.The critical applied voltage for generating jets from the cylinder nozzle was about 47kV.De-spite the high applied voltage,the jets were just gen-erated from two end areas (ca.2cm wide)on the cylinder surface.A few jets were also observed to be produced on two sides of the cylinder.There was no jet/?lament produced from the middle cylinder sur-face until the applied voltage was above 57kV.Fur-ther increasing the applied voltage led to the generation of jets from the entire cylinder surface,as illustrated in Figure 1.

Besides the electrospinning process,the ?ber morphology was also in?uenced by the applied volt-age.The SEM images of nano?bers electrospun by both the cylinder and disk systems from 9.0wt %PVA solutions under different applied voltages are shown in Figure 2.The average ?ber diameters cal-culated on the basis of the SEM images are given in Figure 3(a).

Nano?bers electrospun from the disk nozzle showed a bead-free ?brous structure.With an increase in the applied voltage from 47to 62kV,the average ?ber diameter was reduced from 340to 194nm,and the diameter distribution became narrower also.For the cylinder nozzle,the average

?ber

Figure 2SEM images of the PVA nano?bers electrospun by disk and cylinder nozzles under different applied vol-tages (PVA concentration ?9.0wt %,spinning distance ?13cm).(At 47and 52kV,the ?bers were generated only from the cylinder

ends).

Figure 3Dependence of the average ?ber diameter on the (a)applied voltage (PVA ?9wt %,collecting distance ?13cm)and (b)PVA concentration (collecting distance ?13cm,applied voltage ?57kV).3526NIU,LIN,AND WANG

Journal of Applied Polymer Science DOI 10.1002/app

diameter and diameter distribution showed a very small dependence on the applied voltage.The varia-tion of the applied voltage between 47and 62kV led to little change in the ?ber diameter and distri-bution,although the ?bers were produced at the cyl-inder ends only when the applied was lower than 57kV.At the same applied voltage,the nano?bers electrospun from the disk nozzle were slightly ?ner than those from the cylinder nozzle,and the higher the applied voltage was,the ?ner the ?bers were that were produced by the disk nozzle.

The distance between the spinneret and collector also in?uenced the electrospinning process and ?ber morphology.It was noticed that the distance between the nozzle and collector for the disk electro-spinning system could be adjusted between 11and 19cm.A shorter spinning distance led to wet ?bers that merged into a polymer ?lm on the collector,whereas a longer spinning distance resulted in stop-page of electrospinning because of a weak electric ?eld.For the cylinder electrospinning system,the range of electrospinning distances was narrower (11–15cm).

The polymer concentration was an important fac-tor affecting the electrospinning process and ?ber morphology.33With the applied voltage of 57kV,the nano?bers electrospun from both systems showed an increased ?ber diameter with the increase in the PVA concentration.The as-spun ?bers from the disk nozzle had ?ner ?bers with a much narrower diameter distribution than those from the cylinder nozzle [Fig.3(b)].

The electrospinning process with the cylinder noz-zle was highly in?uenced by the polymer concentra-tion.When the PVA concentration was below 9.0wt %,nano?bers were electrospun from the whole cyl-inder surface if the applied voltage was greater than 52kV.When the PVA concentration was larger than 9.0%,the higher solution viscosity (>1620cP)resulted in stoppage of electrospinning from the middle cylinder surface,although the nano?bers were still spun by the cylinder ends.However,nano?bers could still be generated from the middle cylinder surface if a higher applied voltage was employed.Also,a higher PVA concentration led to a reduction in the ?ber-generating zone at the cylinder ends.In comparison,the nano?bers electrospun from the disk nozzle showed a lower dependence on the PVA concentration.When the PVA concentration was in the range of 8.0–11.0wt %,the solution could always be electrospun by the disk nozzle.

The productivity of cylinder electrospinning was in?uenced by the applied voltage and polymer con-centration.As shown in Figure 4,with the increase in the applied voltage,the production rate increased for both electrospinning systems.At a high applied voltage,the productivities of the two electrospinning systems were very similar,although the cylinder nozzle was 100times longer (wider)than the disk nozzle.Under the same applied voltage (57kV),with the increase in the polymer concentration,the productivity of disk electrospinning increased con-stantly,whereas for the cylinder electrospinning system,the productivity increased initially but de-creased when the PVA concentration was greater than 9wt %.The reason for the reduced productiv-ity at the increased PVA concentration was the high solution viscosity,which restricted jet/?lament formation.

To understand these experimental results,the elec-tric ?eld pro?les around the nozzle surface and in the electrospinning zone (from the tip of the spin-neret to the collector)were calculated by ?nite ele-ment analysis.As shown in Figure 5(a,b),the disk nozzle possessed a different electric ?eld pro?le than the cylinder nozzle.The ?eld lines around the disk nozzle were concentrated on the top peripheral edge area.However,the electric ?eld on the cylinder was concentrated on the cylinder ends.

The electric ?eld intensity along the cylinder sur-face is shown in Figure 6(a).A high electric ?eld in-tensity was formed at the cylinder end areas,and the intensity decreased gradually toward the middle surface.Because the jet initiation was

highly

Figure 4Productivity of the nano?bers under different (a)applied voltages (PVA ?9wt %)and (b)PVA concentrations (applied voltage ?57kV).

NEEDLESS ELECTROSPINNING.I 3527

Journal of Applied Polymer Science DOI 10.1002/app

determined by the electric?eld intensity around the nozzle surface,the areas with higher electric?eld in-tensity generated nano?bers more easily.The higher electric?eld intensity at the cylinder ends versus the middle cylinder surface could be the main reason that the jets/?laments were generated only from the ends of the cylinder surface when the applied volt-age was low.For the disk nozzle,the highest electric ?eld intensity was on the top edge of the disk,and the electric?eld intensity decayed from the top disk edge toward the liquid surface[Fig.6(b)].With the increase in the applied voltage,the electric?eld in-tensity increased on the surface.

On the basis of the experimental?nding that the jets started to generate on the disk edge when the applied voltage was higher than42kV,the lowest surface electric?eld intensity that could initiate the formation of jets on the disk nozzle could

be

Figure6Electric?eld intensity along the(a)surface of the cylinder,(b)surface of the disk under different applied vol-tages,and(c)electrospinning direction[nozzle(0,0),collector(0,13),applied voltage?57kV].[Color?gure can be viewed in the online issue,which is available at

https://www.wendangku.net/doc/8a18730446.html,.]

Figure5Electric?eld pro?le around the(a)cylinder nozzle and(b)disk nozzle.[Color?gure can be viewed in the online issue,which is available at https://www.wendangku.net/doc/8a18730446.html,.]

3528NIU,LIN,AND WANG Journal of Applied Polymer Science DOI10.1002/app

calculated to be5kV/cm.A similar value could also be obtained from the cylinder nozzle on both end and middle surfaces.Therefore,5kV/cm could be the critical electric?eld intensity at which the sur-face could electrospin nano?bers with a9.0wt% PVA solution.

Figure6(c)shows the electric?eld intensity pro?le from the nozzle surface to the collector.For the disk system,the electric?eld near the tip of the disk decayed rapidly in the?rst few centimeters away from the spinneret and stabilized toward the collec-tor.For the cylinder nozzle,only the cylinder ends showed an electric?eld pro?le similar to that of the disk nozzle,but the electric?eld intensity was lower than that at the disk edge.The electric?eld intensity at the middle cylinder surface was far lower than that at the cylinder ends,and the electric?eld inten-sity decayed slowly toward the collector.

As the electric?eld is the main driving force to initiate the formation of a polymer jet,34a polymer solution charged by an electric?eld of a higher in-tensity can more easily generate jets,and the jets should be stretched under stronger forces,thus pro-ducing?ner?bers.The uneven distribution of the electric?eld intensity along the cylinder nozzle sur-face leads to coarser nano?bers generated from the middle cylinder surface in comparison with those produced from the cylinder ends.As a result of ?bers being collected from the entire cylinder nozzle, the nano?bers have a wide diameter distribution, and the average?ber diameter is less affected by the applied voltage.In comparison,the distribution of the electric?eld intensity on the top disk edges is sharper and narrower,resembling that at the cylin-der ends,albeit higher in intensity;this leads to?ner ?bers with a narrower diameter distribution,and the average diameter shows an apparent dependence on the applied voltage.

The electric?eld also functions to overcome the frictional forces that act within the moving polymer solution and to accelerate?lament movement toward the collector electrode.This is why a higher electric ?eld can cause higher mass?ow to be electrospun and hence greater?ber productivity.35,36In the case of electrospinning with a rotating nozzle,in which a thin layer of the polymer solution is electrospun,the rapid removal of the polymer solution from the lim-ited volume of the polymer solution in the?ber-generating zone results in a thinner solution layer on the nozzle surface.The additional resistance from the solid–liquid boundary layer effect becomes an impor-tant factor retaining the surface solution.

If the electric?eld is strong enough,the mass?ow will be controlled mainly by the?uid thickness and the boundary layer resistance induced by the mass transfer.Under the same operating conditions,a more viscous solution tends to form a thicker solu-tion layer on the nozzle surface.The increased solu-tion volume in the?ber-generating area helps to reduce the boundary layer resistance,resulting in higher mass?ow.On the contrary,the higher solu-tion viscosity also leads to a reduction in mass?ow. The two opposite trends could make the mass?ow remain unchanged,and this can be demonstrated by disk electrospinning.Although the?ber productivity for disk electrospinning increased with the PVA con-centration,the mass?ows,calculated on the basis of the production rate,were quite similar,in the range of68–70mL/h,for the three polymer solutions(9.0, 10.0,and11.0%).

In comparison,if the electric?eld is just above the critical value needed to initiate jet formation,the low mass?ow will leave a thicker solution layer on the nozzle surface.In this case,the boundary layer resistance is weaker,and the solution viscosity dom-inates the mass?ow.Increasing the solution viscos-ity will decrease the jet number,and this will result in lower mass?ow and productivity.This should be the main reason that the?ber productivity for cylin-der electrospinning decreases with an increase in the polymer concentration.

CONCLUSIONS

In this work,we have demonstrated that PVA nano-?bers can be electrospun from the surfaces of a rotat-ing metal disk and a cylinder.For the disk electrospinning,nano?bers were mainly produced from the disk edge area,and the voltage for initiating the electrospinning process was42kV(9.0wt% PVA).With the increase in the applied voltage,the disk-spun nano?bers became?ner with a narrower diameter distribution.In comparison,nano?bers from the cylinder nozzle were mainly produced from the cylinder surface,but the area in which the nano-?bers were generated was highly dependent on the applied voltage and the polymer concentration. When the applied voltage was above a critical value, nano?bers started to be generated at the cylinder end areas.Only at a higher applied voltage could the nano?bers be generated from the entire cylinder sur-face.With increased polymer concentration,a higher critical voltage was necessary to initiate nano?bers from the cylinder surface because of increased solu-tion viscosity.For the same polymer solution(9.0wt %PVA),the critical voltage for the generation of polymer jets from the cylinder end was47kV,and the critical voltage for producing polymer jets from

by the cylinder nozzle showed a similar?neness and diameter distribution.Under the same operating con-ditions,nano?bers generated from the disk nozzles

NEEDLESS ELECTROSPINNING.I3529

Journal of Applied Polymer Science DOI10.1002/app

were?ner with a narrower distribution than those produced by the cylinder.

The?ber productivity increased with the applied voltage for both electrospinning systems.Although the disk nozzle took much less space than the cylin-der nozzle of the same diameter,the production rates of the two needleless electrospinning systems were similar.

By analyzing the electric?eld around the nozzles and in the electrospinning zone,we observed that the disk electrospinning had a much different elec-tric?eld pro?le than the cylinder one.For the disk nozzle,the?eld lines were mainly concentrated on the disk edge,whereas the cylinder nozzle showed concentrated?eld lines at the cylinder ends.The dif-ferent electric?eld concentration could be the reason for the uneven generation of nano?bers on the noz-zle surface.By combining the calculation with the experimental observation,we obtained the critical value of the surface electric?eld intensity for gener-ating nano?bers:5kV/cm.This critical value pro-vides a very useful guide for the design of new needleless electrospinning systems.Although the results presented in this article were focused on PVA polymer,our recent work has con?rmed that other water-soluble polymers[e.g.,poly(vinyl pyrro-lidone)]can also be electrospun in a similar way. References

1.Reneker,D.H.;Chun,I.Nanotechnology1996,7,216.

2.Jayaraman,K.;Kotaki,M.;Zhang,Y.;Mo,X.;Ramakrishna,S.

J Nanosci Nanotechnol2004,4,52.

3.Li,D.;Xia,Y.Adv Mater2004,16,1151.

4.Greiner,A.;Wendorff,J.H.Angew Chem Int Ed2007,46,

5670.

5.Li,D.;Wang,Y.;Xia,Y.Nano Lett2003,3,1167.

6.Casper,C.L.;Stephens,J.S.;Tassi,N.G.;Chase,D.B.;Rabolt,

J.F.Macromolecules2004,37,573.

7.Sun,Z.;Zussman,E.;Yarin,A.L.;Wendorff,J.H.;Greiner,A.

Adv Mater2003,15,1929.

8.Lin,T.;Wang,H.;Wang,X.Adv Mater2005,17,2699.

9.Matthews,J.A.;Wnek,G.E.;Simpson,D.G.;Bowlin,G.L.

Biomacromolecules2002,3,232.10.Kenawy,E.-R.;Layman,J.M.;Watkins,J.R.;Bowlin,G.L.;

Matthews,J. A.;Simpson,D.G.;Wnek,G. E.Biomaterials 2003,24,907.

11.Khil,M.S.;Cha,D.I.;Kim,H.Y.;Kim,I.S.;Bhattarai,N.

J Biomed Mater Res B2003,67,675.

12.Kenawy,E.R.;Bowlin,G.L.;Mans?eld,K.;Layman,J.;Simpson,

D.G.;Sanders,

E.H.;Wnek,G.E.J Controlled Release2002,81,57.

13.Kim,K.;Luu,Y.K.;Chang,C.;Fang,D.;Hsiao,B.S.;Chu,B.;

Hadjiargyrou,M.J Controlled Release2004,98,47.

14.Luong-Van,E.;Grrndahl,L.;Chua,K.N.;Leong,K.W.;Nur-

combe,V.;Cool,S.M.Biomaterials2006,27,2042.

15.Suthar,A.;Chase,G.TCE2001,726,26.

16.Suthar,A.;Chase,G.Adv Filtr Sep Technol2002,15,265.

17.Bergshoef,M.M.;Vancso,G.J.Adv Mater1999,11,1362.

18.Gibson,P.;Schreuder-Gibson,H.MD(American Society of

Mechanical Engineers),2000,91,45.

19.Gibson,P.;Schreuder-Gibson,H.;Rivin, D.Colloid Surf A

2001,187–188,469.

20.Wang,X.;Drew, C.;Lee,S.H.;Senecal,K.J.;Kumar,J.;

Samuelson,L.A.Nano Lett2002,2,1273.

21.Wang,X.;Kim,Y.-G.;Drew,C.;Ku,B.-C.;Kumar,J.;Samuel-

son,L.A.Nano Lett2004,4,331.

22.Demir,M.M.;Gulgun,M.A.;Menceloglu,Y.Z.;Erman,B.;

Abramchuk,S.S.;Makhaeva, E. E.;Khokhlov,A.R.;Mat-veeva,V.G.;Sulman,M.G.Macromolecules2004,37,1787. 23.Choi,S.W.;Jo,S.M.;Lee,W.S.;Kim,Y.-R.Adv Mater2003,

15,2027.

24.Megelski,S.;Chase,J.S.S.D.B.;Rabolt,J.F.Macromolecules

2002,35,8456.

25.Ding,B.;Kimura,E.;Sato,T.;Fujita,S.;Shiratori,S.Polymer

2004,45,1895.

26.Theron,S.A.;Yarin,A.L.;Zussman,E.;Kroll,E.Polymer

2005,46,2889.

27.Um,I.C.;Fang,D.;Hsiao,B.S.;Okamoto,A.;Chu,B.Bioma-

cromolecules2004,5,1428.

https://www.wendangku.net/doc/8a18730446.html,rsen,G.;Spretz,R.;Velarde-Ortiz,R.Adv Mater2004,16,166.

29.Yarin,A.L.;Zussman,E.Polymer2004,45,2977.

30.Jirsak,O.;Sanetrnik,F.;Lukas,D.;Kotek,V.;Martinova,L.;

Chaluopek,J.International Pat.,WO2005/024101(2005).

31.Dosunmu,O.O.;Chase,G.G.;Kataphinan,W.;Reneker,D.

H.Nanotechnology2006,17,1123.

32.Lukas, D.;Sarkar, A.;Pokorny,P.J Appl Phys2008,103,

084309/1.

33.Eda,G.;Shivkumar,S.J Appl Polym Sci2007,106,475.

34.Deitzel,J.M.;Kleinmeyer,J.;Harris,D.;Tan,N.C.B.Polymer

2001,42,8163.

35.Demira,M.M.;Yilgorb,I.;Yilgorb, E.;Erman, B.Polymer

2002,43,3303.

36.Wang,X.;Niu,H.;Lin,T.;Wang,X.Polym Eng Sci2009,49,

1582.

3530NIU,LIN,AND WANG Journal of Applied Polymer Science DOI10.1002/app

RMZ说明书35-170~300-970

一、概况: RMZ型煤气增压风机是根据二段式煤气炉的发展趋势,结合单段式煤气发生炉而开发的新型煤气排送机,它从根本上解决了长期以来依赖进口风机或用罗茨鼓风机噪音高流量不能调节的状况。 从投放市场以来的运行证明:该机噪音低、性能曲线平坦、流量调节区域大、效率高、耗能低,特别是密封性好,运行稳定,深受广大顾客的好评。 该机可制成顺时针或逆时针方向旋转,出口角度分别为0度、90度、180度三个方向,用户可根据实际管网分布需要自行选择。 二、用途: 本机专门适用于厂矿煤气站煤气增压,高炉、焦炉、转炉煤气增压,氨气、沼气、甲烷等气密性严谨的气体输送,以及高压强制鼓风。 三、型号编制说明 以RMZ60-700为例 RMZ——热煤气增压 60——风机流量(m3/min) 700——风机全压(mmH2O) [500℃标准状态下(0.455kg/m3)空气所测的全压] 四、结构特征: 该风机为板焊式整体结构,主要有以下部件组成: 1、叶轮。叶轮是整台风机的心脏,因此该机的叶型按新的高效风机理论进 行优化设计,材料根据不同需要分别选用优质不锈钢或合金制造,具有 较好的抗腐能力和足够的强度。叶轮成型后,经静、动平衡校正,精度 为G4级(高于国标G6.3级)。 2、机壳。用优质碳素钢与机座整体焊接而成,保证了整机的刚性,机壳内 涂环氧树指,以增强抗腐性能;机壳上部设G2″蒸汽管接口,下部设G1″ 排污阀;风机的进出口法兰采用标准法兰,以利用户管道联接。 3、密封组。本密封主要采用软填料密封和离心密封,密封内无易损件,结 构十分简单,效果特别可靠,更换方便。 4、电机。本机配套的电机采用YB系列电机,YB系列电机防爆等级为dⅡ BT4,防护等级为IP55。 五、安装: 1、安装前应详细检查各部件是否因包装运输不妥而导致损坏,如发现损坏, 应修整后才能进行安装。 2、检查各部分联接有无松动,若有应即时紧固之。 3、基础做成后,将风机和电动机装上,并检查各部分水平以及风机与电动 机轴线是否一致,将蜗壳与转子各部分之间间隙校正好,然后再灌水泥 浆。 4、水泥干燥后,再检查各部分之水平、轴线及间隙,然后紧固地基螺栓。 5、安装风机之进出口管道,严格防止管道等部件的重量承受在风机上,从 而影响风机的安装质量要求,必要时管道应加装支撑。

XYWJ型内燃铲运机说明书

第一章概述 XYWJ-1B型地下内燃铲运机主要用于金属类矿山井下,以铲装、运输爆破后的松散物料为主,也可用于铁路、公路以及隧道工程等,特别适用于工作条件恶劣,作业现场狭窄、低矮以及泥泞的作业面。本机动力系统采用四缸BF 4L 2011柴油机驱动。液控变量泵—变量马达—传动齿轮箱—前后桥—四个胶轮传动。采用了回转轴承联接后机架摆动。工作系统采用先导液控操作,使铲运机操作更加简单、高效、低故障率。紧急停车制动采用了摩擦片制动器,弹簧制动,液压解除制动,突然断电立即制动,安全可靠。 产品执行标准:JB/T5500-2004地下铲运机 1.1 整机主要配置 1.1.1发动机 制造厂德国道依茨(DEUTZ)公司 型号BF4L2011 额定功率47.5KW 转速2300r/min 1.1.2 液压泵 制造厂斯洛伐克3COM-GTN公司 型号PV22 1.1.3 液压马达 制造厂斯洛伐克3COM-GTN公司 型号MV23 1.1.4 变速箱 制造厂烟台兴业机械设备有限公司 型号XYWJD-1(借用) 1.1.5 驱动桥 制造厂烟台兴业机械设备有限公司 型号XYPC15

1.1.6 双联泵 制造厂合肥长源液压件有限公司 型号CBQT-F540/F410-AFH 1.1.7 多路换向阀 制造厂四川长江液压件有限责任公司 型号ZL20E-2(04U) 1.1.8 制动系统 组成停车制动 说明停车制动采用全封闭液压湿式多盘制动1.1.9 液压系统 组成工作系统行驶系统转向系统制动系统1.1.10 电器系统(电器原理图见图16) 工作电压24V 1.2 整机主要技术性能和参数 1 额定斗容1m3 2 额定载重量2t 3 最大铲取力48kN 4 最大牵引力56kN 5 行驶速度0-10km/h 6 最大爬坡能力≥20°(注意:铲运机作业坡度不应大于10°) 7 最大卸载高度1050mm 8 最小卸载距离860 mm 9 工作装置动作时间11s 10 最小转弯半径3990mm(铲斗外侧)2540mm(后轮内侧) 11 最大转向角±38° 12 最小离地间隙200mm 13 后机架摆动角±8°

道依茨912风冷柴油机使用说明书

第一章:柴油机的技术特征 一、柴油机型号 F6L912/W/913.4102F型风冷柴油机根据配套机械情况有以下几种基本变型产品: 1、F6L912G1.G2型:用于液压挖掘机。 2、F6L912G3型:用于液压挖掘机。 3、F6L912Q型:用于载货汽车。 4、F6L912W型:用于井下作业铲运机。 5、F6L913L型:用于谷物联合收割机。 6、F6L913Q型:用于载货汽车。 7、4102FQ型:用于3t轻型载货汽车.中型旅游车。 二、柴油机技术参数 表1:柴油机型号及性能参数

三、柴油机主要技术数据 (一)在额定功率及额定转速下的各种温度 1、机油温度:100---120℃ 2、排气温度(表2) 表2:各种机型排气温度 (二)机油压力范围 1、额定转速下主油道内压力0.4----0.5MPa 2、在最低稳定转速下主油道内压力≥0.05MPa (三)配气相位(以曲轴转角计) 1、进气门 开启始点:上止点前32o 关闭终点:下止点后60o 2、排气门 开启始点:下止点前70o

关闭终点:上止点后32o 进、排气门冷态间隙:0.15mm (四)供油提前角(以曲轴转角计)(表3) 表3:供油提前角 (五)活塞顶余隙高度:1.2mm,用铅丝测量。 (六)机油容量(表4) 表4:各种机型机油容量 (七)主要螺栓的拧紧力矩 高强度螺栓的拧紧角度特别重要,为了获得所需角度,只要按照与一座钟的时针.分针所形成的相同的角度,来转动搬手的板杆,见图1。 (1)安装前用机油蘸湿螺纹及痤面。 (2)用套筒板手而不加扳杆,或用普通扳手及梅花扳手而不用扳杆,拧入螺栓直至将它们垂直地装牢,见图2。 (3)用两只手抓住扳杆,预紧螺栓,见图3。 (4)按照图4所示方式拧紧螺栓,分几步拧紧,使其符合规定的拧紧角度。

S60系列机器简易操作手册

S60系列喷码机简易操作手册    开机操作: 1、喷码机电源开关位于机箱左上边。接通喷码机电源。  左侧蓝色指示灯亮起,这时表示机器开始启动,  方可松开按键(图1);   2、等待约半分钟直到系统启动初使化完毕,液晶屏幕图像出现,图1  3、在机器启动到稳定状态的过程中,先显示伟迪捷LOGO图案,  然后才进入待机界面; 4、此时机器开始运转,但泵没有运转, 机器无法喷印信息,属于待机状态。 机器显示屏进入 “主菜单”界面(图2)。    运行操作: 当机器处于待机状态时,在键盘左侧按墨线开/关键图2 2~3秒的时间,状态栏显示即变为"开机",等待约2分钟,墨线指示灯变为常亮,状态栏显示:正在喷印。现在喷码机已经做好打印信息的准备。由印字触发信号(光电眼等)触发后进行印字。    停止、喷印操作: 需要机器停止喷印时,直接在“主画面”界面按 停止打印键, 此处会自动变换为开始打印,同时墨线指示灯熄灭, 机器将自动处理回到待喷印状态。 如需机器喷印时,只需在此界面重新按开始打印键即可。 关机操作: 1、用户需要关闭机器时,在键盘左侧 按住墨线开/关键2~3秒的时间. 状态栏提示:关机  1、约两分钟后状态栏显示变为"喷码机关闭"。墨线绿色指示灯停止闪烁并保持熄灭状态.  2、.按下机箱左边的电源开关,关闭喷码机电源(如图1)。    选择信息操作: 在键盘“主题菜单键”界面中按进入信息读取界面,使用 键选择所需信息的文件名,然后在菜单栏中选择读取到编辑栏 ,即所需信息显示在编辑界面中,按菜单栏中的打印信息 ,则喷码机现在喷印的内容即为所选择的信息内容。  墨水、溶剂的添加操作: 当机器屏幕左侧的“橙色报警指示”灯亮时,同时在屏幕左上角报警栏 显示溶剂液位低或者墨水液位低时,则需要补充墨水或溶剂,用户需要打开机器墨水箱盖,拧开墨水缸或者溶剂缸的盖子,加入相应型号的墨水或者溶剂即可。同时,随着液位的上升,警报消除。

TORO301铲运机维护手册

TORO 301维护手册

目录 页数概述 维修和润滑 安全预防 润滑 注油容积 维护项目 注意事项 工作50小时后对维护保养 维护和润滑项目 油压测试

概述 在操作机器以前先阅读安全操作与维修手册! 这一点对于那些偶尔在TORO铲运机上 工作的人尤为重要。 严格遵守操作规程! 工作人员不得留松散长发、不得穿宽大服装更不得 戴珠宝耳环以免受伤。 必须穿着工作服和其它劳保服装。 不得对设备随意改造,以免影响设备的安全性能。 在对设备进行改造、调整安全装置和阀以及焊接车架前, 向供应商或制造商咨询。 零件必须与制造商的技术规范对应, 只有原装零件才被担保。 报告失火位置并使用灭火器 为了进行维护检测,应使用工作场地的设备使工作顺利 完成。 Toro铲运机上的每一个维护和修理工作只能按照说明书 规定由专职人员完成。 电器部件必须由电工维修、液压部件必须由有经验的专 职人员维修。 在进行维护、调整和检测时,仔细检查零件,必要时按 照说明书的要求进行更换。 在铲运机行走时或发动机工作是不得进行清洗、调整、 修理或作业。

维护和润滑 概述 Toro301铲运机是按照矿山的艰难条件和要求来设计的。按照保养周期的要求经常进行维护确保设备无故障地正常和经济的工作是非常重要的。当按照保养周期的要求经常进行维护以后,你会很容易地发现,在设备隐患还未出现时已经被修理好了。这就是以小的维护成本,将故障降到最低限度。 手册的一下章节指出了保养位置和周期,并强烈建议使用者按照道依茨(DEUTZ)柴油机维护手册进行有关的保养。 电器系统的防护 电焊前,发电机和主开关电缆必须断开,如果配有自动润滑中心及其它电器设备(如遥控器等)都必须断开。 在用水、蒸汽喷头和其它清洗设备进行清洗前,盖好发电机、接线盒及电器柜。 清洗后拿开盖。 安全注意事项 为保养工作留下足够的安全空间,在保养和修理期间一定要保证柴油机不会被突然地起动。在进行预防性维护前通知所有工作人员。 无论何时需要在铰接点处工作时,都要在前后车架之间装上安全锁止棒以防突然转向。在以举起的大臂下工作前先要: 1、倒空铲斗; 2、对大臂进行牢固支撑; 3、关闭发动机。 按照说明书的要求,遵守“开”和“关”机的程序。 保持手柄和踏板干净。 所有维护工作完成后,拧紧所有紧固件。马上装好所有已经拆卸的安全装置。 安照安全和环保的要求处置所有垃圾和被更换元件。

850使用说明书

1机械部分 1.1主要用途和适用范围 高速立式加工中心(V850)是配有CNC系统的三轴联动的加工中心。 该机床可实现铣削、镗孔、扩孔、铰孔、钻孔等多工序的自动工作循环;可精确、高效地完成平面内各种复杂曲线的凸轮、样板、压模、弧形槽等零件的自动加工。本机床是钻、铣、镗多功能为一体的金属加工机床。 本机床控制部分采用SIEMENS802D交流伺服数控系统或三菱E60S交流伺服数控系统。运动轴均采用精度较高有预紧力的零间隙滚珠丝杆,机床输出力矩大,工作稳定可靠,机床主轴转速高,运动轴除自动外还可手动操作。 本机床基本上能满足百分之八十左右零件的铣削、钻削要求。机床适用性广泛,对各种较复杂曲线的凸轮、模板、模具、工具和刀具等零件的半精加工和精加工尤为适宜。 本机床三轴联动,并可控制第四轴,含有RS232接口,可与计算机联接加工复杂工件。 本机床适用于工业机械制造、仪器仪表、纺织、轻工等行业。 1.2机床的基本参数 工作台面积(长×宽)mm 1025mm×525mm 刀库 BT40-16 主轴锥度 ISO.40(BT40) 工作台纵向行程 800mm 工作台横向行程 500mm 工作台垂向行程 500mm 主轴转速范围 200-8000rpm 主轴最高转速 10000rpm X、Y、Z快速移动速度 10000mm/min X、Y、Z进给速度 10-3000mm/min T型槽宽×槽数(mm) 18×3 主电机功率 7.5kW

进给电机 X、Z向1.5KW(伺服),Y向2KW(伺服) 最小设定单位 0.005/0.001mm 定位精度 0.01mm 重复定位精度± 0.005mm 工作气压 0.4-0.6MPa 机床最大承载重量 400kg 机床外形尺寸(长×宽×高) 3060mm×1900mm×2200mm 机床重量 4200kg 1.3高速雕刻基本参数(选件) 高速电主轴转速范围:3000-25000r/min 功率: 3KW 安装夹头 ER20 1.4激光切割、雕刻基本参数(选件) 1.5.1主轴传动说明 主轴运动由主轴伺服电机直接由主轴伺服驱动控制电机轴,通过同步带轮驱动主轴旋转,使传速从200-10000rev/min范围内无级调速。 1.5.2进给运动及说明 进给运动分为X轴(纵向)、Y轴(横向)、Z轴(垂直)三向。 X、Y、Z三个方向进给均采用伺服电机,通过弹性联轴器驱动丝杆带动移动部件,完成各个方向进给运动.

43s Chinese Simply Guide

RELIABILITY·TOTAL SOLUTIONS PROVIDER 43S 简明使用指南

安全信息 警告注意事项 警告事项表示对用户健康 和安全的潜在危险。 致命电压 接通电源后,喷码机存在 致命电压,只有经培训和授权的人员才能进行维护操作。 眼睛防护 此标志提醒您:在进行任 何如墨水、溶剂和清洗剂有关的操作时,必须佩戴已核准的眼镜防护装置 火灾危险 墨水、溶剂、清洗剂是易挥发,易燃物,必须遵照当地的规定储存和处理。 此标志提醒您:在进行任何如墨水、溶剂和清洗剂有关的操作时,必须佩戴已核准的手部防护装置 手部防护 注意事项。 在使用喷码机之前必须阅读这些 本页包含重要的危险注意事项, 危险信息

切勿… × 使用非伟迪捷公司指 定耗材,否则将失去保修资格; × 在喷码机、墨水、溶剂 和清洗剂附近抽烟或使用明火; × 吸入过量的溶剂; × 让墨水、溶剂沾染眼睛 和皮肤; × 让墨水或溶剂进入本 地的排水系统; 务必… √ 佩戴防护眼镜和手套;√ 将墨水、溶剂和清洗剂存储在原厂容器中,放置在通风良好的储存室,避免阳光直射,环境温度为0~50℃; √ 根据本地法规回收废墨水,废溶剂和清洗材料; √ 在通风良好的区域工作; 与墨水、溶剂和清洗剂有关的医疗注意事项,请参阅本指南后面的“墨水、溶剂相关急救措施” 墨水、溶剂和清洗剂注意事项

如果没有“原料安全数据表”请向伟迪捷当地分支机构索取建议 操作者应该: √接受急救培训,并了 解使用可燃物和/或 毒性物质工作时可能 产生的后果; √持有“原料安全数据 表”。这些材料说明在 需要急救时应该采取 的医护行动; 眼睛沾染 用干净的自来水冲洗眼 睛至少15分钟,然后立 即就医治疗。 皮肤沾染 脱下被沾染的衣服,用香 皂和水冲洗被沾染的皮 肤区域。不要用清洗剂清 洗皮肤上的墨水。 墨水、溶剂相关急救措施…

TORO400E电动铲运机操作手册

(译文仅供参考,如有异议,以原文为准)

此页空白

操作手册

? SANDVIK TAMROCK 公司,TORO铲运机分部 11/2004

前言 感谢您选购了TORO铲运机。 本手册有助于您熟悉TORO铲运机及其预期的用途。您将要使用的TORO 400 E 铲运机是电动的胶轮铲运机,外形低矮,适于井下采矿使用。 每一位司机在操作之前都应通晓此铲运机,并完全掌握操作手册、保养手册和通用安全规程的内容。本手册包含了关于部件、仪表和控制装置安全使用的资料。保养手册中对定期保养做了详细说明。只有经过正规培训的人员才允许操作此铲运机。 在对TORO铲运机的不断研究和开发过程中,有可能已对铲运机做了某些改动,本手册中没有包含关于这方面的内容。 如果铲运机安装了如遥控装置那样的选装设备,您应当熟悉选装设备的单独说明书,有关操作使用方法在说明书中有详细说明。 所有负责TORO 400E工作的人员,包括对TORO 400E进行操作、运 输、维修的人员,都必须阅读和使用本手册。 驾驶室内必须固定放有此手册,以备TORO 铲运机的操作人员随时使用。 始终要遵守国家有关事故预防和环境保护的强制性法规。此外还必须遵守普遍公认的有关安全和职业工作方面的技术法规。 需要保养和修理时,建议您与离得最近的Sandvik Tamrock授权服务部门联系。我们的维修人员技术熟练,经验丰富,备有专用工具,能完成最需要的保养和修理任务。 通过正确使用并按照保养手册的内容去做,可以指望您的铲运机能得到高度利用并延长使用寿命。

前言 (3) 合格声明 (5) 1. 铲运机介绍 (6) 1.1. 预期的用途 (6) 1.2. 推荐的作业条件 (6) 1.3. 技术详情 (7) 1.3.1. 噪声强度和噪声辐射 (7) 1.3.2. 型号牌 (7) 2. 安全说明 (8) 2.1. 设备上的警告标牌 (8) 2.2. 伤害危险的警告 (8) 2.3. 损坏设备或器材的警告 (8) 2.4. 阅读使用手册或保养手册 (8) 2.5. 操作安全规程 (9) 2.6. 使用或保养工作中的主要危险 (10) 2.7. 不允许铲运机作业的方式和条件 (11) 2.8. 警告标志 (12) 2.9. 防火 (14) 2.10.紧急停机和停机装置 (16) 2.11.紧急出口 (17) 2.12.锁定装置 (17) 3.13. 安全设备 (20) 3. 操作说明 (21) 3.1. 仪表和控制装置 (21) 3.2. 符号牌和安全注意事项 (32) 3.3. 起动电动机之前的常规检查 (33) 3.4. 进入驾驶室和起动电动机 (35) 3.5. 行驶之前的常规检查 (38) 3.6. 行驶 (40) 3.6.1.坡度 (40) 3.6.2.司机的视界 (41) 3.6.3.行驶操作 (42) 3.6.4.制动 (43) 3.7. 停车和停止电动机 (44) 3.8. 寒冷气候下作业 (45) 3.9. 牵引 (46) 3.10.运输铲运机 (48) 3.11.存放条件说明 (49) 3.12.起吊方法和起吊点 (50) 4. 装载、搬运和卸载 (51) 4.1. 作业期间的危险区域 (51) 4.2. 装载 (51) 4.3. 搬运 (54) 4.4. 卸载 (56) 4.5. 遥控行驶(选装) (56) 5. 故障诊断 (58) 6. 技术规格 (60)

伟迪捷激光喷码机使用标准操作规程 2

伟迪捷激光喷码机使用标准操作规程 2 修正药业集团股份有限公司 文件编号:SOP?SB-SY-007 版本号:00 文件名称伟迪捷激光喷码机使用标准操作规程文件编号 SOP?SB-SY-007 —起草者起草日期年月日原文件编号 审核者审核日期年月日原文生效日—批准者批准日期年月日版本号 00 颁发单位设备动力部生效日期年月日分发号分发单位与数量质量管理部、设备动力部、斯达舒车间、包装车间各1份 修订记载 版本号生效日期修订原因、依据及内容 00 依据2010版《药品生产质量管理规范》要求编写。 第 1 页共 8 页 修正药业集团股份有限公司 文件编号:SOP?SB-SY-007 版本号:00 目的:建立伟迪捷激光喷码机的标准操作规程,规范该设备的使用操作,指导安 全生产并满足产品工艺的需求。 范围:适用于伟迪倢激光喷码机的操作。 职责:设备动力部技术人员编写; 设备动力部主管、质量管理部审核;设备动力部经理批准; 车间操作工、维修工执行。 内容:

1 操作前检查 1.1 查看“设备使用日志(SMP?SB-GL-007-01)”,了解上一次设备运行情况。 1.2 在启动系统之前,检查以下要点: 1.2.1 系统配置的电源电压和频率是否正确。 1.2.2 电源是否由柔性电源导线连接。 1.2.3 同遥控外部互锁或紧急停机连接器相连接的电路是否已被关闭。 2 操作过程 2.1 将主机上的钥匙旋转至开的位置。 2.2 白色指示灯闪烁后,手柄自动启动。 2.3 输入需要操作的信息。 3 操作结束 3.1 将主机上的钥匙旋转至关的位置。 4 注意事项 4.1 设备所有激光束对视力都有潜在的危害,如果激光直射或反射入眼,有可能导致永久性视力损伤。(防止用眼睛直视激光镜头) 4.2 开机前,检查是否有空气进入镜头。 4.3 切不可用硬物接触镜头,以防止损坏镜头。 5 认真填写“设备使用日志(SMP?SB-GL-007-01)”。 6 附件 第 2 页共 8 页 修正药业集团股份有限公司 文件编号:SOP?SB-SY-007 版本号:00 (1)试题 培训: 培训部门:设备动力部

圆盘给料机使用说明书

共16页第1页1.用途与结构特点: 圆盘给料机是运输机械的一种附属设备,作为运输机械上精确而均匀地给料之用。给料粒度0~150mm,用它运输比重大的物料最为适合。用此一般多用于选矿、烧结和冶炼等场合中。 圆盘给料机结构简单可靠,采用柱销联轴器和浮动盘联轴器,分别联结电机与减速机,和减速机与给料机本体的传动轴。敞开型由一对敞开传动的圆锥齿轮组成;封闭型则是把一对圆锥齿轮装在箱体中而已。 2.设备整体布置:参见我公司提供的设备基础图。 3.主要技术参数: 座式敞开型圆盘给料机 圆盘直径:800mm 1000 mm 1600 mm 2000 mm 座式封闭型圆盘给料机 头尾轮中心距:5000~15000 mm 输送量:150~950t/h 链速:0.05m~0.095m/s(50HZ时) 安装倾角:α=0o~25o 电机型号:YVPE型变频调速电机 功率15~75KW 变频范围5~100HZ 减速机型号:KDAB型低速输出为轴装式,驱动装置为悬挂式与机身相连,不需另设驱动基础。 驱动装置:安装可分为左式或右式,可由用户自行选择。 为满足用户使用,我们可以按用户所需特殊需要设计制造各类重型板式给料机。 4.工作原理: 重型板式给料机是由电机驱动,通过高速轴联轴器、减速器、锁紧盘最终传给主轴装置。主动链轮带动牵引链条及固定在上面的负荷链板作直线运动,从而达到输送物料的目的。 5.设备的主要结构: 本重型板式给料机由驱动装置、主轴装置、机架、下托辊、运行机构、尾部张紧装置、及承重辊等主要部件组成。 5.1驱动装置: 驱动装置由电机、高速轴联轴器、减速机、锁紧盘、驱动

装置底座的组成,见图(1)。

工程机械图片说明详细分类 (1)

工程机械 1、挖掘机械 2、铲土运输机械 3、工程起重机械 4、机动工业车辆 5、压实机械 6、路面机械 7、桩工机械 8、混凝土机械 9、钢筋加工机械 10、装修机械 11-12、凿岩机械与气动工具 13、工程机械专用零部件 14、其它专用工程机械 1、挖掘机械 挖掘机械产品类组划分表 类组产品名称 1.挖掘机械(1)单斗挖掘机1)履带式机械单斗挖掘机 2)履带式电动单斗挖掘机 3)履带式液压单斗挖掘机 4)轮胎式机械单斗挖掘机

5)轮胎式液压单斗挖掘机 6)轮胎式电动单斗挖掘机 7)汽车式单斗挖掘机 8)步履式机械单斗挖掘机 9)步履式液压单斗挖掘机(2)多斗挖掘机10)机械轮斗挖掘机 11)液压轮斗挖掘机 12)电动轮斗挖掘机 13)机械链斗挖掘机 14)液压链斗挖掘机 15)电动链斗挖掘机(3)多斗挖沟机16)机械轮斗挖沟机 17)液压轮斗挖沟机 18)电动轮斗挖沟机 19)机械链斗挖沟机 20)液压链斗挖沟机 21)电动链斗挖沟机(4)斗轮挖掘机22)机械斗轮挖掘机 23)液压斗轮挖掘机 24)电动斗轮挖掘机(5)挖掘装载机25)挖掘装载机

(6)滚切挖掘机26)滚切挖掘机 (7)铣切挖掘机27)铣切挖掘机 (8)掘进机28)盾构掘进机 29)顶管掘进机 30)隧道掘进机 31)涵洞掘进机 (9)特殊用途挖掘机32)水陆两用挖掘机 33)隧道挖掘机 34)湿地挖掘机 35)船用挖掘机 挖掘机在矿山特别是露天矿山使用较多,多数为大型、重型、履带式正铲,少数用反铲。柴油和电动的都有,原来多用机械式,现在开始使用液压式。液压铲国内生产厂家四川邦立,机械铲有太原矿山机器厂、中钢衡重、抚挖等。中小型挖掘机多为柴油、液压反铲,国内生产厂家重多。 柴油液压履带正铲挖掘机 柴油液压履带反铲挖掘机 电动液压履带正铲挖掘机 电动机械履带正铲挖掘机 柴油液压轮胎反铲挖掘机 工程用小型履带反铲挖掘机 微型挖掘机(柴油液压履带反铲) 斗轮挖掘机 链斗式挖掘机 多斗挖掘机

VJ激光机简要操作手册

VJ系列激光机简要操作手册 一.开机关机 1.开机: 1)打开总电源开关S1,白灯L4开始闪亮 2)待白灯停止闪亮进入常亮状态,则说明控制器启动完成进入待机状态 3)转动钥匙开关S2启动激光机,此时红灯L6亮,激光机工作 4)检查打印内容,按下手持键盘上的功能键F3启动标刻,开始生产 2.故障:当设备发生故障时,控制器上的黄灯L5会开始闪亮,此时应当手动消除故障后 再恢复正常生产 3.关机: 1)通过手持键盘保存数据库,按功能键F4停止标刻 2)转动钥匙开关S2关闭激光机,最后关闭电源总开关S1关闭机器 3)整理收拾好激光机的工作区域 二.关于工作间距 必须要保证扫描镜头到产品表面的距离为12.5厘米(标准机型),如下图: 每种透镜所适用的工作间距不同,具体数据请咨询伟迪捷工程师。

三. 关于手持键盘 1. 手持键盘显示区域由三个部分组成(如下图所示) 2.各个键的意义: 箭头 在菜单内导航 INS 输入数据在“ 插入” 和 “ 覆盖” 模式间切换 ESC 退出,当前输入不做任何更改 HOME/END 光标被放置在某一行的开始或结尾处 DEL 删除,字符被清除 Enter 选择或确认当前输入的内容 NUM 输入数字字符 SPACE 输入空字符(没有LED ) IME 输入不能在键盘上输入的字符 CAPS 输入大写字母 3.功能键图标的意义 ? 不同状态(菜单)下有不同的图标 ? 每个图标对应不同的功能 ? 不同的图标对应不同的功能键 – F1---F5 登录,更改用户级别 启动标刻 回到主窗口 停止标刻 新建 复制 删除 帮助 接受 取消 插入变量 编辑变量

加工中心cnc850使用说明书

加工中心CNC850说明书 1机械部分 1.1主要用途和适用范围 高速立式加工中心(V850)是配有CNC系统的三轴联动的加工中心。 该机床可实现铣削、镗孔、扩孔、铰孔、钻孔等多工序的自动工作循环;可精确、高效地完成平面内各种复杂曲线的凸轮、样板、压模、弧形槽等零件的自动加工。本机床是钻、铣、镗多功能为一体的金属加工机床。 本机床控制部分采用SIEMENS802D交流伺服数控系统或三菱E60S交流伺服数控系统。运动轴均采用精度较高有预紧力的零间隙滚珠丝杆,机床输出力矩大,工作稳定可靠,机床主轴转速高,运动轴除自动外还可手动操作。 本机床基本上能满足百分之八十左右零件的铣削、钻削要求。机床适用性广泛,对各种较复杂曲线的凸轮、模板、模具、工具和刀具等零件的半精加工和精加工尤为适宜。 本机床三轴联动,并可控制第四轴,含有RS232接口,可与计算机联接加工复杂工件。 本机床适用于工业机械制造、仪器仪表、纺织、轻工等行业。 1.2机床的基本参数 单机功率 18KW 总功率 36KW 工作台面积(长×宽)mm 1025mm×525mm 刀库 BT40-16 主轴锥度 ISO.40(BT40) 工作台纵向行程 800mm 工作台横向行程 500mm 工作台垂向行程 500mm 主轴转速范围 200-8000rpm 主轴最高转速 10000rpm

X 、Y 、Z 快速移动速度 10000mm/min X 、Y 、Z 进给速度 10-3000mm/min T 型槽宽×槽数(mm ) 18×3 主电机功率 7.5kW 进给电机 X 、Z 向1.5KW(伺服),Y 向2KW(伺服) 最小设定单位 0.005/0.001mm 定位精度 0.01mm 重复定位精度 ± 0.005mm 工作气压 0.4-0.6MPa 机床最大承载重量 400kg 机床外形尺寸(长×宽×高) 3060mm ×1900mm ×2200mm 机床重量 4200kg 1. 3高速雕刻基本参数(选件) 高速电主轴 转速范围:3000-25000r/min 功率: 3KW 安装夹头 ER20 1.4激光切割、雕刻基本参数(选件) 1.5机床的传动系统 1.5.1主轴传动说明 主轴运动由主轴伺服电机直接由主轴伺服驱动控制电机轴,通过同步带轮驱动主轴旋转,使传速从200-10000rev/min 范围内无级调速。 激光部分技术指标 激光器:CO2激光器 激光功率:100W (可选) 工件最大尺寸:300×650mm 切割速度:0.1-6000mm/min 快速移动速度:8mm/min 位置精度:+/- 0.05mm/m 重复定位精度:+/- 0.04mm CNC 最小设定单位:0.005MM 三轴控制:X 、Y 联动,Z 轴随动 激光部分:支架卡1.6m 宽0.4m 功率100±20W 切缝0.5~1mm 上窄下宽 冷确水泵100W 冷却激光管部分 镜片:反射镜、扩束镜、聚焦镜 特性CO2激光 波长10.6um 工件冷却,可加压缩空气或高压氮气,气体保护。

伟迪捷1210喷码机操作规程

伟迪捷1210喷码机操作规程 一、开机 1、按下机箱侧部“绿色按钮”→屏幕图标“Фx”→“Фx”右边两竖线消失 后→键盘F3→输入密码2222→回车(Enter)→F1启动墨线回车→屏幕图标“Ф√”不停闪烁→“Ф√”不闪烁后开始操作→确认参数同时按下键盘“Alt”+“F1”开始喷印 二、编辑信息 1、在“信息”菜单下→新建信息→回车(Enter)→输入信息→F1切换字符高 度 注:字高在9以上方可加汉字,字高范围:5≤数字≥24 2、每次输入汉字与数字时候需按“Fn ”进行切换,选字时按光标“→” 3、编辑信息后同时按下“shift”+“F1”进行保存 4、在信息栏→选择信息→各种参数信息→回车(Enter)→同时按下“Alt”+ “F1”开始喷印(屏幕下方显示喷印信息和“喷印”) 三、维护 1、屏幕右上方有三个指示灯,最上方红灯亮为故障灯、中间黄色灯亮为报警灯、 最下面绿灯亮为运行灯。 2、系统菜单下→故障清除→回车(Enter) 3、配置菜单下→清除故障和警告→回车(Enter) 4、控制箱左边为稀释剂V706D,右边为油墨盒V411-D与屏幕的位置是相同的,当 屏幕稀释剂的含量显示<5%一定要进行更换。 注:墨盒和稀释剂盒在来回放置装入次数<15次,大于15次就失效了。 墨盒和稀释剂盒属于易燃易爆危险化学品禁止在喷码机附近吸烟。 5、长时间不用后要进行喷嘴清洗。先把喷头卸下,进行操作如下: 系统→喷嘴清洗→回车(Enter)→屏幕出现“Фx”→用清洗液清洗喷头时间为10秒→屏幕提示清洗结束。 6、正常情况下光电眼为绿灯,如出现红灯常亮调节小黄钮。 四、关机 在信息菜单下→按下“F1”→屏幕图标“Фx”不停闪烁→“Фx”稳定后按下机箱侧部“绿色按钮”。 五、相关参数设置 1、4.5L调味汁标签:5字高,字符宽度18.60,字符高度6默认,产品延时60.40,选择光栅7-high。

卡特彼勒机械说明书之623H提升式铲运机

623H Wheel Tractor-Scraper Engine Scraper Bowl Tractor Cat? C13 ACERT? Heaped Capacity 17.6 m3 23 yd3 Max. Power 304 kW 407 hp Rated Load 25 038 kg 55,200 lb

623H Features Economical Hauling System The wheel tractor-scraper, with its ability to load quickly, haul at high speeds and dump on the go, has the potential to be the most profitable hauling system on the job site. This efficiency can result in fewer machines on the job, reduced operating costs and jobs delivered in a shorter period of time. Power Train Caterpillar designed and manufactured power train components deliver the power necessary for fast loading and quick hauls. Operator Station Single joystick control of implements, adjustable arm rests, seat, steering column and room to maneuver all reduce fatigue and increase operator comfort and productivity throughout the shift. Cushion Hitch The cushion hitch is a Caterpillar proven system for protecting components of the hitch and improving ride quality, dampening loads that might otherwise be carried through the frame to the operator. Cushion hitch offers operators a more comfortable haul portion of the work cycle. Durability Cat wheel tractor-scrapers have a history of robust structural design, tested and validated to last in the most rugged loading and hauling conditions. Contents Operator’s Station (3) Operator Comfort (4) Power Train – Engine (5) Power Train – Transmission (6) Structures (7) Scraper Bowl (8) Elevator (9) Integrated Technologies (10) Complete Customer Support (11) Safety (12) 623H Wheel Tractor-Scraper Specifi cations (13) 623H Standard Equipment (18) 623H Optional Equipment .................................19 Quick loading, high travel speeds and the ability to load and dump on the run yield fast cycle times, allowing Cat Wheel Tractor-Scrapers to consistently deliver high productivity at the lowest cost per ton.

伟迪捷常见故障以及解决办法

伟迪捷喷码机常见故障及维修保养操作说明: 伟迪捷喷码机总部在美国伊利诺斯州芝加哥地区,在全球各地拥有几十家分支机构,伟迪捷喷码机被广泛应用于全球各地、各行各业,拥有很高的市场占有率。伟迪捷喷码机包括小字符喷码机、大字符喷码机、激光编码系统、热转印表面印刷机、邮政打印系统等产品系列以及伟迪捷耗材系列,是全球产品线最完整的标识系统制造商之一。 下面为您详细介绍伟迪捷喷码机常见故障维修保养办法及喷头维护等操作规程。 一、伟迪捷喷码机回收管故障; 根本原因是伟迪捷喷码机回收传感器检测不到回收管中是否有伟迪捷墨水造成的,可能是墨线位置没有对正或者伟迪捷喷嘴堵塞。 检查和维修伟迪捷故障方法: 检查墨线位置,如果偏得很厉害(墨线不垂直于喷嘴平面,角度很大)说明喷嘴堵了,则需要清洗伟迪捷喷嘴;如果偏一点点,可以调整墨线位置。 二、针对伟迪捷喷码机喷头的维护保养;

1、要注意伟迪捷喷码机工作的环境,防止喷码机工作环境的灰尘较大从而进入喷头,对喷头在成一定的堵塞而影响喷头的打印效果,缩短了喷头的使用寿命; 2、伟迪捷喷码机喷头在安装的时,要注意喷头插口必须对准,不能硬插,如针孔插坏、插不好,喷头就不能正常工作,且在操作喷头或接触喷头插板时,操作人员一定要消除静电因素,静电对喷头电路部分的损害也非常严重; 3、在伟迪捷喷码机的使用上要注意喷头表面的喷嘴部分是不能与任何物体磨擦的,细毛易挂在喷嘴表面。否则将会引起伟迪捷喷头堵塞和滴墨,从而影响喷码效果。 三、伟迪捷喷码机回收管路负压不够,或者太小; 原因:1、回收管路堵;2、回收管路有漏气;3、回收泵堵或者损坏。 伟迪捷喷码机常见故障及维修保养方法: 1、将伟迪捷喷码机回收过滤器取下,用清洗液冲洗,看看是否能从回收管中流出:如果没法流出,则管路堵了。那么,可以从回收管那边冲洗。如果能流出,则把伟迪捷回收过滤器装好。

化学品安全技术说明书WillettW512-D

W512-D 化学品安全技术说明书产品名称 :1.3 安全技术说明书供应商详情1.2 物质或混合物相关的确定的用途和使用防止建议 1.4 紧急电话号码W512-D 物质用途:工业应用: 用于连续喷墨过程中使用的油墨。 Website: https://www.wendangku.net/doc/8a18730446.html, 电子邮件(Email): FluidsSupport@https://www.wendangku.net/doc/8a18730446.html, Videojet Technologies Inc., 1500 Mittel Boulevard, Wood Dale, IL, 60191-1073 U.S.A Tel: 1-800-843-3610 Fax: 1-800-582-1343 伟迪捷(上海)标识技术有限公司上海钦州北路1089号51号楼5楼200233 Tel: 86 21 6495 9222 Fax: 86 (21) 54263409珠海市高栏港经济区精细化工区经七路西北 Tel: 86 800 820-2052 Fax: 86 (756) 751 2881Willett ?医转运 化学品分类和标记全球协调体系(GHS)的分类2.1 物质或混合物的分类 毒性不明的成分 :生态毒性不明的成分 :2.2 标签要素 化学品分类和标记全球协调体系(GHS)标签要素 ANSI Z129.1-2006 标签要素 混合物中由毒性未知的组分组成的比率: 0%. 混合物中由对水生环境毒性未知的组分组成的比率: 0%. 危险成分 :危险。 高度易燃液体和蒸气。 引起严重的眼睛刺激。 可能引起昏昏欲睡或眩晕。 对水生生物有害并且有长期持续影响。 [预防措施] 远离热源、热表面、火花、明火及其他点火源。禁止吸烟。 [事故响应] 没有。 [贮存] 没有。 [废弃处置] 没有。1) 2-丁酮

ADCY-2A维修使用说明书_RT20000_090403

北京安期生技术有限公司

前言 为了能使用户对ADCY-2A地下电动铲运机的使用、保养和管理等方面有所了解,本书中简要地介绍了ADCY-2A地下电动铲运机的性能、结构原理和保养调整等方面的内容。仅供使用本型号铲运机的驾驶员、维修人员和技术管理人员参考。 由于本产品的结构性能不断的提高和改进,本书的内容可能与今后改进的产品有所差别,由于诸多原因限制,我们无法及时通知各用户,希望用户谅解。 为了更好地为用户服务,希望用户在使用铲运机的过程中将你们发现的问题及改进的意见及时地反馈给我们,我们将非常感谢! 书中若有错误或不妥之处,敬请各用户批评指导。 编者:北京安期生技术有限公司 日期:二零零六年七月

目录 第一章 概述 (1) 1.1 整机主要配置 1.2 整机主要性能参数 1.3 驾驶室内功能元件 第二章 铲运机的操作 (12) 2.1 安全规程 2.2 开车前的检查与保养 2.3 开车前的检查项目 2.4 使用后的检查维护工作 2.5 铲运机的起动与运行 2.6 铲运机的停机 2.7 电动机的使用与维护 2.8 铲运机的作业操作 2.9 铲运机的停放 第三章 主要部件的结构与保养 (17) 3.1 传动系统 3.1.1驱动桥 3.1.2传动轴 3.1.3轮胎、轮辋 3.2 液压系统 3.2.1液压系统的组成 3.2.2液压系统的用油 3.2.3液压油箱 3.2.4液压油的更换 3.2.5液压系统的排气 3.2.6液压系统故障分析及维护 3.3 电气系统

第四章铲运机的维护和保养 (25) 4.1 一般定期维护保养工作的步骤和方法 4.1.1清洗机器 4.1.2注润滑油 4.1.3防锈保护 4.1.4更换零件 4.1.5电路维护 4.1.6检查油位 4.1.7换油 4.1.8检查密封件和密封面 4.1.9检查锁紧元件 4.2 一般不定期维护和保养的项目 4.3 定期维护和保养列表

伟迪捷喷码机400操作手册

伟迪捷400系列喷码机 操作手册 开机: 接通电源,按下左边的电源键,大约一分钟左右,按F1启动喷墨,显示屏喷嘴图标闪动,等待喷码机显示“正在喷印ABC”,F1处显示停止喷墨。显示屏喷嘴图标不动,并在键面右边的指示灯变为绿色,就可以打印信息了。 关机: 按F1键停止喷墨,显示屏喷嘴图标闪动,大约3分钟左右,喷嘴图标停止闪动。F1处显示启动喷墨。关机完毕,再按下左边的电源键,拔掉电源。 编辑信息: 按F3键,按左右光标键选<喷印信息>后,按确认键<Eeter >,用上下光标键选至<建立新的喷印信息>后按确认键<Eeter >,输入如:ABC后按确认键<Eeter >,就可以直接输入需要的喷印内容了。 注:在输入汉字时,按F1键选16/中文的字型,并按<fn>就可能按拼音输入需要的汉字了。 输入完后,按退出键<Esc>使上面的菜单发白,用左右光标键选至<编辑>后按确认键<Eeter >,选<存档并退出>菜单按确认键<Eeter >,完成信息的编辑。也可按(shift+F1)直接存档退出。信息的选择与修改: 选择信息:在主屏幕下直接按F2就可以选择信息了。

信息的修改:按F3键,按左右光标键选<喷印信息>后,按确认键<Eeter >,用上下光标键选至<编辑喷印信息>后选择如:ABC后按确认键<Eeter >,就可以直接修改需要的修改的内容了。修改完后,按退出键<Esc>使上面的菜单发白,用左右光标键选至<编辑>后按确认键<Eeter >,选<存档并退出>菜单按确认键<Eeter >,完成信息的编辑。也可按(shift+F1)直接存档退出。也可按F4直接进入正在喷印的信息的修改。 信息参数的修改: 按F3键,按左右光标键选<喷印信息>后,按确认键<Eeter >,用上下光标键选至<喷印信息参数>后按确认键<Eeter >,其中包括:字高,字宽,粗体,延时,倒置等内容。 图形的编辑: 按F3键,按左右光标键选<用户区>后,按确认键<Eeter >,选择<新用户区>,输入一个名称后,在里可做图案,计数器,文本(包括日期,时钟,班次等)。 日常保养 以下预防性的措施需要定期和不定期的进行,才能使您的喷码机处于良好的工作状态 检查墨水和溶剂的液位,低位时必须按程序及时添加 清洁并干燥喷头系统,注意开关机时的自动清洗程序 定期清洁风扇过滤网 定期清洁电眼的安装和固定装置

相关文档
相关文档 最新文档