文档库 最新最全的文档下载
当前位置:文档库 › GR8830,OB2269,LD7575的替换型号M5576

GR8830,OB2269,LD7575的替换型号M5576

GR8830,OB2269,LD7575的替换型号M5576
GR8830,OB2269,LD7575的替换型号M5576

概述:

M5576是一款高集成度、高性能、电流模式PWM控制芯片,离线式AC-DC反激拓扑结构,具备低待机功耗和低成本优点。正常工作下,PWM开关频率处于合理的范围内,在空载或轻载条件下,IC工作在“跳周期模式”来减少开关损耗,从而实现低待机功耗和高转换效率,M5576提供完善的保护功能,包括自动恢复保护、逐周期电流限制(OCP)、过载保护(OLP)、VDD的欠压锁定(UVLO)、过温保护(OTP)和过电压(固定或可调的)保护(OVP),具备抖频功能,改善系统的EMI性能。

特点:应用:

■软启动功能,减少功率MOSFET的VDS应力■手机充电器, 上网本充电器

■跳周期模式控制的改进,提高效率降低待机功耗■笔记本适配器

■抖频功能,改善系统EMI性能■机顶盒电源

■消除音频噪声■各种开放式开关电源

■65KHz的开关频率

■完善的保护功能

VDD 欠压保护

逐周的过流阈值设置,恒定输出功率

自动恢复式过载保护(OLP)

自动恢复式过温保护(OTP)

锁定型的VDD 过压保护(OVP)

锁定型的过温保护(OTP)

过压保护点OVP通过外部稳压二极管可调

■采用SOT-23-6和DIP-8封装

典型应用:

图1 M5576SR 应用图SOT-23-6

管脚排列图:

M5576PR M5576SR 图3 DIP-8(顶部视图) 图4 SOT-23-6(顶部视图)管脚描述:

芯片使用时极限参数:

注:如果器件工作条件超出上述各项极限值,可能对器件造成永久性损坏。上述参数是工作条件的极限值,不建议器件工作在推荐条件以外的情况。器件长时间工作在极限工作条件下,其可靠性及寿命可能受到影响。

芯片内部框图:

图5 M5576内部框图电气参数(Ta=25o C):

应用信息

M5576是一款高集成度、高性能、电流模式PWM控制芯片,离线式AC-DC反激拓扑结构,具备低待机功耗和低成本优点。扩展模式大大降低了待机功耗,方案设计适应国际节能的要求。

启动电流和启动控制

M5576上电后,通过整流后电压为连接到VDD脚的接地电容充电,当VDD脚的电压高于UVLO阈值时,芯片迅速启动。M5576启动电流非常低,高阻值启动电阻可减少功率损耗,并能在应用中稳定可靠的启动。

工作电流

M5576工作电流低至1.8mA。扩展突发模式能够实现高效率和低工作电流。

软启动

M5576上电后,在芯片启动期间,内部4ms的软启动来降低启动时的应力。当VDD达到VDD_OFF,SEN 尖峰电压由0.15V逐渐升高增至最大。每次重启后都会重新软启动。

频率抖动干扰的改进

M5576集成了频率抖动(开关频率调制)功能进行扩频,最大限度地降低了EMI带宽,简化了系统设计。跳周期模式操作

在轻载或空载状态,开关电源的功耗来源于开关MOSFET的损耗、变压器磁心损耗和启动电路损耗,功率损耗的大小在于开关频率的比例。较低的开关频率,能降低功率损耗,从而节约了能源。

开关频率在空载或轻载条件下自行调节,降低开关频率在轻载、空载的情况下可以提高转换效率。只有当VDD电压下降到低于预先设定的值且COMP电压处在适当状态的时候,DRV驱动才处于打开状态,否则,DRV驱动将处于关闭状态来最大程度的降低开关损耗和待机损耗。

振荡器

开关频率固定在65kHz ,PCB设计简化。

电流检测和前沿消隐

M5576是电流模式PWM控制,提供逐周期电流限制。开关电流是通过一个电阻接到SEN引脚来检测。内部的前沿消隐电路会屏蔽掉电压尖峰内部功率MOSFET的初始状态,由于缓冲二极管反向恢复电流和DRV功率MOSFET浪涌电流造成的检测电压尖峰,导致电流限制比较器被屏蔽,无法关断功率MOSFET。PWM的占空比是由SEN电流检测输入电压和COMP输入电压计算确定的。

内部同步斜坡补偿

内部斜坡补偿电路是将一个斜坡电压加入SEN引脚输入电压来帮忙生成PWM信号,它大大提高了在CCM下的闭环稳定性,防止次谐波振荡,从而降低输出纹波电压。

驱动

功率MOSFET是由专用DRV驱动功率开关驱动控制。DRV驱动强度越弱,功率管的导通损耗和MOSFET 开关损耗就越大;而DRV驱动越强,直接影响EMI性能。

一个很好的权衡方法为通过内置的图腾柱栅驱动设计,适当的驱动能力和DRV设计合适的死区时间来实现控制。通过这种设计很容易达到良好的电磁系统的设计和降低空载损耗的目的。

保护控制

好的电源系统的可靠性需要有自动恢复特性的保护功能,包括逐周期电流限制(OCP),过载保护(OLP)和VDD的欠压保护(UVLO);无锁存关闭功能还包括过温保护(OTP),固定或可调的VDD电压保护(OVP)。在全电范围内,OCP被补偿后达到恒定输出功率。

在过载条件下,当COMP输入电压超过TD_PL功率极限阈值时,控制电路会关闭转换器。只有在输入电压低于阈值功率极限后才重新启动。

SOT-23-6封装外形尺寸图 丝印描述

DIP8封装外形尺寸图

丝印描述

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

手机屏幕尺寸和分辨率一览表

手机屏幕尺寸和分辨率一览表 屏幕尺寸 分辨率代号像素密度备注(英寸) 2.8640x480VGA286PPI 3.2480x320HVGA167PPI 3.3854x480WVGA297PPI 3.5480x320HVGA165PPI 3.5800x480WVGA267PPI 3.5854x480WVGA280PPI 3.5960x640DVGA326PPI苹果iphone4 3.7800x480WVGA252PPI 3.7960x540qHD298PPI 4.0800x480WVGA233PPI 4.0854x480WVGA245PPI 4.0960x540qHD275PPI 4.01136x640HD330PPI苹果iphone5 4.2960x540qHD262PPI 4.3 800x480WVGA217PPI 4.3 960x640qHD268PPI 4.3 960x540qHD256PPI 4.3 1280x720HD342PPI 4.5 960*540qHD245PPI 4.5 1280x720HD326PPI

4.5 1920x1080FHD490PPI 4.7 1920x1080FHD490PPI 4.81280x720HD306PPI 5.0480x800WVGA186PPI 1024x768XGA256PPI 5.0 1280*720294PPI 5.0 5.01920x1080FHD207PPI 5.31280x800 WXGA285PPI 5.3960x540qHD207PPI 6.0854×480163PPI 6.01280 X 720 245PPI 6.02560×1600498ppi 7.0800x480128PPI 7.01024*600169PPI 7.01280*800216PPI 9.71024x768XGA132ppi 9.72048x1536264PPI 101200X600170ppi 102560x1600299ppi VGA系列: VGA、QVGA、WVGA、HVGA名词解释及区别: 深圳鸿佳科技股份有限公司专注于工业类、手持设备和医疗、军工、通讯、车载等工控产品液晶显示屏(LCD)、液晶显示模组(LCM)的研发、生产和销售.......续VGA后,逐渐诞生出QVGA、WVGA、HVGA分辨率产品,这分辨率都手机参数里随处可见,下面是VGA、QVGA、WVGA、HVGA

高耗能电机及供配电设备淘汰管理办法

高耗能电机及供配电设备淘汰及管理办法 一、目的和范围 (一)目的 为贯彻落实“十二五”节能减排规划和工业节能“十二五”规划,提高电机等设备能效,降低生产消耗,特制定本制度。(二)适用范围 适用于公司及各下属生产基地(子公司)。 二、规范性引用标准和术语 (一)标准 2012年9月1日,国家颁布电机能效新标准(GB18613-2012),并正式实施。 (二)术语 按照国家新标准,高效电机是指达到或优于GB18613-2012标准中节能评价值的电机(见表1)。 三、管理内容 (一)工作原则 1、使用环节坚持按计划和分批次推进原则。采取逐步淘汰和改造提升相结合措施,对在用高耗能设备进行升级,最终实现高效设备的增量提升。 2、采购环节严控改造和新增高效电机及供配电设备的质量关。对耗能设备的采购一律采用高效电机和供配电设备。

3、公司范围内的各新装、改建和扩建工程,电机只允许使用国家允许范围内的高效能电机;变压器只允许使用 S11、SC10型及以上变压器;其它高耗能设备的替代必须符合国家高效耗能标准要求。 (二)淘汰标准和计划进度 1、电机 (1)2013年底,完成列入工业和信息化部《高耗能落后机电设备(产品)淘汰目录》(第一批)J系列在用电机及第二批淘汰目录中1993年前生产的Y系列三相异步电机的淘汰任务。 (2)2015年前,完成2003年前生产的Y系列三相异步电机及Y2和Y3系列电机和低效风机、泵、压缩机等通用设备的淘汰。(见表2)。 (3)鼓励主动淘汰服役时间超过20年(或总运行时间超过6万小时)的高压三相笼型异步电机。 2、变压器 (1)2015年前,完成SCB8干式变压器(SCB8-30~2500/10)、S9和SC9及油式S9以下国家限制和淘汰类变压器的更新。 (2)鼓励主动淘汰服务年限长的高耗能变压器。 3、其它设备 (1)2015年前,完成高低压全纸式系列电容器的淘汰更新。 (2)2015年前,完成铝母排以及发热温度超过65℃的低

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

淘汰电机型号汇总二三批

一、属于高耗能落后机电设备(产品)淘汰目录(第二批)应淘汰的电机型号 1、Y系列三相异步电动机 Y80M1-2 额定功率:0.75 kW 效率:75.0% Y80M2-2 额定功率:1.1 kW 效率:76.2% Y80M1-4 额定功率:0.55kW 效率:71.0% Y80M2-4 额定功率:0.75kW 效率:73.0% 效率:Y90S-2 78.5% 额定功率:1.5kW 效率:81.0% Y90L-2 额定功率:2.2kW 效率:76.2% 额定功率:Y90S-4 1.1kW 效率:78.5% 额定功率:1.5kW Y90L-4 效率:69.0% 额定功率:Y90S-6 0.75kW 效率:额定功率:1.1kW 72.0% Y90L-6 效率:82.6% 额定功率:3kW Y100L-2 效率:81.0% Y100L1-4 额定功率:2.2kW 效率:82.6% 额定功率:3kW Y100L2-4 效率:76.0% 额定功率:1.5kW Y100L-6 效率:额定功率:5.5kW Y132S1-2 85.7% 效率:额定功率:87.0% 7.5kW Y132S2-2 效率:85.7% 额定功率:Y132S-4 5.5kW 效率:87.0% Y132M-4 7.5kW 额定功率:效率:Y132M1-6 额定功率:4kW 82.0% 1 Y132M2-6 额定功率:5.5kW 效率:84.0% Y160M1-2 额定功率:11kW 效率:88.4% Y160M2-2 额定功率:15kW 效率:89.4% Y160L-2 额定功率:18.5kW 效率:90.0% Y160M-4 额定功率:11kW 效率:88.4% Y160L-4 额定功率:15kW 效率:89.4% 效率:Y160M-6 86.0% 额定功率:7.5kW 效率:87.5% Y160L-6 额定功率:11kW 效率:90.5% 额定功率:Y180M-2 22kW 效率:90.0% 额定功率:18.5kW Y180M-4 效率:90.5% 额定功率:Y180L-4 22kW 效率:额定功率:15kW 89.0% Y180L-6 效率:91.4% 额定功率:30kW Y200L1-2 效率:92.0% Y200L2-2 额定功率:37kW 效率:91.4% 额定功率:30kW Y200L-4 效率:90.0% 额定功率:18.5kW Y200L1-6 效率:额定功率:22kW Y200L2-6 90.0% 效率:额定功率:92.5% 45kW Y225M-2 效率:92.0% 额定功率:Y225S-4 37kW 效率:92.5% Y225M-4 45kW 额定功率:效率:Y225M-6 额定功率:30kW 91.5% 2

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻):

电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用Y2-Cap,Y-Cap 会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC 测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但

电脑开关电源电路大全详解

电脑开关电源详解 计算机电源是根据计算机相应的电源标准设计和生产的,在计算机高速发展的这十多年间,计算机电源标准也跟着在不断地发生变化,以适应计算机高速发展的要求,计算机电源主要采用了以下几个标准: PC/XT标准: 是由IBM最先推出个人PC/XT计算机时制定的标准; AT标准: 也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供大约190W的电力供应; ATX标准: 是由Intel公司于1995年提出的工业标准,从最初的ATX1.0开始,ATX标准又经过了多次的变化和完善,目前国内市场上流行的是ATX2.03和ATX12V这两个标准,其中ATX12V 又可分为ATX12V1.2、ATX12V1.3、ATX12V2.0等多个版本。 ATX与AT标准比较:

1、ATX标准取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能; 2、ATX电源首次引进了+3.3V的电压输出端,与主板的连接接口上也有了明显的改进。 ATX12V与ATX2.03标准比较: 1、ATX2.03是1999年以前PII、PIII时代的电源产品,没有P4 4PIN接口; 2、ATX12V加强了+12VDC端的电流输出能力,对+12V的电流输出、涌浪电流峰值、滤波电容的容量、保护等做出了新的规定; 3、ATX12V增加的4芯电源连接器为P4处理器供电,供电电压为+12V; 4、ATX12V加强了+5VSB的电流输出能力,改善主板对即插即用和电源唤醒功能的支持。 ATX12V标准之间的比较: ATX 12V是支持P4的ATX标准,是目前的主流标准,该标准又分为如下几个版本: ATX12V_1.0:2000年2月颁布,P4 时代电源的最早版本,增加P4 4PIN接口;

关于工业企业对国家明令淘汰电机及机电产品(设备)更新的信息通报与建议

对国家明令淘汰电机及机电产品(设备)更新的 信息通报与建议 各事业部、设备管理部、建设工程部、采购部: 为贯彻落实国家“十二五”节能减排规划和工业节能“十二五”规划,工业和信息化部、质检总局组织编制了《电机能效提升计划(2013-2015年)》。按照《山东省2014年节能监察工作指导意见》要求,山东省节能监察部门将在2014年对能源利用及国家明令淘汰机电产品(设备)进行专项监察。同时,我们公司各事业部工厂有部分国家明令淘汰高耗能电机和机电产品在使用。为提高电机能效、促进节能降耗、提高公司经济效益,对相关问题通报如下: 一、提高用电效率、淘汰高耗能电机的必要性: 在中国,电机系统用电量约占全国用电量的60%以上,按照GB18613-2012标准,我国目前生产和在用电机多为低于标准规定的3级能效,平均效率87%以下。发达国家推行的高效电机效率已达91%以上,美国超高效电机效率高达93%,系统运行效率比我国高10~20%。我国若整体提升电机系统效率5-8%,年可实现节电1300-2300亿度,相当于2-3个三峡电站的发电量。 在我们公司,电机系统用电量约占全部用电量的85%以上,绝大部分使用标准效率电机(如Y、Y2等系列)。2013年度用电量8000万度,电费金额约4240万元。若整体平均提升电机系统效率4%,年可实现节电320万度,可节约电费170万元。电机标准等级简要说明:

?低效率电机,效率平均值为低于85%(如J、JO2、Jz等系列电机,已全部 淘汰) ?标准效率电机,效率平均值为87.3%(IE1级,如Y、Y2等系列电机); ?国标3级,高效电机效率平均值为90.2%(IE2级,如YX3等系列电机); ?国标2级,超高效电机效率平均值为91.7%(IE3级,如YE3等系列电机)。 ?国标1级,超超高效电机效率平均值为大于93%(IE4级,如YE4系列电机, 不成熟)。 二、工业和信息化部确定的在用低效电机淘汰路线图

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻

开关电源各模块原理实图讲解

开关电源原理 一、 开关电源的电路组成: PWM

①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、 F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂 波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、 功率变换电路: 1、 MOS 管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS 管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以52、 常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS 管并接,使开关管电压应力减少,EMI 减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V 时,UC3842停止工作,开关管Q1立即关断 。

常用手机字库型号

常用手机字库型号--来自网络,传来传去源头不知是谁! 常用手机字库型号 1.摩托罗拉:338C、368、928+:28F160B3B;998++、8088、6188、6288、L2000、2188、2288、7689、7789 :28F320B3B ;T2688/T2988/T360:49BV1614T ;T190: 28F160C3T ;T191:28F320C3T;V60、V66:320W18B; V60I、V66I、T720、C330:F640W18B;V70:6408W18B; M388、M388C:28F160C3B、28F320C3B;E360:3204C3T;V680、V730:TH50VSF4683A;E365:128L30T;V150:M58WR064EB;V290:2030W0ZB; C550:M36WWR6650;V878:3040L0ZT。 2.三星:A100、A188(24C128):LRS1370、LRS1342、LRS1337;A2XX、A3XX、A4XX、N1XX、N2XX、R2XX(24C256):LRS1337;N620、N628(24C512):LRS1383;T100、T108(24C512):LRS1806、LRS1822、 LRS1387;T4XX、T5XX(24C512):LRS1815A;T208、V2XX、S3XX:LRS1395;S300M:2240WWZD;S2XX、P4XX、C1XX、X458:LRS1828;E1XX、E7XX、X6XX:KBB05A300M、KBB06A300M;X199:S71JL064HB0 ;A590:UP-M420000001、DOWN-M4100000H;E170、E250:KBB05A300M。 3.诺基亚:3310:28W160T;8210:LRS1341;8250、8850、8855、2100:1602C3T;2100:13A1;8310:320W18T; 3650:AM29N643GT;7650:128W18T、AM29N323D;6600:4个640W18T 4.索爱:T20、T29、T2638:28F320C3B;T600、T610、T616、T618、T628:2100W0YTQ0、M36DR432A;K700I:4050L0Y;P910C:320W18T、40000L0ZT 5.西门子:3508、3568、3518:28F320C3T;2118、6688:28F160C3T、28F320C3T;SL55:320J3A、6408W30T 6.飞利浦:9a9++、630:M36DR432A;530、535:M36WR864TL 7.松下:GD88:446311;G50:84VD2348;X77:MC26426312A;X88:MC24882312 8.波导:RC818(24C64):28F016BHG、28F016C3T、49BV1614T;V08:TH50VSF2580、84VD22182、M41000001;V10:LRS1392;V18:M6MGD137W33WG;S1500:29DL323D;S2000:29D6162DT、84VD22182; 9.TCL:6298、6898:3204C3B;8988、8388:160C3T;618:M6MGD137W33TD;3188:1602C3T、M410000024;3288+:M42000001W;3688、3788:1602C3T、3204C3T;1828:MC-222243AF9;Q510:M41000001W;Q550、718:S71JL064HB0;S500:F3204C3T 10.康佳:5218、5219、5238:28F160C3B;7899:28F160C3T;C869:M6MGT64BSB;C928:S71JL128HB0:5288:M41000001W;C909:6408W30B 11.夏新:A6、A8、A8+、A80:84VD22182、M41000001、TH50VSF2580;S6、A90、F99、A68:MT28F322P3F、84VD23381、M41000000G;DA8:MB84VF5F5F4J2 12.科健:K3900:28F160C3B;K60:LRS1337;K606:LRS1828:K519:TH50VPF5783 13.东信:EX200:1604C3B;V770+:M410000022;750:41000000G;755:M41000009B;730:D64D90;730+:M41000000G、M49000003F 14.联想:G630:TH50VPF5783A;G820、G860:MB84VD232850FA;G88:84VD23381HJ;G620:MBM29DL323TE 15.中兴:289(24C128):28F160C3T、28F160B3B;A100、A100+:M41000000S;A288:M42000000S;A388C:M42000002L;A88:M410000021;G218:M50000000 16.南方高科:HI70:TH50VSF2580;S280:84VD22182:HI700:160203T;6618、

开关电源原理图各元件功能详解

电源原理图--每个元器件的功能详解! FS1: 由变压器计算得到Iin值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻): 电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用5Ω-10Ω热敏,若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap):

Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G 所以使用Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ1/4W)。LF1(Common Choke): EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI特性及温升,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI防制效果愈好,但温升可能较高。 BD1(整流二极管):

关于井工第三批淘汰YB系列电机的解释及代替产品

关于井工第三批淘汰YB系列电机的解释及代替产品YB2系列电动机是以90年代属国际先进水平的德国西门子公司1MJ5、1MJ6和1MJ2隔爆型电机系列为赶超目标,结合我国防爆电机行业和市场的实际情况设计开发的防爆电机基本系列Y B的更新换代产品,它达到了90年代国际同类产品的先进水平。将为我国煤炭、石油、化学等工业部门的发展提供新一代的更先进和安全可靠的动力设备。YB2电动机与Y B电动机相比具有如下的技术经济优势和特点: 1、YB2电动机形成了完整的低压隔爆型三相异步电动机的系列。Y B系列的机座号为80―315,共12个机座号,YB2在YB的基础上向两端延伸了三个机座号,即63、71、355。功率等级为0.12―315KW,共32个等级,组成130个规格,比Y B系列增加了9个等级,46个规格,形成了低压隔爆型三相异步电动机比较完整的基本系列,有利于用户配套选用。 2、YB2系列电动机的功率等级与安装尺寸符合I EC标准,它们与同步转速的对应关系同德国DIN42673标准基本一致,并且保持与Y B系列(H80―315)和Y2系列相一致,这为用户的选用和产品出口创造了有利条件。同时,为了满足用户需要,增加了185、220和280千瓦三个功率等级。 3、YB2电动机结构安装形式增加了B1 4、B34及V18等三种,扩大了选用范围。 4、提高了产品的防护性能。YB2电动机的防护性能由Y B

电动机的IP44提高至IP55,有利于产品可靠性的提高。 5、降低了产品的噪声和振动。YB2系列电动机在电磁和结构设计上采取了合理选择电磁参数、选择适当的槽配合和斜槽度,增加机座和端盖的刚度、提高加工精度、改进风扇和风罩结构、选用合适的轴承及提高动、静平衡精度等技术措施,从而有效地降低了电动机的噪声和振动,满足了产品标准提出的负载噪声的考核要求。YB2系列电动机比Y B系列电动机中Ⅱ级产品噪声平均降低了约2―5分贝。YB2电动机噪声、振动限值的降低表明了防爆电机生产企业对用户关于改善产品环保性能要求的关注。 6、提高了产品的防爆安全性。YB2电动机的防爆性能要求符合GB38361.1《爆炸性气体环境用防爆电气设备通用要求》及GB3836.2《爆炸性气体环境用防爆电气设备隔爆型电气设备“d”》的规定。通过设计有效地保证了电动机轴贯通部分的隔爆参数,并从电气、机械设计上采取多衢措施,有效地提高了新系列产品的防爆安全性和可靠性。 7、主要性能指标达到国际同类产品先进水平。 电动机效率和功率因数是表征电动机技术经济性的主要指标,它直接影响电动机有效材料的消耗和运行费用,同时也是评价电动机水平的重要依据。YB2电动机的效率值比1 MJ系列隔爆电动机提高0.52%,功率因数值相当。经用户调查,防爆电动机的负载率一般为75%,YB2电动机在设计负载率65―80%时具有高效率,因此,在正常运行时,YB2电动机具有较好的节能效果。

相关文档
相关文档 最新文档