文档库 最新最全的文档下载
当前位置:文档库 › 基于MATLAB的汽车悬架仿真研究

基于MATLAB的汽车悬架仿真研究

基于MATLAB的汽车悬架仿真研究
基于MATLAB的汽车悬架仿真研究

基于MATLAB的汽车悬架仿真研究

周新鹏

(昆明理工大学交通工程学院,云南昆明)

摘要:针对不同悬架的性能特点,分别建立了被动悬架、主动悬架的车身与车轮二自由度振动模型,基于Matlab 软件用白噪声法模拟了路面不平度随机输入,在此基础上,对被动悬架与主动悬架的性能进行了仿真对比。仿真结果表明:主动悬架能更好地衰减振动,因此具有更佳的平顺性。

关键词:汽车主动悬架被动悬架Matlab

引言

悬架是车架(或承载式车身)与车桥(或车轮)之间一切传力连接装置的总称,用以把路面作用于车轮上的各种力和力矩传递到车架上[1],同时还起到缓和冲击、吸收振动、提高平顺性与乘坐舒适性的作用。传统悬架的刚度和阻尼是按经验或优化设计的方法确定的,在汽车行驶过程中,其性能不变,也无法调节,从而使汽车平顺性与乘坐舒适性受到一定的影响,因此称这种悬架系统为被动悬架。主动悬架可根据汽车的行驶条件的变化对刚度和阻尼进行动态地自适应调节,因此能使悬架系统始终处于最佳状态[2]。车身垂直位移决定了汽车振动时振幅的大小,悬架行程直接影响撞击限位的概率,而车身加速度是评价汽车平顺性的主要指标[3],因此,本研究主要从车身垂直位移、车身加速度、悬架行程等几个方面比较主动悬架与被动悬架的特性。

1.汽车悬架相关理论

汽车悬架系统由弹性元件、导向元件和减振器等部分组成。弹性元件用来传递并承受垂直载荷,它也具有一定的吸振能力;导向元件用来传递纵向力、侧向力和由此产生的力矩;减振器用来迅速减小车身和车架的振动。

汽车悬架一般应具备以下功能:

(1)承受汽车的重量;

(2)承受并缓和汽车行驶时由路面通过车轮传给车身的冲击与振动;

(3)在承受制动力、驱动力和转弯时产生的离心力时,要保证操纵的稳定性:

包括汽车行驶时不要产生过大的侧倾与仰倾,使制动时产生的“点头”现

象尽可能小;

(4)使汽车具有不足转向特性,不产生过度转向;

(5)使汽车与路面有较好的附着特性,不会由于过大的振动而使车轮脱离路面;

(6)在凹凸不平的路面上行驶时,为了保证必要的离地间隙,能主动调节车身高度。

随着人们对汽车舒适性的要求越来越高,传统的被动悬架已不能满足人们的要求,于是适应力更强的主动悬架出现了,成为未来悬架的发展趋势。

2.车身与车轮两自由度振动模型的建立

2.1 被动悬架系统模型

汽车是一个复杂的振动系统,应根据所分析的问题进行简化. 参照文献[3],通常可以将汽车振动系统简化为单质量系统和双质量系统。在远离车轮部分固有频率的较低激振频率范围,轮胎变形很小,可忽略其弹性与车轮质量,从而得到最简单的单质量系统;当汽车悬挂质量分配系数的数值接近1时,可认为前后悬架系统的垂直振动几乎是独立的,此时可以简化为车身与车轮两个自由度的双质量系统。因双质量系统除了能反映车身部分的动态特性之外,还能反映车轮部分在产生高频共振时的动态特性,更接近汽车悬挂系统的实际情况,因此一般将汽车振动系统简化为双质量系统。图1是被动悬架车身与车轮两自由度振动系统模型简图。其中,m2为悬挂质量(车身质量) m1 为非悬挂质量(车轮质量);K为悬挂刚度;C为阻尼器阻力系数;Kt 为轮胎刚度。

车轮与车身垂直位移坐标为z1、z2,q为输入的路面不平度函数,坐标原点选在各自的平衡位置,其微分方程为:

m2Z 2+ (L1(Z2? Z1 ) + L2 Z 1+ L3 Z 2) =0

m1Z 1+ (L1(Z2? Z1 ) + L2 Z 1 +L3 Z 2) =0 (1)

图1被动悬架两自由度振动系统图2主动悬架两自由度振动系统

2.2 主动悬架系统模型

图2是主动悬架系统车身与车轮两自由度振动系统模型简图。它将传感器测量系统运动状态信号输入电控单元,电控单元经过分析、判断后给力发生器发出指令,产生主动控制力,从而满足不同工况对悬架系统特性参数变化的要求。其中L1 、L2 、L3为根据优化得到的反馈系数;u为主动控制力,在此选择u =L1 (Z2 ? Z1 ) + L2Z 1+ L3Z 2 ) ,其他参数与被动悬架系统相同。

其运动方程为:

m2Z 2+ (L1(Z2? Z1 ) + L2 Z 1+ L3 Z 2) =0

m1Z 1+ Kt(Z1-q)-(L1(Z2? Z1 ) + L2 Z 1 +L3 Z 2) =0 (2)3.路面不平度随机激励时域模型的建立

路面不平度随机激励时域模型的模拟方法很多,在此采用白噪声法[4]:

q (t) = ?2πf0q(t) + 2π)u

Gq(n w(t)(3)

q (t) ——路面位移(m);

Gq(n0)——路面不平度系数,m3/cycle;

u——汽车前进速度 m/s;

w(t ) ——均值为零的高斯白噪声;

f0 ——下截止频率,Hz

4.Matlab/Simulink 仿真模型的建立

根据以上建立的物理模型及微分方程,在Matlab/Simulink环境下建立仿真模型[5]。图3是通过式(1)的微分方程组建立起来的被动悬架系统仿真模型,其中q为路面不平度激励;Z 1 、Z 2 分别为车轮与车身垂直位移;Z 1 -Z 2 为车身位移与车轮位移之差,即为悬架行程;Z 2 为车身加速度。图4是通过式(2)的微分方程组建立起来的主动悬架系统仿真模型,图中参数与图3相同。图5是通过式(3)的微分方程建立起来的路面不平度随机激励时域模型,输出为路面不平度激励q。

图 3 被动悬架系统仿真模型

图 4 主动悬架系统仿真模型

图 5 路面不平度随机激励时域模型

5.仿真结果输出与分析

选择某汽车悬架参数值作为仿真参数,被动悬架系统的参数为:m 1 =24kg、m 2 =240kg、K=9475N/m、K t =85270N/m、C=754N?s/m;主动悬架反馈系数的选择为l 1 =7592 N/m、l 2 =-481 N?s/m、l 3 =1916 N?s/m,汽车行驶车速取u=20m/s. 在Matlab/simulink环境中,更改路面不平度系数便可得到不同等级的路面模拟[6,7]。因C级路面的状况比B级路面稍差,为了更好的对比被动悬架与主动悬架的性能差异,以下均以C级路面的不平度作为车辆振动输入。图6为两种悬架在相同路面不平度激励下车身位移的对比,可以看出主动悬架

的车身位移明显比被动悬架小,说明在相同路面激励下,主动悬架的振幅明显比被动悬架小;图7为两种悬架在相同路面不平度激励下的车身加速度的对比,同样也可以看出,主动悬架的车身加速度明显小于被动悬架,说明主动悬架能更好的衰减振动;图8为两种悬架的悬架

行程的对比,可以看出主动悬架的悬架行程小于被动悬架,但是差异并不大,这主要与主动悬架的反馈系数的选择有关,在具体设计时可以同过优化设计的方法选择最佳值,从而达到最理想的效果。

图6两种悬架车身位移对比

图7 两种悬架车身加速度对比

图8两种悬架的悬架行程对比

6.结论

通过建立被动悬架与主动悬架的车身车轮两自由度振动模型,在 Matlab/simulink 环境中进行了仿真,并对两种悬架的车身垂直位移、车身加速度、悬架行程等几个方面进行了对比。对比结果表明,主动悬架能通过对刚度和阻尼的动态调节,使汽车在任何行驶工况下都能更好的起到吸收冲击、衰减振动的作用,表现出更佳的平顺性和乘坐的舒适性。

参考文献

[1] 陈家瑞. 汽车构造[M]. 北京: 机械工业出版社, 2009.

[2] 陈家瑞, 马天飞. 汽车构造[M]. 北京: 人民交通出版社, 2008.

[3] 余志生. 汽车理论[M]. 北京: 机械工业出版社, 2009.

[4] CROLLA DAVE, 喻凡. 车辆动力学及其控制[M]. 北京: 人民交通出版社, 2004.

[5] 邓利军. 基于MATLAB的汽车主动悬架仿真研究[D]. 湖北:襄樊学院,2012.

[6] 劳毅仁. 汽车主动悬架控制系统的研究[D]. 天津: 天津大学, 2007.

[7] 王正林, 王胜开. MATLAB/Simulink 与控制系统仿真[M]. 北京: 电子工业出版社, 2008.

基于MATLAB的汽车平顺性的建模与仿真

(1) 基于MATLAB 的汽车平顺性的建模与仿真 车辆工程专硕1601 Z1604050 晨 1. 数学建模过程 1.1建立系统微分方程 如下图所示,为车身与车轮二自由度振动系统模型: 图中,m2为悬挂质量(车身质量);m1为非悬挂质量(车轮质量);K 为弹簧刚度;C 为减振器阻尼系数;Kt 为轮胎刚度;z1为车轮垂直位移;z2为车身垂直位移;q 为路面不平度。 车轮与车身垂直位移坐标为z1、z2,坐标原点选在各自的平衡位置,其运动方程为: 222121 ()()0m z C z z K z z +-+-=1112121()()()0t m z C z z K z z K z q +-+-+-=

(2) (3) (4) (5) (6) 1.2双质量系统的传递特性 先求双质量系统的频率响应函数,将有关各复振幅代入,得: 令: 232t A m j C K K ωω=-+++ 由式(2)得z 2-z 1的频率响应函数: 将式(4)代入式(3)得z 1-q 的频率响应函数: 式中: 下面综合分析车身与车轮双质量系统的传递特性。车身位移z 2对路面位移q 的频率响应函数,由式(4)及(5)两个环节的频率响应函数相乘得到: 2221()() z m j C K z j C K ωωω-++=+2111()()t t z m j C K K z j C K qK ωωω-+++=++1A j C K ω=+K C j m A ++-=ωω222212 122 z A j C K z m K j C A ωωω+==-++2321 N A A A =-212211=t t A K A K z z z A q z q A N N ==

汽车设计(悬架部分)

前言 本小组程设计的课题是悬架的设计。在选择车型时我们参考以下几个要求:可靠,坚固,耐用,使用成本较低,油耗处于国内中等水平,为当前主流技术水平,车型新颖等等。所以,悬架的设计宜选用成熟技术,零部件,彻底的贯彻“三化”原则,较为合理的成本控制。选择参考车型为日产NV200。 悬架是现代汽车的重要组成部分之一。因而悬架设计成功与否,极大的影响汽车的操纵稳定性和平顺性,对整车性能有着重要的影响。在汽车市场竞争日益加剧的今天,人们对汽车的性能的认识更多的靠更为直接的感观感受,而这种感官感受都是由汽车悬架传递给驾驶者的,人们对汽车悬架的设计也是越来越重视。 因此,对汽车操纵稳定性﹑平顺性的提升成为了各大汽车厂商的共识。与此关系密切的悬架系统也被不断改进,主动半主动悬架等具有反馈的电控系统在高端车辆上的应用日趋广泛。无论定位高端市场,还是普通家庭的经济型轿车,没有哪个厂家敢忽视悬架系统及其在整车中的作用。这一切,都是因为悬架系统对乘员的主观感受密切联系。悬架系统的优劣,乘员在车上可以马上感受到。 现在悬架的设计也是国内汽车厂商一个重要提升的方向。以前对汽车的要求相对较低,国人更注重外观和汽车配置方面的要求,因此对汽车悬架的概念及要求并没有很高的要求。随着现在人们对汽车操纵稳定性﹑平顺性越来越重视,人们不仅需要一辆好看配置高的车,更需要一辆好开乘坐舒适的车。因此现在国内出现很多汽车厂商将新汽车的悬架设计及调校交给国外一些有实力汽车厂商,这也实实在在的提升了自身车型的市场竞争力,不过从另一方面也反映出国内悬架设计及调校所存在的问题,也使我们知道悬架设计的重要性,从而让我们对汽车悬架设计更加重视。 悬架从无到有,是人们对汽车稳定性﹑平顺性不断追求下诞生。悬架从简单到复杂,是人们对更高的汽车稳定性﹑平顺性和操纵稳定性的不断追求。所以对悬架设计的重视,就能使整车性能得以提升,从而提高车型的竞争力,赢得更好的表现。 而悬架设计涉及到部件与整体的关系。一句话:整体离不开部件,部件也成不了整体。整体可以提供部件提供不了的功能,反过来部件又对整体有着重要影响。 正因为悬架在现代汽车上的重要重要作用,应该重视汽车悬架的设计。只有认真,严谨的设计才能确保其与整车的完美匹配。而要做到这一点,就必须,查阅大量相关书籍,图册,行业和国家标准。 这些是对我们这些将来要从事汽车设计,制造工作的工科出身的大学生的必须经历的一个必不可少的训练。没有经过严格的训练的洗礼,是不可能具备这种专业精神和素质的。通过这样的设计让我们对汽车整体及局部有更好更深的认识,使我们在今后的学习及工作道路上有更好的适应性,从而提高自身实力。

汽车钢板弹簧悬架设计方案

汽车钢板弹簧悬架设计 (1)、钢板弹簧种类 汽车钢板弹簧除了起弹性元件作用之外,还兼起导向作用,而多片弹簧片间磨擦还起系统阻尼作用。由于钢板弹簧结构简单,使用维修、保养方便,长期以来钢板弹簧在汽车上得到广泛应用。目前汽车使用的钢板弹簧常见的有以下几种。 ①通多片钢板弹簧,如图1-a所示,这种弹簧主要用在载货汽车和大型客车上,弹簧弹性特性如图2-a所不,呈线性特性。 变形 载荷变形 载荷变形载荷 图1 图2 ②少片变截面钢板弹簧,如图1-b所不,为减少弹簧质量,弹簧厚度沿长度方向制成等厚,其弹性特性如一般多片钢板弹簧一样呈线性特性图2-a。这种弹簧主要用于轻型货车及大、中型载货汽车前悬架。 ③两级变刚度复式钢板弹簧,如图1-c 所示,这种弹簧主要用于大、中型载货汽车后悬架。弹性特性如图2-b 所示,为两级变刚度特性,开始时仅主簧起作用,当载荷增加到某值时副簧与主簧共同起作用,弹性特性由两条直线组成。 ④渐变刚度钢板弹簧,如图1-d 所示,这种弹簧多用于轻型载货汽车与厢式客车后悬架。副簧放在主簧之下,副簧随汽车载荷变化逐渐起作用,弹簧特性呈非线性特性,如图2-c 所示。

多片钢板弹簧 钢板弹簧计算实质上是在已知弹簧负荷情况下,根据汽车对悬架性能(频率)要求,确定弹簧刚度,求出弹簧长度、片宽、片厚、片数。并要求弹簧尺寸规格满足弹簧的强度要求。 3.1钢板弹簧设计的已知参数 1)弹簧负荷 通常新车设计时,根据整车布置给定的空、满载轴载质量减去估算的非簧载质量,得到在每副弹簧上的承载质量。一般将前、后轴,车轮,制动鼓及转向节、传动轴、转向纵拉杆等总成视为非簧载质量。如果钢板弹簧布置在车桥上方,弹簧3/4的质量为非簧载质量,下置弹簧,1/4弹簧质量为非簧载质量。 2)弹簧伸直长度 根据不同车型要求,由总布置给出弹簧伸直长度的控制尺寸。在布置可能的情况下,尽量增加弹簧长度,这主要是考虑以下几个方面原因。 ①由于弹簧刚度与弹簧长度的三次方成反比,因此从改善汽车平顺性角度看,希望弹簧长度长些好。 ②在弹簧刚度相同情况下,长的弹簧在车轮上下跳动时,弹簧两卷耳孔距离变化相对较小,对前悬架来说,主销后倾角变化小,有利于汽车行驶稳定性。 ③增加弹簧长度可以降低弹簧工作应力和应力幅,从而提高弹簧使用寿命。 ④增加弹簧长度可以选用簧片厚的弹簧,从而减少弹簧片数,并且簧片厚的弹簧对提高主片卷耳强度有利。 3)悬架静挠度 汽车簧载质量与其质量组成的振动系统固有频率是评价汽车行驶平顺性的重要参数。悬架设计时根据汽车平顺性要求,应给出汽车空、满载时前、后悬架频率范围。如果知道频率,就可以求出悬架静挠度值c δ。选取悬架静挠度值时,希望后悬架静挠度值2c δ小于前悬架静挠度值1c δ,并且两值最好接近,一般推荐:

基于MATLAB的汽车振动控制仿真

摘要 机械振动主要是谐波,阻尼,强制三种。对于三个振动模型,列出了振动方程,然后给出了三个振动的初始条件。在模拟过程中产生的一系列速度和汽车行驶时候产生的振动,势能和机械能的三个功能可以通过MATLAB函数模拟,以随时间改变图像。然后,我们可以经过一系列的计算的出我们需要的函数方程和一些弹簧模拟图像,在后面可以进行一系列的导数计算,在MATLAB软件中可以画出不同的位移,汽车造成的损坏的函数图像,再通过在MATLAB的绘制,可以简单明细的看出汽车振动的能量变化。最后再比较不同的图像,可以得出不同的结果,可以进行汽车改良。就可以探索出最佳的方法来研究汽仿真。 关键词:简谐振动阻尼振动评价系数仿真软件。

Abstract Mechanical vibration is mainly harmonic, damping, forced three. For the three vibration models, the vibration equations are listed, and then the initial conditions for the three vibrations are given. The three functions produced during the simulation process and the three functions of vibration, potential energy and mechanical energy generated when the vehicle travels can be simulated by MATLAB functions to change the image over time. Then we can go through a series of calculations out of the functional equations we need and some of the spring simulations of the image, which can be followed by a series of derivative calculations that can be plotted in the MATLAB software for different displacements, , And then through the drawing in MATLAB, you can simply see the details of the car vibration energy changes. Finally compare the different images, you can get different results, you can improve the car. You can explore the best way to study the steam simulation. Keywords:simple harmonic oscillationdamping oscillationappraisement coefficientsimulation software.

基于MATLAB的汽车运动控制系统设计仿真

课程设计 题目汽车运动控制系统仿真设计学院计算机科学与信息工程学院班级2010级自动化班 姜木北:2010133*** 小组成员 指导教师吴 2013 年12 月13 日

汽车运动控制系统仿真设计 10级自动化2班姜鹏2010133234 目录 摘要 (3) 一、课设目的 (4) 二、控制对象分析 (4) 2.1、控制设计对象结构示意图 (4) 2.2、机构特征 (4) 三、课设设计要求 (4) 四、控制器设计过程和控制方案 (5) 4.1、系统建模 (5) 4.2、系统的开环阶跃响应 (5) 4.3、PID控制器的设计 (6) 4.3.1比例(P)控制器的设计 (7) 4.3.2比例积分(PI)控制器设计 (9) 4.3.3比例积分微分(PID)控制器设计 (10) 五、Simulink控制系统仿真设计及其PID参数整定 (11) 5.1利用Simulink对于传递函数的系统仿真 (11) 5.1.1 输入为600N时,KP=600、KI=100、KD=100 (12) 5.1.2输入为600N时,KP=700、KI=100、KD=100 (12) 5.2 PID参数整定的设计过程 (13) 5.2.1未加校正装置的系统阶跃响应: (13) 5.2.2 PID校正装置设计 (14) 六、收获和体会 (14) 参考文献 (15)

摘要 本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m 文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

最新汽车悬架双质量系统的传递特性仿真研究

实例13 汽车悬架双质量系统的传递特性仿真研究 根据汽车理论可知悬架双质量系统微分方程为 0)()()(0)()(1212111121222=-+-+-+=-+-+q z k z z k z z c z m z z k z z c z m t (13-1) 对式(13-3)和式(13-4)进行拉氏变换并整理,可得 t t qk k cs z k k cs s m z k cs z k cs s m z ++=++++=++)()()()(22 111222 (13-2) 由上式可得2z 和1z 之间的传递函数为 k cs s m k cs z z s G +++== 2 2121)( (13-3) 另,,,2 132221t t k k cs s m A k k cs s m A k cs A +++=+++=+=将(13-3)代入(13-2),可得到 1z 与路面激励q 的传递函数为 N k A A A A k A q z s G t t 2212321 2)(=-== (13-4) 13.1 车身位移z 2与路面激励位移q 的传递函数 现在可分析车轮与车身双质量系统的传递函数。由式(13-3)(13-4)相乘可以得到车 身位移z 2与路面激励位移q 的传递函数为 N k A s G s G q z s G t 1212 )()()(=== (13-5) 由于传递函数分母为高阶多项式相乘,计算量比较大,因此可利用MATLAB 多项式计算函 数求出分母N 的系数。具体程序如下:

m2=317.5; m1=45.4; k=22000; kt=192e3; c=1.5e3; a1=[c k]; a2=[m2 c k]; a3=[m1 c k+kt]; n1=conv(a3,a2); N1=poly2sym(n1); n2=conv(a1,a1); N2=poly2sym(n2); nn=N1-N2; pretty(nn); a1=[c*kt k*kt]; den=[28829/2,544350,68943800,288000000,4224000000]; sys=tf(a1,den); w=0.1:.1:100; >> figure(1) >> [h,w1]=freqs(a1,den,w); >> freqs(a1,den,w); 运行可得到传递函数表达式以及传递函数的频率响应特性图: Transfer function: 2.88e008 s + 4.224e009 ------------------------------------------------------------------- 1.441e004 s^4 + 544350 s^3 + 6.894e007 s^2 + 2.88e008 s + 4.224e009 10 10 10 10 Frequency (rad/s) P h a s e (d e g r e e s ) 10 10 10 10 10 10 10 10 1 Frequency (rad/s) M a g n i t u d e

现代汽车悬架技术的发展趋势

现代汽车悬架技术的发展趋势 肖永清 内容提要:本文阐述了现代汽车悬架系统的种类、结构特点、功能与工作原理;介绍了汽车悬架系统的新技术及其发展趋势。 关键词:汽车悬架结构原理发展趋势

1.汽车悬架系统的种类、结构特点与功能 所谓汽车悬挂,就是指汽车车身和车轮弹性地连接起来的机构。俗称汽车的避震、悬挂和悬架的意思都一样,都是指车轮与车身之间的连接物,避震是通俗叫法,而悬挂和悬架均是"学名"。 悬架是将车身与车桥、车轮弹性相连,传递作用在车轮和车身之间的力和力矩,缓和由不平路面传给车身的冲击,并衰减由此引起的振动,以保证汽车正常行驶时的平顺性、操纵稳定性和乘坐舒适性。目前多数汽车的悬架都是被动式悬架,即汽车的车轮和车身状态只能被动地取决于路面及行驶状况以及汽车的弹性支承元件、减振器和导向机构。 汽车上的悬挂结构大体可分为两种:一种是左、右车轮用一根刚性轴连起来并与车身相连的叫非独立悬挂。常见卡车使用的钢板弹簧避震系统就是非独立悬挂。它具有结构简单、强度高、稳定性好、容易制造、维修方便、轮胎磨损小和价格低廉等优点。其缺点是当汽车在高速或在不平路面行驶时,容易颠簸,使人感到不舒服。 另一种是左、右车轮不连在一根轴上,而是单独通过悬挂与车身连接的叫独立悬挂。往往轿车的舒适性比卡车好, 是因为这些车采用了独立悬挂,其结构是用轻便的杠杆、摆臂代替了整体车轴,当一侧车轮驶入凹凸不平路面时,不会牵动另一侧车轮而引起冲击振动,这就提高了乘座舒适性。但采用独立悬挂后也相应使结构复杂,成本上升。常见的独立悬挂结构型式有:螺旋弹簧双横臂独立悬挂、扭杆式独立悬挂、滑柱摆臂式独立悬挂和麦弗逊式独立悬挂等。 现代轿车的前轮都采用独立悬挂,后轮虽然比前轮采用独立悬挂的要少,但中、高级轿车一般都是四轮独立悬挂。雪铁龙有一种液压悬挂,它是用一个液压筒代替一组弹簧和减震器。液压筒根据中央控制器的指令来调整自身的工作情况。而中央控制器是按车身上的传感器所收集的资料信息计算后发出指令的。这些信息资料包括车速、车身侧偏程度、方向盘及油门位置等。现生产的雪铁龙汽车都使用了液压悬挂,便成其"独门"技术,自然也成为它的最大个性之一。 此外还有一种悬挂就是空气悬挂。它是在夹有连线的橡胶囊内充入压缩空气组成。除具有减震功能和导向机构外,还设有车身 高度调节装置。空气悬挂虽然储 能量大,但因结构复杂、维修麻 烦,以及轮廓尺寸大不易布置等 缺点,目前多用于大客车和无轨 电车上。 电控悬架系统主要有半主动 悬架和主动悬架两种。半主动悬 架是指悬架元件中的弹簧刚度和 减振器阻尼系数之一可以根据需 要进行调节。为减少执行元件所

车辆悬架模型的仿真与分析

车辆悬架模型的仿真与分析 目前,关于汽车模型的研究很多。詹长书等人研究了二自由度懸架模型的频域响应特性。李俊等人模拟了不同车速和路况下二自由度车辆模型的动力学。郑兆明研究了二自由度车轮动载荷的均方值。基于Matlab建立了更加复杂的悬架模型,分析了其在模拟路面作用下的响应,分析了系统阻尼参数和刚度参数变化对车身动态响应的影响。 标签:汽车悬架;模型;模拟 据公安部交通管理局统计,截至2019年3月底,全国机动车保有量达3.3亿辆,其中汽车达2.46亿辆,驾驶人达4.1亿,机动车、驾驶人总量及增量均居世界第一。随着汽车数量的迅速增加,人们开始越来越重视汽车的乘坐舒适性,平顺性是舒适性的重要组成部分。振动是影响平顺性的主要因素,因此车身系统参数的合理设计对提高汽车的舒适性和安全性具有重要意义。 1车辆悬架模型 传统的悬架系统一般由弹性元件和参数固定的阻尼元件组成。本文选择汽车后轮的任意悬架系统建立四分之一模型。该模型的简图如下图1所示。其中,1是螺旋弹簧,2是纵向推力杆,3是减震器,4是横向稳定器,5是定向推力杆。 2悬架刚度分析 2.1悬架垂直刚度分析 悬架系统的垂直刚度可以通过分析悬架两个车轮在同一方向上的运行情况来获得。因为装有发动机的车辆的前轴载荷变化很大,所以前悬架通过调节螺旋弹簧的刚度和自由长度来确保车身姿态。后悬架的轴重变化不大,只有螺旋弹簧的自由长度略有调整,后悬架螺旋弹簧的刚度没有调整。这导致带有发动机的B 车型前悬架刚度略有增加。 除了悬架结构和参数的匹配外,前后悬架固有频率的正确匹配是降低车辆振动耦合度、有效提高车辆乘坐舒适性的重要方法之一。由于B型前悬架的轴重变化很大,通过调整前悬架螺旋弹簧的刚度,前悬架和后悬架的偏置频率比几乎不变。 2.2悬架倾角的刚度分析 一般来说,乘用车的前后侧倾刚度比要求在1.4和2.6之间,以满足略微不足的转向特性的要求。B车型前悬架的侧倾刚度略高于C车型,这是由前悬架刚度的增加引起的。前悬架侧倾刚度的增加有助于减小侧倾角度,但变化很小。

汽车设计悬架系统

汽车设计悬架系统

目录第一章悬架的结构形式的选择 第一节悬架的构成和类型--------------------- 第二节独立悬架结构形式分析 第三节前后悬架的选择 第二章悬架主要参数的选择 第一节悬架性能参数的选择 第二节悬架的自振频率 第三节侧倾角刚度 第四节悬架的静动挠度的选择 第三章弹性元件的设计分析及计算 第一节前悬架弹簧 第二节后悬架弹簧 第四章独立悬架导向机构的设计分析及计算第一节导向机构设计要求 第二节麦弗逊独立悬架示意图 第三节导向机构受力分析 第四节横臂轴线布置方式 第五节导向机构的布置参数 第五章减震器的设计分析及计算 第一节

第一章悬架的结构形式的选择 1.1悬架的构成和类型 1.1.1构成 (1)弹性元件 具有传递垂直力和缓和冲击的作用。常见的弹性元件有:钢板弹簧、螺旋弹簧、扭杆弹簧、空气弹簧、油气弹簧、橡胶弹簧等。 (2)导向装置 其作用是传递除弹性元件传递的垂直力以外的各种力和力矩。常见的导向装置 有:斜置单臂式、单横臂式、双横臂式、双纵臂式、麦弗逊式等。 (3)减震器 具有衰减振动的作用。常见的减震器有:简式减震器、充气式减震器、阻力可调式减震器等。 (4)缓冲块 其作用是减轻车轴对车架的直接冲撞,防止弹性元件产生过大的变形。 (5)横向稳定器 其作用是减少转弯行驶时车身的侧倾角和横向角振动。 1.1.2 类型 悬架可分为非独立悬架和独立悬架。 (1)非独立悬架 非独立悬架的特点是:左、右车轮用一根整体轴连接,再经过悬架与车架连接。

优点是:结构简单、制造容易、维修方便、工作可靠 缺点是:①由于整车布置上的限制,钢板弹簧不可能有足够的长度(特别是前悬架),使之刚度较大,所以汽车平顺性较差。 ②簧下质量较大。 ③在不平路面上行驶时,左、右车轮相互影响,并使车轴和车身倾斜。 ④当两侧车轮不同步跳动,车轮会左、右摇摆,使前轮容易产生摆振。 ⑤前轮跳动时,悬架易与转向传动机构产生运动干涉。 ⑥汽车转弯行驶时,离心力也会产生不利的轴转向特性。 ⑦车轴上方要求有与弹簧行程相适应的空间。 然而由于非独立悬架结构简单、易于维护以及可以使用多种类型的弹性元件等优点,非独立悬架多用于载货汽车和大客车的前、后悬架。 (2)独立悬架 独立悬架的特点是:左、右车轮通过各自的悬架与车架连接。 优点是:①簧下质量小。 ②悬架占用的空间小 ③弹性元件只承受垂直力,所以可以用刚度小的弹簧,使车身振动频率降低,改善了汽车行驶的平顺性。 ④由于采用了断开式车轴,所以能降低发动机的位置高度,使整车的质心高度下降,改善了汽车行驶的稳定性。 ⑤左、右车轮各自独立运动互不影响,可减少车身的倾斜和振动,同时在好的路面上能获得良好的地面附着能力。 缺点是:结构复杂、成本较高、维修困难

独立悬架导向机构的设计

汽车悬架--独立悬架导向机构的设计 第五节独立悬架导向机构的设计 一、设计要求 对前轮独立悬架导向机构的要求是: 1)悬架上载荷变化时,保证轮距变化不超过±4.Omm,轮距变化大会引起轮胎早期磨损。 2)悬架上载荷变化时,前轮定位参数要有合理的变化特性,车轮不应产生纵向加速度。 3)汽车转弯行驶时,应使车身侧倾角小。在0.4g侧向加速度作用下,车身侧倾角不大于6°~7°,并使车轮与车身的倾斜同向,以增强不足转向效应。 4)汽车制动时,应使车身有抗前俯作用;加速时,有抗后仰作用。 对后轮独止:悬架导向机构的要求是: 1)悬架上的载荷变化时,轮距无显著变化。 2)汽车转弯行驶时,应使车身侧倾角小,并使车轮与车身的倾斜反向,以减小过多转向效应。 此外,导向机构还应有够强度,并可靠地传递除垂直力以外的各种力和力矩。 目前,汽车上广泛采用上、下臂不等长的双横臂式独立悬架(主要用于前悬架)和滑柱摆臂(麦弗逊)式独立悬架。下面以这两种悬架为例,分别讨论独立悬架导向机构参数的选择方法,分析导向机构参数对前轮定位参数和轮距的影响。 二、导向机构的布置参数 1.侧倾中心 双横臂式独立悬架的侧倾中心由如图6—24所示方式得出。将横臂内外转动点的连线延长,以便得到极点P,并同时获得P点的高度。将P点与车轮接地点N连接,即可在汽车轴线上获得侧倾中心W。当横臂相互平行时(图6—25),P点位于无穷远处。作出与其平行的通过N点的平行线,同样可获得侧倾中心W。 双横臂式独立悬架的侧倾中心的高度hw通过下式计算得出 滑柱摆臂式独立悬架的侧倾中心由如图6—26所示方式得出。从悬架与车身的固定连接点E 作活塞杆运动方向的垂直线并将下横臂线延长。两条线的交点即为P点。 滑柱摆臂式悬架的弹簧减振器柱EG布置得越垂直,下横臂GD布置得越接近水平,则侧倾小心W就越接近地面,从而使得在车轮上跳时车轮外倾角的变化很不理想。如加长下横臂,则可改善运动学特性。 麦弗逊式独立悬架侧倾中心的高度hw可通过下式计算 式中 2.侧倾中心 在独立悬架中,前后侧倾中心连线称为侧倾轴线。侧倾轴线应大致与地面平行,且尽可能离地面高些。平行是为了使得在曲线行驶时前、后轴上的轮荷变化接近相等,从而保证中

汽车半悬挂系统建模与分析(现代控制理论大作业)

XX大学 现代控制理论 ——汽车半主动悬架系统的建模与分析 姓名:XXX 学号:XXXX 专业:XXXX

一. 课题背景 汽车的振动控制是汽车设计的一个重要研究内容,涉及到汽车的平顺性和操纵稳定性。悬架系统是汽车振动系统的一个重要子系统,其振动传递特性对汽车性能有很大影响。因此设计性能良好的悬架系统以减少路面激励的振动传递,从而提高汽车的平顺性和操纵稳定性是汽车振动控制研究的重要课题。 悬架系统是汽车车身与轮胎间的弹簧和避震器组成整个支撑系统,用于支撑车身,改善乘坐舒适度。而半主动悬架是悬架弹性元件的刚度和减振器的阻尼系数之一可以根据需要进行调节控制的悬架。 目前,半主动悬架研究主要集中在调节减振器的阻尼系数方面,即将阻尼可调减振器作为执行机构,通过传感器检测到汽车行驶状况和道路条件的变化以及车身的加速度,由ECU 根据控制策略发出脉冲控制信号实现对减振器阻尼系数的有级可调和无级可调。 二. 系统建模与分析 1.1 半主动悬架系统的力学模型 以二自由度 1/4半主动悬架模型为例,并对系统作如下假设: (1) 悬挂质量与非悬挂质量均为刚体; (2) 悬架系统具有线性刚度和阻尼; (3) 悬架在工作过程中不与缓冲块碰撞; (4) 轮胎具有线性刚度,且在汽车行驶过程中始终与地面接触。 综上,我们将该系统等效为两个质量块M ,m ;两个弹簧系统Ks ,Kt ;一个可调阻尼器(包含一个常规 阻尼器Cs 和一个变化阻尼力F ),如图1所示。 图1 系统力学模型 1.2 半主动悬架系统的数学模型 由减振器的简化模型得:N S =-+F C V F 对m 进行分析:()211201122()t s s d z dz dz m K z z K z z C F dt dt dt ?? =------ ??? 即:()()1011212()t s s mz K z z K z z C z z F =------ 对M 进行分析:2212122 ()s s d z dz dz M K z z C F dt dt dt ?? =-+-+ ??? 即:()()21212s s Mz K z z C z z F =-+-+

汽车悬架史上最全介绍(图文)

悬架 定义:汽车的车架与车桥或车轮之间的一切传力连接装置的总称 作用:传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。 组成:(1)减振器 功能: 减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为 双筒式,单筒充气式和双筒充气式三种。 工作原理:在车轮上下跳过程中,减振器活塞在工作腔内往复运动,使减振器液体通 过活塞上的节流孔,由于液体有一定的粘性和液体通过节流孔时与孔壁间产生摩擦, 使动能转化成热能散发到空气中,从而达到衰减振动功能。 (2)弹性元件 功能:支撑垂直载荷,缓和和抑止不平路面引起的振动和冲击.弹性元件主要有钢板弹簧,螺旋 弹簧,扭杆弹簧,气弹簧和橡胶弹簧等。 原理:用具有弹性较高材料制成的零件,在车轮受到大的冲击时,动能转化为弹性势能储存 起来,在车轮下跳或回复原行驶状态时释放出来。 (3)导向机构 作用:传递力和力矩,同时兼起导向作用。在汽车的行驶过程当中,能够控制车轮的运动轨迹。 轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。

matlab四自由度汽车悬架仿真系统

线性系统理论大作业 1/2汽车模型悬架系统建模与分析学院:自动化学院 姓名学号:陈晨(16) 周铉(84) 联系方式: 时间: 2015年6月

目录 一、研究内容 .....................................................错误!未定义书签。 1、问题描述.................................................错误!未定义书签。 2、系统建模.................................................错误!未定义书签。 二、系统分析 .....................................................错误!未定义书签。 1、状态空间方程.........................................错误!未定义书签。 2、系统稳定性判断.....................................错误!未定义书签。 3、使用不同的采样周期将系统离散化求得其零极点分布图 .......................................................................错误!未定义书签。 4、系统一、二正弦响应曲线 ....................错误!未定义书签。 5. 系统一、二的阶跃响应..........................错误!未定义书签。 三、系统能控能观性判别.................................错误!未定义书签。 1、根据能控性秩判据.................................错误!未定义书签。 四、极点配置 .....................................................错误!未定义书签。 五、状态观测器设计.......................................错误!未定义书签。 1、全维状态观测器设计.............................错误!未定义书签。 2、降维状态观测器.....................................错误!未定义书签。 一、研究内容 本文对题目给定的1/2汽车四自由度模型,建立状态空间模型进行系统分析,并通过MATLAB仿真对系统进行稳定性、可控可观测性分析,对得的结果进行分析,得出系统的综合性能。在此基础上,设计全维和降维状态观测器以及状态反馈控制律和对性能的优化设计。

汽车悬架设计毕业论文

汽车悬架设计毕业论文 目录 摘要............................................................ a 目录............................................................ I 绪论 (1) 1.1汽车悬架概述 (1) 1.2论文研究的背景及意义 (2) 1.3 毕业论文研究容 (2) 第2章汽车悬架概述 (3) 2.1悬架基本概念 (3) 2.1.1悬架概念 (3) 2.1.2悬架最主要的功能 (3) 2.1.3悬架基本组成 (3) 2.1.4悬架类型 (4) 2.2悬架系统研究与设计的领域 (4) 2.3悬架设计要求 (4) 2.4悬架的主要特性 (5) 2.4.1 悬架的垂直弹性特性 (5) 2.4.2 减振器的特性 (6) 2.5 本章小结 (6) 第3章悬架对汽车主要性能的影响 (7) 3.1悬架对汽车平顺性的影响 (7)

3.1.1悬架弹性特性对汽车行驶平顺性的影响 (7) 3.1.2悬架系统中的阻尼对汽车行驶平顺性的影响 (10) 3.1.3非簧载质量对汽车行驶平顺性的影响 (11) 3.1.4改善平顺性的主要措施 (12) 3.2悬架与汽车操纵稳定性 (12) 3.2.1 汽车的侧倾 (12) 3.2.2侧倾时垂直载荷对稳态响应的影响 (14) 3.3本章小结 (16) 第4章悬架主要参数的确定 (17) 4.1 悬架静挠度的计算 (17) 4.2 悬架动挠度的计算 (17) 第5章双横臂独立悬架导向机构的设计 (19) 5.1 导向机构设计要求 (19) 5.2导向机构的布置参数 (19) 5.2.1侧倾中心 (19) 5.2.2侧倾轴线 (20) 5.2.3纵倾中心 (20) 5.2.4悬架横臂的定位角 (21) 5.2.5纵向平面上、下横臂的布置方案 (21) 5.2.6横向平面上、下横臂的布置方案 (22) 5.2.7水平面上、下横臂摆动轴线的布置方案 (23) 5.2.8上、下横臂长度的确定 (24)

基于Matlab的车牌识别(完整版)

基于Matlab的车牌识别 摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。 一、设计原理 车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。 二、设计步骤 总体步骤为: 车辆→图像采集→图像预处理→车牌定位

→字符分割→字符定位→输出结果 基本的步骤: a.车牌定位,定位图片中的车牌位置; b.车牌字符分割,把车牌中的字符分割出来; c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。 车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。 (1)车牌定位: 自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。 流程图: (2)车牌字符分割 : 完成车牌区域的定位后,再将车牌区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足车牌的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。 导入原始图像 图像预处理增强效果图像 边缘提取 车牌定位 对图像开闭运算

中级轿车多连杆后悬架设计-王昱昕-20070306

中级轿车多连杆后悬架设计 --------几何学定义(GEOMETRY) 二零零七年三月六日

序言 本文档主要从整车总布置角度出发,在总体概念设计阶段进行悬架的选型、硬点、几何定义设计,从而确定悬架各相关部件的详细结构设计边界和输入信息。

拖曳臂(TRAILING ARM)后悬架 优点: ?沿Y和Z方向的尺寸较小,因此对于后部车厢布置非常有利,能有较好的空间利用率(尤其是轮罩之间的宽度较大)和容易布置备胎和油箱。 ?悬架和车身容易装配 ?悬架结构简单: 零部件少、容易分装 ?由于没有衬套,滞后性较小 ?容易保护后驱 Compatibility with traction 缺点: ?在沿着车身与拖曳臂的旋转轴,拖曳臂的长度和宽度有比较大的杠杆比,因此当存在侧向载荷时,有不利的前束。 ?在车身的横向翻转时有不利的车轮外倾角(如果有一个比较合适的悬转轴,有可能纠正外倾角,但这样会影响轮罩之间的宽度。) ?不好的调整潜能: 所有的几何特征和相应变形参数都是相关联的。 ?由于缺少衬套,不能进行有效的衰减震动。

扭曲梁(TWIST AXLE)后悬架 优点: ?悬架和车身容易装配 ?悬架结构简单: 零部件少、容易分装 ?垂直尺寸较小 ?水平方向尺寸较小,有利于布置备胎和油箱 ?在车轮上下跳动不同时,可以进行自动调整车轮外倾角?当车身有横向倾斜时,可以进行前束自动调整 ?有好的操纵性能,尤其是在光滑路面 ?当存在障碍物时,有增大轮距的能力 ?如果设计要求拉焊,有比较大的抗误操作强度 缺点: ?对横向和纵向的梁的拉焊工艺有比较严格的质量要求?不利于进行驱动 ?对车辆动态最小化比较敏感–轴上的满载 变化 Skoda Fabia

悬架技术现状及发展趋势

悬架技术现状及发展趋势 李辰20071099 车辆工程1班03110701 悬架系统是汽车的重要组成部分之一。汽车悬架系统是指连接车身和车轮之间全部零部件的总称,主要由弹簧、减振器和导向机构三大部分组成,其作用是传递车轮和车架之间的一切力和力矩,并且缓和由不平路面传给车架(或车身)的冲击载荷,衰减由此引起的承载系统的振动,以保证汽车的平顺行驶。当汽车行驶在不同路面上而使车轮受到随机振动时,由于悬架装置实现了车体和车轮之间的弹性支承,有效地抑制、降低了车体与车轮的动载和振动,从而保证汽车行驶的平顺性和操纵稳定性,达到提高平均行驶速度的目的。 舒适性是轿车重要的性能之一。舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。所以,汽车悬架是保证乘坐舒适性的重要部件。同时,汽车悬架作为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。因此,轿车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。 现代轿车的悬架都有减振器。当轿车在不平坦的道路上行驶,车身会发生振动,减振器能迅速衰减车身的振动,利用本身的油液流动的阻力来消耗振动的能量。人们为了更好地实现轿车的行驶平稳性和安全性,将阻尼系数不固定在某一数值上,而是能随轿车运行的状态而变化,使悬架性能总是处在最优的状态附近。因此,有些轿车的减振器是可调式的,将阻尼分成两级或三级,根据传感器信号自动选择所需要的阻尼级。 在现代轿车悬架上,麦弗逊式及烛式悬架都将螺旋弹簧和减振器组合在一起,这是因为乘坐的舒适性有赖于对冲击的缓冲和对冲击产生的振动的消减两个方面,缺一不可。只有缓冲没有消振只能暂时缓和冲击力的影响而不能最终使它消失;只有对振动的消减而没有缓冲则不能有效地避免冲击所造成的破坏。螺旋弹簧是缓冲元件,它具有不需润滑,不怕污垢,重量小且占空间位置少的优点。当路面对车轮的冲击力传到螺旋弹簧时,螺旋弹簧产生变形,吸收车轮的动能,转换为螺旋弹簧的位能(势能),从而缓和了地面的冲击对车身的影响。 但是,螺旋弹簧本身不消耗能量,储存了位能的弹簧将恢复原来的形状,把位能重新变为动能。如果单独使用弹簧而没有消振元件,汽车就会像杂技演员跳“蹦蹦床”一样,受到一次冲击后连续不断地上下运动。因此,螺旋弹簧与减振器组合使用是一种力学上的巧妙组合,充分利用二者的特点,能够即时缓冲地面的冲击,并在螺旋弹簧几个来回过程中拖动减振器活塞,驱动油液把大部分振动能量吸收掉,使得汽车迅速平稳下来。 为了提高轿车的舒适性,现代轿车悬架的垂直刚度值设计得较低,用通俗话来讲就是很“软”,这样虽然乘坐舒适了,但轿车在转弯时,由于离心力的作用会产生较大的车身倾斜角,直接影响到操纵的稳定性。为了改善这一状态,许多轿车的前后悬架增添横向稳定杆,当车身倾斜时,两侧悬架变形不等,横向稳定杆就会起到类似杠杆作用,使左右两边的弹簧变形接近一致,以减少车身的倾斜和振动,提高轿车行驶的稳定性。

基于MATLAB的汽车制动系统设计与分析软件开发.

基于MAT LAB 的汽车制动系统 3 设计与分析软件开发 孙益民(上汽汽车工程研究院 【摘要】根据整车制动系统开发需要, 利用MAT LAB 平台开发了汽车制动系统的设计和性能仿真软件。 该软件用户界面和模块化设计方法可有效缩短开发时间, 提高设计效率。并以上汽赛宝车为例, 对该软件的可行性进行了验证。 【主题词】制动系汽车设计 统分成两个小闭环系统, 使设计人员更加容易把 1引言 制动性能是衡量汽车主动安全性的主要指标。如何在较短的开发周期内设计性能良好的制动系统一直是各汽车公司争相解决的课题。 本文拟根据公司产品开发工作需要, 利用现有MA T LAB 软件平台, 建立一套面向设计工程师, 易于调试的制动开发系统, 实现良好的人机互动, 以提高设计效率、缩短产品开发周期。 握各参数对整体性能的影响, 使调试更具针对性。 其具体实施过程如图1所示。 3软件开发

与图1所示的制动系统方案设计流程对应, 软件开发也按照整车参数输入、预演及主要参数确定, 其他参数确定和生成方案报告4个步骤实现。3. 1车辆参数输入 根据整车产品的定位、配置及总布置方案得出空载和满载两种条件下的整车质量、前后轴荷分配、质心高度, 轮胎规格及额定最高车速。以便获取理想的前后轴制动力分配及应急制动所需面临的极限工况。 3. 2预演及主要参数确定 在获取车辆参数后, 设计人员需根据整车参数进行制动系的设计, 软件利用MAT LAB 的G U I 工具箱建立如图2所示调试界面。左侧为各主要参数, 右侧为4组制动效能仿真曲线, 从曲线可以查看给定主要参数下的制动力分配、同步附着系数、管路压力分配、路面附着系数利用率随路况的变化曲线, 及利用附着系数与国标和法规的符合现制动器选型、性能尺寸调节, 查看液压比例阀、感载比例阀、射线阀等多种调压工况的制动效能, 并通过观察了 2汽车制动系统方案设计流程的优化 从整车开发角度, 制动系统的开发流程主要包括系统方案设计、产品开发和试验验证三大环节。制动系统的方案设计主要包含结构选型、参数选择、性能仿真与评估, 方案确定4个环节。以前, 制动系统设计软件都是在完成整个流程后, 根据仿真结果对初始设计参数修正。因此, 设计人员往往要反复多次方可获得良好的设计效果, 而且, 在调试过程中, 一些参数在特定情况下的相互影响不易在调试中发现, 调试的尺度很难把握。 本文将整车设计流程划分为两个阶段:主要参数的预演和确定、其他参数的预演和参数确定。即根据模块化设计思想, 将原来一个闭环设计系 收稿日期:2004-12-27 3本文为上海市汽车工程学会2004年(第11届学术年会优秀论文。

相关文档
相关文档 最新文档