文档库 最新最全的文档下载
当前位置:文档库 › 高性能折叠Ⅰ型栅无结场效应晶体管

高性能折叠Ⅰ型栅无结场效应晶体管

高性能折叠Ⅰ型栅无结场效应晶体管
高性能折叠Ⅰ型栅无结场效应晶体管

1引言

近年来,结合多栅极技术的无结场效应晶体管已经成为深纳米级硅基VLSI 技术领域中最流行的

半导体器件结构之一[1-2]。由于超薄硅膜SOI 技术可以使栅极能够轻易控制沟道在完全耗尽状态下工作,因此器件制造不再需要PN 结[3]。与常规的基于

PN 结的三栅极(TG )MOSFET 类似,在关断状态下,三栅极无结(TG JL )FET 的栅极电压反向偏置时会

引起带间隧穿的增强,特别是在栅极角区域和栅极

至漏极或源极的延长区,

它极大地增加了由于带间隧穿所引起的泄漏电流,并在静态关断状态下导致了更高的功耗。

带间的隧穿几率与栅极角区域中最强的电场强度成比例。有很多种降低多栅无结场效应管在反向偏压下的电场强度的方法被提出,如栅极几何形状的优化[4-5]以及不同功函数和栅介质的多栅材料的应用[6-7]。实际上,对于纳米级短沟道器件来说,器件的开关特性如静态关断功耗、亚阈值摆幅和导通电流驱动能力之间存在权衡。纳米级器件设计的最终目标是通过器件结构优化在有限的给定芯片面积内实现最佳性能。为了实现优化的高性能器件,应该充分考虑栅极结构构造。因此,提出一种高开关特性的折叠I 形栅极(FIG )无结场效应晶体管,以总共22nm 的水平硅体长度(包括源极/漏极区域,栅极/沟道区域以及栅极/沟道区域与源极/漏极区域之间的

高性能折叠I 型栅无结场效应晶体管

高云翔,靳晓诗

(沈阳工业大学信息科学与工程学院,沈阳110870)

摘要:为顺应集成电路设计对器件提出更高性能要求的趋势,提出一种高性能折叠I 型栅无

结场效应晶体管,主要研究此类产品在不同栅极长度下的电学特性,

讨论栅极的几何形状改变对器件性能产生的影响。通过与普通的双栅、三栅无结场效应晶体管的仿真结果的对比,

突出FIG JL FET 在电学性能上所具备的优势,并给出栅极设计参数的最佳优化方案。仿真实验结果表明,

相比于其他的栅型结构,折叠I 型栅无结场效应晶体管具有更低的反向泄漏电流,I on -I off 比也得到很大提升,而且

几乎没有亚阈值的衰减。作为一款高性能器件,

深具发展潜力。关键词:折叠I 形栅极;无结场效应晶体管;反向泄漏电流;亚阈值DOI :10.3969/j.issn.1002-2279.2018.05.003中图分类号:TN432文献标识码:A 文章编号:1002-2279(2018)05-0011-04

A High Performance Folded I-Gate Junctionless Field Effect Transistor

GAO Yunxiang,JIN Xiaoshi

(School of Information Science and Engineering,Shenyang University of Technology,Shenyang 110870,China )

Abstract:In order to comply with the trend of higher performance requirements for devices in integrated circuit design,a high-performance folded I-gate junctionless field effect transistor is proposed,which mainly studies the electrical characteristics of such products at different gate lengths and discusses the influence of gate geometry changes on device https://www.wendangku.net/doc/8a19031165.html,pared with the simulation results of common double -gate and three -gate junctionless FETs,the advantages of FIG JL FET in electrical performance are highlighted,and the optimal scheme of gate design parameters is given.Simulation results show that compared with other gate-type structures,folded I-gate junctionless FETs have lower reverse leakage current,the I on -I off ratio is greatly improved,and there is almost no subthreshold attenuation.As a high performance device,it has great development potential.

Key words:FIG;Junctionless FET;Reverse leakage current;Subthreshold

作者简介:高云翔(1992—),男,辽宁省大连市人,硕士研究生,

主研方向:微电子学与固体电子学,微纳器件。收稿日期:2018-03-16

微处理机

MICROPROCESSORS

第5期2018年10月

No.5Oct.,2018

场效应晶体管特性

场效应管(FET)是利用控制输入回路的电场效应来控制输出回路电流的一种半导体器件,并以此命名。由于它仅靠半导体中的多数载流子导电,又称单极型晶体管。 工作原理场效应管工作原理用一句话说,就是“漏极-源极间流经沟道的漏极电流,用以栅极与沟道间的pn结形成的反偏的栅极电压控制漏极电流ID”。更正确地说,漏极电流ID流经通路的宽度,即沟道截面积,它是由pn结反偏的变化,产生耗尽层扩展变化控制的缘故。在VGS=0的非饱和区域,表示的过渡层的扩展因为不很大,根据漏极-源极间所加VDS的电场,源极区域的某些电子被漏极拉去,即从漏极向源极有电流漏极电流ID流动。从门极向漏极扩展的过度层将沟道的一部分构成堵塞型,漏极电流ID饱和。将这种状态称为夹断。这意味着过渡层将沟道的一部分阻挡,并不是电流被切断。 在过渡层由于没有电子、空穴的自由移动,在理想状态下几乎具有绝缘特性,通常电流也难流动。但是此时漏极-源极间的电场,实际上是两个过渡层接触漏极与门极下部附近,由于漂移电场拉去的高速电子通过过渡层。因漂移电场的强度几乎不变产生ID的饱和现象。其次,VGS向负的方向变化,让VGS=VGS(off),此时过渡层大致成为覆盖全区域的状态。而且VDS的电场大部分加到过渡层上,将电子拉向漂移方向的电场,只有靠近源极的很短部分,这更使电流不能流通。 分类场效应管分为结型场效应管(JFET)和绝缘栅场效应管(MOS管)两大类。 按沟道材料型和绝缘栅型各分N沟道和P沟道两种;按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。 场效应管与双极性晶体管的比较,场效应管具有如下特点。 1. 场效应管是电压控制器件,栅极基本不取电流,它通过VGS(栅源电压)来控制ID(漏 极电流);而晶体管是电流控制器件,基极必须取一定的电流。因此,在信号源额定电流极小的情况,应选用场效应管。 2. 场效应管是多子导电,而晶体管的两种载流子均参与导电。由于少子的浓度对温度、 辐射等外界条件很敏感,因此,它的温度稳定性较好;对于环境变化较大的场合,采用场效应管比较合适。 3. 场效应管的源极和漏极在结构上是对称的,可以互换使用,耗尽型MOS 管的栅——源电压可正可负。因此,使用场效应管比晶体管灵活。 4 . 场效应管除了和晶体管一样可作为放大器件及可控开关外,还可作压控可变线性电阻使用 特点与双极型晶体管相比,(1)场效应管的控制输入端电流极小,因此它的输入电阻很大。 (2)场效应管的抗辐射能力强; (3)由于不存在杂乱运动的电子扩散引起的散粒噪声,所以噪声低。

场效应管特性

根据三极管的原理开发出的新一代放大元件,有3个极性,栅极,漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件 -------------------------------------------------------------- 1.概念: 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件. 特点: 具有输入电阻高(100000000~1000000000Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者. 作用: 场效应管可应用于放大.由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器. 场效应管可以用作电子开关. 场效应管很高的输入阻抗非常适合作阻抗变换.常用于多级放大器的输入级作阻抗变换.场效应管可以用作可变电阻.场效应管可以方便地用作恒流源. 2.场效应管的分类:

场效应管分结型、绝缘栅型(MOS)两大类 按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种. 按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类.见下图: 3.场效应管的主要参数: Idss —饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流. Up —夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压. Ut —开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压. gM —跨导.是表示栅源电压UGS —对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数. BVDS —漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS. PDSM —最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量. IDSM —最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSM Cds---漏-源电容 Cdu---漏-衬底电容 Cgd---栅-源电容 Cgs---漏-源电容 Ciss---栅短路共源输入电容 Coss---栅短路共源输出电容 Crss---栅短路共源反向传输电容 D---占空比(占空系数,外电路参数) di/dt---电流上升率(外电路参数) dv/dt---电压上升率(外电路参数) ID---漏极电流(直流) IDM---漏极脉冲电流 ID(on)---通态漏极电流 IDQ---静态漏极电流(射频功率管)

场效应管工作原理

场效应管工作原理 MOS场效应管电源开关电路。 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP 型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P 型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。 对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在

什么是结型场效应管

什么是结型场效应管 场效应管是通过改变外加电压产生的电场强度来控制其导电能力的半导体器件。 它不仅具有双极型三极管的体积小,重量轻,耗电少,寿命长等优点,而且还具有输入电阻高,热稳定性好,抗辐射能力强,噪声低,制造工艺简单,便于集成等特点.因而,在大规模及超大规模集成电路中得到了广泛的应用.根据结构和工作原理不同,场效应管可分为两大类: 结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 在两个高掺杂的P区中间,夹着一层低掺杂的N区(N区一般做得很薄),形成了两个PN结。在N区的两端各做一个欧姆接触电极,在两个P区上也做上欧姆电极,并把这两个P 区连起来,就构成了一个场效应管。从N型区引出的两个电极分别为源极S和漏极D,从两个P区引出的电极叫栅极G,很薄的N区称为导电沟道。 结型场效应管分类:N沟道和P沟道两种。如下图所示为N沟道管的结构和符号。 如右图所示为N沟道结型场效应管的结构示意图。 N沟道结型场效应管正常工作时,在漏-源之间加正向电压,形成漏极电流。 <0,耗尽层承受反向电压,既保证栅-源之间内阻很高,又实现对沟道电流的控制。 ★=0时,对导电沟道的控制作用,如下图所示。

◆=0时,=0,耗尽层很窄,导电沟道很宽。 ◆│增大时,耗尽层加宽,沟道变窄,沟道电阻增大。 ◆│增大到某一数值时,耗尽层闭合,沟道消失,沟道电阻趋于无穷大,称此时的值为夹断电压。 ★为~0中某一固定值时,对漏极电流的影响 ▲=0,由所确定的一定宽的导电沟道,但由于d-s间电压为零,多子不会产生定向移动,=0。 ▲>0,有电流从漏极流向源极,从而使沟道各点与栅极间的电压不再相等,沿沟道从源极到漏极逐渐增大,造成靠近漏极一边的耗尽层比靠近源极一边的宽。如下图(a)所示。 ▲从零逐渐增大时,=- 逐渐减小,靠近漏极一边的导电沟道随之变窄。电流随线性增大。

绝缘栅场效应晶体管工作原理及特性

绝缘栅场效应晶体管工作原理及特性 场效应管(MOSFET是一种外形与普通晶体管相似,但控制特性不同的半导体器件。它的 输入电阻可高达1015W而且制造工艺简单,适用于制造大规模及超大规模集成电路。场效应管也称为MOS t,按其结构不同,分为结型场效应晶体管和绝缘栅场效应晶体管两种类型。在本文只简单介绍后一种场效应晶体管。 绝缘栅场效应晶体管按其结构不同,分为N沟道和P沟道两种。每种又有增强型和耗尽 型两类。下面简单介绍它们的工作原理。 1、增强型绝缘栅场效应管 2、图6-38是N沟道增强型绝缘栅场效应管示意图。 在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区, 并用金属铝引出两个电极,称为漏极D和源极S如图6-38(a)所示。然后在半导体表面覆盖 一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装一个铝电极,称为栅极G 另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS f。它的栅极与其他电 极间是绝缘的。图6-38(b)所示是它的符号。其箭头方向表示由P(衬底)指向N(沟道)。 源极s tiffiG m 引纯 ? N旳道增强型场效应管紡拘示胃图低州沟道壇强型场效应管符号 图6-38 N沟道增强型场效应管 场效应管的源极和衬底通常是接在一起的(大多数场效应管在出厂前已联结好)。从图6-39(a) 可以看出,漏极D和源极S之间被P型存底隔开,则漏极D和源极S之间是两个背靠背的PN结。当栅-源电压UGS=0寸,即使加上漏-源电压UDS而且不论UDS的极性如何,总有一个PN结处于 反偏状态,漏-源极间没有导电沟道,所以这时漏极电流ID - 0。 若在栅-源极间加上正向电压,即UGS> 0,则栅极和衬底之间的SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子,因而使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层,同 时P衬底中的电子(少子)被吸引到衬底表面。当UGS数值较小,吸引电子的能力不强时,漏-源极之间仍无导电沟道出现,如图6-39(b)所示。UGS增加时,吸引到P衬底表面层的电子 就增多,当UGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层, 且与两个N+区相连通,在漏-源极间形成N型导电沟道,其导电类型与P衬底相反,故又称 为反型层,如图6-39(c)所示。UGS越大,作用于半导体表面的电场就越强,吸引到P衬底

场效应管介绍

场效应管原理 场效应管是只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。有N沟道器件和P沟道器件。有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide Semiconductor FET)。1.1 1.1.1 MOS场效应管 MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。场效应管有三个电极: D(Drain) 称为漏极,相当双极型三极管的集电极; G(Gate) 称为栅极,相当于双极型三极管的基极; S(Source) 称为源极,相当于双极型三极管的发射极。 增强型MOS(EMOS)场效应管 一、工作原理 1.沟道形成原理 当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S间形成电流。 当栅极加有电压时,若0<VGS<VGS(th)时,通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。 进一步增加VGS,当VGS>VGS(th)时(VGS(th) 称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟 1 线性电子电路教案 道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。随着VGS的继续增加,ID将不断增加。在VGS=0V时ID=0,只有当VGS>VGS(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。 转移特性曲线的斜率gm的大小反映了栅源电压对漏极电流的控制作用。gm 的量纲为mA/V,所以gm也称为跨导。 跨导的定义式如下:constDS==VGSDVIgmΔΔ (单位mS) 2.VDS对沟道导电能力的控制 当VGS>VGS(th),且固定为某一值时,来分析漏源电压VDS对漏极电流ID的影响。VDS的不同变化对沟道的影响如图3-2所示。根据此图可以有如下关系 VDS=VDG+VGS= —VGD+VGS VGD=VGS—VDS 当VDS为0或较小时,相当VGD>VGS(th),沟道呈斜线分布。在紧靠漏极处,沟道达到开启的程度以上,漏源之间有电流通过。 当VDS增加到使VGD=VGS(th)时,相当于VDS增加使漏极处沟道缩减到刚刚开启的情况,称为预夹断,此时的漏极电流ID基本饱和。当VDS增加到VGDVGS(th)、

结型场效应管

结型场效应管 如图XX_01(a)所示,在一块N型半导体材料的两边各扩散一个高杂质浓度的 P型区(用P+表示),就形成两个不对称的P+N结。把两个P+区并联在一起,引 出一个电极,称为栅极(g),在N型半导体的两端各引出一个电极,分别称为 源极(s)和漏极(d)。它们分别与三极管的基极(b)、发射极(e)和集电 极(c)相对应。夹在两个P+N结中间的N区是电流的通道,称为导电沟道(简 称沟道)。这种结构的管子称为N沟道结型场效应管,它在电路中用图XX_01(b) 所示的符号表示,栅极上的箭头表示栅、源极间P+N结正向偏置时,栅极电流的 方向(由P区指向N区)。 实际的JFET结构和制造工艺比上述复杂。N沟道JFET的剖面图如图XX_01(c)所示。图中衬底和中间顶部都是P+型半导体,它们连接在一起(图中未画出)作为栅极g。分别与源极s和漏极d相连的N+区,是通过光刻和扩散等工艺来完成的隐埋层,其作用是为源极s、漏极d提供低阻通路。三个电极s、g、d分别由不同的铝接触层引出。

如果在一块P 型半导体的两边各扩散一个高杂质浓度的N +区,就可以制成一个P 沟道的结型场效应管。图XX_02给出了这种管子的结构示意图和它在电路中的代表符号。 由结型场效应管代表符号中栅极上的箭头方向,可以确认沟道的类型。 N 沟道和P 沟道结型场效应管的工作原理完全相同,现以N 沟道结型场效应管为例,分析其工作原理。 N 沟道结型场效应管工作时,也需要外加如图XX_01所示的偏置电压,即在栅极与源极间加一负电压(v GS <0),使栅、源极间的P +N 结反偏,栅极电流i G ≈0,场效应管呈现很高的输入电阻(高达108 左右)。在漏极与源极间加一正电压(v DS >0),使N 沟道中的多数载流子电子在电场作用下由源极向漏极作漂移运动,形成漏极电流i D 。i D 的大小主要受栅源电压v GS 控制,同时也受漏源电压v DS 的影响。因此,讨论场效应管的工作原理就是讨论栅源电压v GS 对漏极电流i D (或沟道电阻)的控制作用,以及漏源电压v DS 对漏极电流i D 的影响 1.v GS 对i D 的控制作用 图XX_02所示电路说明了v GS 对沟道电阻的控制作用。为便于讨论,先假设漏源极间所加电压v DS =0。 当栅源电压v GS =0时,沟道较宽,其电阻较小。当v GS <0,且其大小增加时,在这个反偏电压的作用下,两个P +N 结耗尽层将加宽。由于N 区掺杂浓度小于P +区,因此,随着 的增加,耗尽层将主要向N 沟道中扩展,使沟道变窄,沟道电阻增大,如图XX_02(b)所示。 当 进一步增大到一定值 时,两侧的耗尽层将在中间合拢,沟道全部被夹断,如图XX_02(c)所示。由于耗尽层中没有载流子, 因此这时漏源极间的电阻将趋于无穷大,即使加上一定的v DS ,漏极电流i D 也将为零。这时的栅源电压称为夹断电压,用V P 表示。 2.v DS 对i D 的影响 图XX_01

结型场效应管_百度文库.

1、结型场效应管的管脚识别 场效应管的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。将万用表置于R×1k档,用两表笔分别测量每两个管脚间的正、反向电阻。当某两个管脚间的正、反向电阻相等,均为数KΩ时,则这两个管脚为漏极D和源极S(可互换),余下的一个管脚即为栅极G。对于有4个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。 2、判定栅极(红表笔接表内电池的负极,黑表笔接表内电池的正极) 用万用表黑表笔碰触管子的栅极,红表笔分别碰触另外两个电极。若两次测出的阻值都很小,说明均是正向电阻,该管属于N沟道场效应管。 制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。若要区分,则可根据在源—漏之间有一个PN结,通过测量PN结正、反向电阻存在差异,识别S极与D极。将万用表拨到R×100档,用交换表笔法测两次电阻,相当于给场效应管加上1.5V的电源电压,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻。此时黑表笔的是S极,红表笔接D 极。 注意不能用此法判定绝缘栅型场效应管的栅极。因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。 3、估测场效应管的放大能力 将万用表拨到R×100档,相当于给场效应管加上1.5V的

电源电压。这时表针指示出的是D-S极间电阻值。然后用手指捏栅极G,将人体的感应电压作为输入信号加到栅极上。由于管子的放大作用,UDS 和ID都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有较大幅度的摆动。如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。 由于人体感应的50Hz交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。少数的管子RDS减小,使表针向右摆动,多数管子的RDS增大,表针向左摆动。无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。 本方法也适用于测MOS管。为了保护MOS场效应管,必须用手握住金属杆,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏。MOS管每次测量完毕,G-S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一下即可。

结型场效应管(JFET)的结构和工作原理

结型场效应管(JFET)的结构和工作原理 1. JFET的结构和符号 N沟道JFET P沟道JFET 2. 工作原理(以N沟道JFET为例) N沟道JFET工作时,必须在栅极和源极之间加一个负电压——V GS< 0,在D-S间加一个正电压——V DS>0. 栅极—沟道间的PN结反偏,栅极电流i G≈0,栅极输入电阻很高(高达107Ω以上)。 N沟道中的多子(电子)由S向D运动,形成漏极电流i D。i D的大小取决于V DS的大小和沟道电阻。改变V GS可改变沟道电阻,从而改变i D。

主要讨论V GS对i D的控制作用以及V DS对i D的影响。 ①栅源电压V GS对i D的控制作用 当V GS<0时,PN结反偏,耗尽层变宽,沟道变窄,沟道电阻变大,I D减小;V GS更负时,沟道更窄,I D更小;直至沟道被耗尽层全部覆盖,沟道被夹断,I D≈0。这时所对应的栅源电压V GS称为夹断电压V P。 ②漏源电压V DS对i D的影响 在栅源间加电压V GS< 0 ,漏源间加正电压V DS > 0。则因漏端耗尽层所受的反偏电压为V GD=V GS-V DS,比源端耗尽层所受的反偏电压V GS大,(如:V GS=-2V, V DS =3V, V P=-9V,则漏端耗尽层受反偏电压为V GD=-5V,源端耗尽层受反偏电压为-2V),使靠近漏端的耗尽层比源端宽,沟道比源端窄,故V DS对沟道的影响是不均匀的,使沟道呈楔形。 当V DS增加到使V GD=V GS-V DS =V P时,耗尽层在漏端靠拢,称为预夹断。 当V DS继续增加时,预夹断点下移,夹断区向源极方向延伸。由于夹断处电阻很大,使V DS主要降落在该区,产生强电场力把未夹断区的载流子都拉至漏极,形成漏极电流I D。预夹断后I D基本不随V DS增大而变化。

场效应管的分类

场效应管的分类 场效应管(FET)是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。 场效应管的种类很多,按结构可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET).结型场效应管又分为N沟道和P沟道两种。绝缘栅场效应管主要指金属--氧化物--半导体场效应管(MOS管)。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电 流的,输入电阻(105~1015)之间; 绝缘栅型是利用感应电荷的多少来控制导电沟道的宽窄从而控制电流的大小,其输入阻抗很高(栅极与其它电极互相绝缘)。它在硅片上的集成度高,因此在大规模集成电路中占有极其重要的地位。 场效应管的型号命名方法现行场效应管有两种命名方法。 第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D 是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场

效应三极管。 第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。例如CS14A、CS45G等。 场效应管所有厂家的中英文对照表在场效应管对照表中,收编了美国、日本及欧洲等近百家半导体厂家生产的结型场效应晶体管(JFET)、金属氧化物半导体场次晶体管(MOSFET)、肖特基势垒控制栅场效应晶体管(SB)、金属半导体场效应晶体管(MES)、高电子迁移率晶体管(HEMT)、静电感应晶体管(SIT)、绝缘栅双极晶体管(IGBT)等属于场效应晶体管系列的单管、对管及组件等,型号达数万种之多。每种型号的场效应晶体管都示出其主要生产厂家、材料与极性、外型与管脚排列、用途与主要特性参数。同时还在备注栏列出世界各国可供代换的场效应晶体管型号,其中含国产场效应晶体管型号。 1."型号"栏 表中所列各种场效应晶体管型号按英文字母和阿拉伯数 字顺序排列。同一类型的场效应晶体型号编为一组,处于同一格子内,不用细线分开。 2."厂家"栏 为了节省篇幅,仅列入主要厂家,且厂家名称采用缩写的形式表示。)

结型场效应管

结型场效应管 场效应管 场效应管(Fjeld Effect Transistor简 称FET )是利用电 场效应来控制半导 体中电流的一种半 导体器件,故因此 而得名。场效应管 是一种电压控制器 件,只依靠一种载 流子参与导电,故 又称为单极型晶体 管。与双极型晶体三极管相比,它具有输入阻抗高、噪声低、热稳定性好、抗辐射能力强、功耗小、制造工艺简单和便于集成化等优点。 场效应管有两大类,结型场效应管JFET和绝缘栅型场效应管IGFET,后者性能更为优越,发展迅速,应用广泛。图Z0121 为场效应管的类型及图形、符号。 一、结构与分类 图Z0122为N沟道结型场效应管结构示意图和它的图形、符号。它是在同一块N型硅片的两侧分别制作掺杂浓度较高的P型区(用P+表示),形成两个对称的PN结,将两个P区的引出线连在一起作为一个电极,称为栅极(g),在N型硅片两端各引出一个电极,分别称为源极(s)和漏极(d)。在形成PN结过程中,由于P+区是重掺杂区,所以N一区侧的空间电荷层宽度远大二、工作原理 N沟道和P沟道结型场效应管的工作原理完全相同,只是偏置电压的极性和载流子的类型不同而已。下面以N沟道结型场效应管为例来分析其工作原理。电路如图Z0123所示。由于栅源间加反向电压,所以两侧PN结均处于反向偏置,栅源电流几乎为零。 漏源之间加正向电压使N型半导体中的多数载流子-电子由源极出发,经过沟道到达漏极形成漏极电流I D。 1.栅源电压U GS对导电沟道的影响(设U DS=0) 在图Z0123所示电路中,U GS<0,两个PN结处于反向偏置,耗尽层有一定宽度,I D=0。若|U GS| 增大,耗尽层变宽,沟道被压缩,截面积减小,沟道电阻增大;若|U GS| 减小,耗尽层变窄,沟道变宽,电阻减小。这表明U GS控制着漏源之间的导电沟道。当U GS负值增加到某一数值V P时,两边耗尽层合拢,整个沟道被耗尽层完全夹断。(V P称为夹断电压)此时,漏源之间的电阻趋于无穷大。管子处于截止状态,I D=0。 2.漏源电压U GS对漏极电流ID的影响(设U GS=0) 当U GS=0时,显然I D=0;当U DS>0且尚小对,P+N结因加反向电压,使耗尽层具有一定宽度,但宽度上下不均匀,这是由于漏源之间的导电沟道具有一定电阻,因而漏源电压U DS沿沟道递降,造成漏端电位高于源端电位,使近漏端PN结上的反向偏压大于近源端,因而近漏端耗尽层宽度大于近源端。显然,在U DS较小时,沟道呈现一定电阻,I D随U DS成线性规律变化(如图Z0124曲线OA段);若U GS再继续增大,耗尽层也随之增宽,导电沟道相应变窄,尤其是近漏端更加明显。由于沟道电阻的增大,I D增长变慢了(如图曲线AB段),当U DS增大到等于|V P|时,沟道在近漏端首先发生耗尽层相碰的现象。这种状态称为预夹断。这时管子并不截止,因为漏源两极间的场强已足够大,完全可以把向漏极漂移的全部电子吸引过去形成漏极饱和电流I DSS (这种情况如曲线B点):当U DS>|V P|再增加时,耗尽层从近漏端开始沿沟道加长它的接触部分,形成夹断区。由于耗尽层的电阻比沟道电阻大得多,所以比|V P|大的那部分电压基本上降在夹断区上,使夹断区形成很强的电场,它完全可以把沟道中向漏极漂移的电子拉向漏极,形成漏极电流。因为未被夹断的沟道上的电压基本保持不变,于是向漏极方向漂移的电子也基本保持不

场效应管(MOS管)知识介绍

场效应管(MOS管)知识介绍 6.1场效应管英文缩写:FET(Field-effect transistor) 6.2 场效应管分类:结型场效应管和绝缘栅型场效应管 6.3 场效应管电路符号: 结型场效应管 S S N沟道 P沟道 6.4场效应管的三个引脚分别表示为:G(栅极),D(漏极),S(源极) D D D D G G G G 绝缘栅型场效应管 增强型 S 耗尽型 N沟道 P沟道 N沟道 P沟道 注:场效应管属于电压控制型元件,又利用多子导电故称单极型元件,且具有输入电阻高,噪声小,功耗低,无二次击穿现象等优点。 6.5场效应晶体管的优点:具有较高输入电阻高、输入电流低于零,几乎不要向信号源 吸取电流,在在基极注入电流的大小,直接影响集电极电流的大小,利用输出电流控制输出电源的半导体。 6.6场效应管与晶体管的比较 (1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。 (3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。 (4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管 6.7 场效应管好坏与极性判别:将万用表的量程选择在RX1K档,用黑表笔接D极,红表笔接S极,用手同时触及一下G,D极,场效应管应呈瞬时导通状态,即表针摆向阻值较小的位置,再用手触及一下G,S极, 场效应管应无反应,即表针回零位置不动.此时应可判断出场效应管

MOS管特性

MOS管开关 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失

结型场效应管的特性.

结型场效应管的特性 结型场效应管的特性 类别:消费电子 (1)转移特性栅极电压对漏极电流的控制作用称为转移特性,若用曲线表示,该曲线就称为转移特性曲线。它的定义是:漏极电压UDS恒定时,漏极电流ID同栅极电压UGS的关系,即结型场效应管的转移特性曲线如图所示。图中的Up为夹断电压,此时源极与漏极间的电阻趋于无穷大,管子截止。在UP电压之后,若继续增大UGS就可能会出现反向击穿现象而损坏管子。在测量结型场效应管的转移特性曲线时,要求UDS要足够大,一般令 UDS=|UP|,这时再令UCS从零开始增大百到Up,测出对应的ID值,便可得到转移特性曲线。图中UGS=O时对应的札称为漏极饱和电流IDSS°随着UGS变负,IS将下降,一直到UGS=UP,即图中的一3.4V时,ID才等于零。有了转移特性曲线,只要给出UDS,便可查出对应的ID。(2)输出特性UDS与ID的关系称为输出特性,若用曲线表示,该曲线就称为输出特性曲线。它的定义是:当栅极电压UGS恒定时,ID随UDS的变化关系,即结型场效应管的输出特性曲线如图所示。从图中可以看出,结型场效应管的输出特性曲线分为三个区,即可变电阻区、饱和区及击穿区。当UDS较小时,漏极附近不会发生预夹断,因此随着UDS的增加,斤也增加。这就是曲线的上升部分,它基本上是通过原点的一条直线,这时可以把管子看成是一个可变电阻。当UDS增加到一定程度后,就会产生预夹断,因此尽管UDS再增加,但IS基本不变。因此预夹断点的轨迹就是两种工作状态的分界线。把曲线上UDS=UGS-UP的点连接起来,便可得到预夹断时的轨迹,如图中左边虚线所示。轨迹左边对应不同UGS值的各条直线,通称为可变电阻区;轨迹右边的水平直线区称为饱和区,结型场效应管作放大用时,一般都工作在饱和区。结型场效碰管的输出特性曲线如果冉继续增大UDS,将使反向偏置的PN结击穿,这时IS将会突然增大,管子进入击穿区。管子进入击穿区后,如果不加限制,将会导致管子损坏。结型场效应管的输出特性曲线P1沟道结型场效应管的特性曲线,除了电流、电压的方向与N沟道结型场效应管相反外,两者的其他特性完全类似。(3)结型场效应管的放大作用结型场效应管的放大作用一般指的是电压放大作用,可以通过图所示电路来说明这一作用。当把变化的电压加入输入回路时,将引起漏极电流的变化。如果负载电阻RL选得合适,就完全可以使输出端的电压变化比输入端的电压变化大许多倍,这样电压便得到了放大。例如,输入电压从OV变化到-1V,变化了1V,此时ID则由5mA降到2.1mA,变化了2.9mA,便可在5.1kΩ的负载电阻的两端得到2.95X5.1≈14.8V的电压变化,这样场效应管便把输人电压放大了14.8倍。结型场效应管的放大作用

场效应管的特性

场效应管的特性 场效应管的特性 图1.1 结场效管漏极输出曲线 下面以N沟道.结型场效应管为例说明场效应管的特性. 图1.1为场效应管的漏极特性曲线。输出特性曲线分为三个区:可变电阻区、恒流区和击穿区。 (1)可变电阻区:图中VDS很小,曲线靠近左边。它表示管子预夹断前电压.电流关系是:当VDS较小时,由于VDS的变化对沟道大小影响不大,沟道电阻基本为一常数,ID基本随VGS作线性变化。当VGS恒定时,沟道导通电阻近似为一常数,从此意义上说,该区域为恒定电阻区,当VGS变化时,沟道导通电阻的值将随VGS变化而变化,因此该区域又可称为可变电阻区。利用这一特点,可用场效应管作为可变电阻器。

(2)恒流区:图中VDS较大,曲线近似水平的部分是恒流区,它表示管子预夹断后电压.电流的关系,即图1.1两条虚线之间即为恒流区(或称为饱和区)该区的特点是ID的大小受VGS可控, 当VDS改变时ID几乎不变,场效应管作为放大器使用时,一般工作在此区域内。 (3)击穿区:当VDS增加到某一临界值时,ID开始迅速增大, 曲线上翘, 场效应管不能正常工作,甚至烧毁,场效应管工作时要避免进入此区间.

(4)场效应管特性曲线的测试 场效应管的特性曲线可以用晶体管图示仪测试,也可以用逐点测量法测试。图1.2是用逐点测量法测试场效应管特性曲线的原理图。场效应管的转移特性曲线是当漏源间电压VDS保持不变,栅源间电压VGS与漏极电流ID的关系曲线,如图1.3所示: 在上图中,先调节VDD使VDS固定在某个数值上,当栅源电压VGS 取不同的电压值时(调节RW),ID也将随之改变,利用测得的数据,便可在VGS~ID直角坐标系上画出如图3.2.3的转移特性曲线。当VDS取不同的数值,便可得到另一条特性曲线。ID=0时的VGS值为场效应管的夹断电压VP,VGS=0时的ID值为场效应管的饱和漏极电流IDSS。

结型场效应管的工作原理

结型场效应管的工作原理

1. N 沟道结型场效应管(JFET)的工作原理 工作条件:结型场效应管只能工作在栅源反偏的条件下, N 沟道结型场效应管只能工作在负栅压区(u GS <0),否则将会出现栅流。N S D G P + P + N S D G P + P + N S D G u GS =0 P + P + u GS ≤U GS,off ( U GS,off 夹断电压) u GS < 0 (1)栅源电压U GS 对导电沟道的控制作用 7/73

1) 当u GS =0时,沟道较宽。 2)当U GS,off < u GS ≤0时, PN 结反偏,PN 结(耗尽层)加宽。 3)当u GS ≤U GS,off 时,耗尽层将导电沟道全部夹断。 N S D G P + P + N S D G P + P + N S D G u GS =0 P + P + u GS ≤U GS,off ( U GS,off 夹断电压) u GS < 0

转移特性曲线 夹断电压 工作条件:U GS,off ≤ u GS < 0 u DS >0 说明:漏极D 到源极S 的电位逐渐降落,导电沟道中各点与栅极之间的反偏电压逐渐变小,形成一个倾斜的耗尽层。 D P + P + N G S u DS i D u GS i D u GS /V 转移特性曲线 恒流区电流 9/73

工作条件:U GS,off ≤ u GS < 0 u DS >0 说明: (1)当漏极D 和源极S 之间接漏源电压u DS >0时,将在沟道产生电流i D 。(2) DS 之间的电压导致DG 之间的反偏电压u GD < 0,当 u GD =U GS,off 时,即在漏极最出现预夹断。 D P + P + N G S u DS i D u GS u GS /V i D 10/73

结型场效应管(JFET)的结构和工作原理

结型场效应管(JFET的结构和工作原理 1. JFET的结构和符号 D O s A N沟道JFET P沟道JFET 2.工作原理(以N沟道JFET为例) N沟道JFET工作时,必须在栅极和源极之间加一个负电压——V GS< 0 ,在D-S间加一个正电压——V DS>0. 栅极一沟道间的PN结反偏,栅极电流i G 0,栅极输入电阻很高(高达107以上)。 N沟道中的多子(电子)由S向D运动,形成漏极电流i D。i D的大小取决于V DS的大小和沟道电阻。改变V GS可改变沟道电阻,从而改变i D。

主要讨论V S对i D的控制作用以及V DS对i D的影响。 ①栅源电压V GS对i D的控制作用 当V GS V 0时,PN结反偏,耗尽层变宽,沟道变窄,沟道电阻变大,I D减小;V GS更负时,沟道更窄,I D更小;直至沟道被耗尽层全部覆盖,沟道被夹断,I D ~ 0。这时所对应的栅源电压V GS称为夹断电压V P。 ②漏源电压V DS对i D的影响 在栅源间加电压V GS v 0 ,漏源间加正电压V DS > 0。则因漏端耗尽层所受的反偏电压为V GD= V GS-V DS,比源端耗尽层所受的反偏电压V GS大,(如:V Gs=-2V, V DS =3V, V P=-9V,则漏端耗尽层受反偏电压为V GD=-5V,源端耗尽层受反偏电压为-2V),使靠近漏端的耗尽层比源 端宽,沟道比源端窄,故V DS对沟道的影响是不均匀的,使沟道呈楔形。 当V DS增加到使V GD=V GS-V DS = V P时,耗尽层在漏端靠拢,称为预夹断。 当V DS继续增加时,预夹断点下移,夹断区向源极方向延伸。由于夹断处电阻很大,使 V DS主要降落在该区,产生强电场力把未夹断区的载流子都拉至漏极,形成漏极电流I D。预夹断后I D基本不随V DS增大而变化。

结型场效应管的曲线及参数

结型场效应管的曲线及参数
结型场效应管的曲线及参数
详细文字说明: 由于结型场效应管的栅极输入电流 iG≈0,因此很少应用输入特性曲线,常用的特 性曲线有输出特性曲线和转移特性曲线。 1.输出特性曲线 输出特性曲线用来描述 vGS 取一定值时,电流 iD 和电压 vDS 间的关系,即
它反映了漏-源电压 vDS 对 iD 的影响。 图 1 是一个 N 沟道结型场效应管的输出特性曲线。由此图可见,结型场效应管的工作状 态可划分为四个区域。

(1) 可变电阻区 可变电阻区位于输出特性曲线 的起始部分,它表示 vDS 较小、管子 预夹断前,电压 vDS 与漏极电流 iD 间的关系。 在此区域内有 VP<vGS≤0,vDS <vGS-VP。 vGS 一定, 较小时, 当 vDS vDS 对沟道影响不大,沟道电阻基本不变,iD 与 vDS 之间基本呈线性关系。若 | vGS | 增加,则沟道电阻增大,输出特性曲线斜率减小。所以,在 vDS 较小时,源-漏极间可 以看作是一个受 vGS 控制的可变电阻,故称这一区域为可变电阻区。这一特点常使结型 场效应管被作为压控电阻而广泛应用。 (2) 饱和区(也称恒流区) 当 VP<vGS≤0 且 vDS≥vGS-VP 时,N 沟道结型场效应管进入饱和区,即图中特性 曲线近似水平的部分。它表示管子预夹断后,电压 vDS 与漏极电流 iD 间的关系。饱和 区的特点是 iD 几乎不随 vDS 的变化而变化,iD 已趋于饱和,但它受 vGS 的控制。 增加,沟道电阻增加,iD 减小。场效应管作线性放大器件用时,就工作在饱和区。 应当指出,图 1 中左边的虚线是可变电阻区与饱和区的分界线,是结型场效应管的 预夹断点(vDS=vGS-VP)的轨迹。显然,预夹断点随 vGS 改变而变化,vGS 愈负,预夹 断时的 vDS 越小。 (3) 击穿区
图1

相关文档
相关文档 最新文档