文档库 最新最全的文档下载
当前位置:文档库 › 蒸发量5吨硫酸钠MVR蒸发结晶技术方案

蒸发量5吨硫酸钠MVR蒸发结晶技术方案

蒸发量5吨硫酸钠MVR蒸发结晶技术方案
蒸发量5吨硫酸钠MVR蒸发结晶技术方案

硫酸钠性质及制备方法

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/8c19114793.html,)硫酸钠性质及制备方法 硫酸钠是硫酸根与钠离子化合生成的盐,硫酸钠溶于水且其水溶液呈弱碱性,溶于甘油而不溶于乙醇。下面简单介绍一下硫酸钠性质及制备方法。 物理性质 外观与性状:单斜晶系,晶体短柱状,集合体呈致密块状或皮壳状等,无色透明,有时带浅黄或绿色,易溶于水。白色、无臭、有苦味的结晶或粉末,有吸湿性。外形为无色、透明、大的结晶或颗粒性小结晶。硫酸钠是含氧酸的强酸强碱盐。 结构:单斜、斜方或六方晶系。 溶液:硫酸钠溶液为无色溶液。 熔点:884℃(七水合物于24.4℃转无水,十水合物为32.38℃,于100℃失10H 2O) 沸点:1404℃相对密度: 2.68g/cm 3 热力学函数(298.15K,100kPa): 标准摩尔生成热ΔfHmθ(kJ·mol):-1387.1 标准摩尔生成吉布斯自由能ΔfGmθ(kJ·mol^-1):-1270.2 标准熵Smθ(J·mol^-1·K^-1):149.6 溶解性:不溶于乙醇,溶于水,溶于甘油。

溶解度: 温度 ℃ 1 ℃ 2 ℃ 3 ℃ 4 ℃ 5 ℃ 6 ℃ 7 ℃ 8 ℃ 9 ℃ 1 ℃ 溶解度 4 . 9 9 .1 1 9. 5 4 0. 8 4 8. 8 4 6. 2 4 5. 3 4 4. 3 4 3. 7 4 2. 7 4 2 . 5 结晶水:24℃以下:7H 2O 32.4℃以下:10H 2O 无水硫酸钠或1H 2O 化学性质 水解:SO 4 2-+H +=HSO 4 - Na 2SO 4+H 2O=NaHSO 4+NaOH 水解过程吸热,因此有凉感;水解生成OH -,因此溶液呈弱碱性并有苦涩味。复分解反应:BaCl 2+Na 2SO 4=BaSO 4↓+2NaCl;

十水硫酸钠结晶工艺流程优化

十水硫酸钠结晶工艺流程优化 前言 万吨锂盐氢氧化锂自调试之初,十水硫酸钠结晶问题迅速凸显,成为产能提高的瓶颈。当时为解决结晶粒度及新结晶器设计问题,曾与天津大学工业结晶国家工程中心进行过合作,本想通过合作获取两个数据,一是在现有物料组成条件下的介稳区宽度,二是结晶动力学数据(成核速率及晶体生长速率)。天大给了介稳区宽度数据,而结晶动力学数据并没有继续合作。当时觉得仅仅是介稳区宽度数据实际上并没有很大的指导意义,如今再拿出当时的数据,经过仔细分析其实可能会有一些帮助。 天津大学实验用的溶液组成为: 、 、 和 。给出的数据如表 所示: 表 十水硫酸钠溶解度数据 温度,℃ 溶解度, 水 超溶解度, 水 注:溶解度数据为十水硫酸钠的溶解度。 将溶解度数据单位转换为 并整理,结果如表 所示。 表 十水硫酸钠溶解度数据 温度,℃ 溶解度, 超溶解度, 介稳区宽度, 介稳区宽度,℃ 由以上数据可以看出, ? 结晶介稳区宽度随着温度下降迅速降低。当温度为 ℃时,其最大过饱和度仅为 ,最大过冷度约为 ℃;而当温度为 ℃时,其最大过饱和度 ,最大过冷度为 ℃,是 ℃时的 倍。 利用以上数据,对现行工艺进行分析,并提出优化的新工艺,分别着眼于为现有装置改造和新装置的设计提供参考。 现行工艺流程问题分析及对策 现行工艺流程及物料衡算(物料数据来源于现有生产) 氢氧化锂母液、 硫酸锂溶液、液碱和无水硫酸钠母液在调配槽内混合后经预冷器后进入 冷冻结晶器,在 ℃条件下将十水硫酸钠析出。流程及物料衡算如图 所示。

图 现行冷冻析钠工艺 现行工艺流程问题分析及对策 目前冷冻析钠存在的问题: ( )外冷器换热管频繁结壁。 ( )颗粒小,分离困难。 这两个问题其实是同一个问题,主要原因就是溶液过饱和度太大,爆发成核,当然分离困难还有粘度的原因。造成溶液过饱和度太大的主要原因有四个: ( )十水硫酸钠结晶介稳区太窄,而结晶器循环量过小,在换热器换热后过冷度超出介稳区。 目前结晶器操作温度为 ℃,介稳区宽度为 水,换算为克升单位约为 为保证结晶粒度,实际操作介稳区宽度不宜超过 (因为会存在进料造成的过饱和度和过冷造成的双重过饱和度)。 结晶器产能 有效过饱和度×循环量 现行工艺每小时可产生 的十水硫酸钠,共需要至少 的循环量,目前采用单台结晶器进行生产,总循环量 ,循环量不够。 ( )结晶器过小造成在结晶器内过饱和度并没有消失又重新进入外冷器预冷,造成过饱和度累积而超出介稳区。 ( )介稳区太窄,而结晶器操作温度稳定要求高,温度稍微波动便进入不稳区,爆发成核。 ℃时的实际的过冷度应该控制在 ℃左右,而以前实际操作中结晶器的温度波动是很大的,现在的数据手头没有。操作温度之所以难以控制,在于冷冻机与结晶器控制的联动,很难稳定控制。是不是可以考虑将制冷作为一个工序来设计,而不是成套的撬块。即可以将外冷器当做制冷机的蒸发器,用外冷器壳程制冷剂蒸发压力来控制结晶器温度,这样不仅可以稳定温度,还可以省掉冷冻液系统,而且就冷冻机本身来讲,其制冷系数也可以提高。 ( )进料位置的影响。 原来设计方案进料位置在外冷器进口,这不太合适。当循环量很大时,这样做是没什么问题的。但当循环量趋紧时(循环量使得过饱和度小于或等于为最大过饱和度的约 ),会使其在外冷器内进入不稳区,加剧结壁。对于晶浆混合型结晶器来讲,个人认为最好的进料位置为外冷器出口到结晶器之间,此时既没有列管结壁的风险,而混合效果又最好(流速最大)。

工业硫酸钠的生产方法

(一) 芒硝类矿产资源的加工 工业无水硫酸钠的制取,大多数都是采用两步法工艺流程。第一步析出芒硝或含有硫酸钠的复盐,第二步将精选后的芒硝加工成成品。 由含Na2SO4 的天然盐(卤)水或人工盐(卤)水制取芒硝的方法有滩田法和工厂法(冷冻法)。 1.滩田法 此法是加工天然盐(卤)水和人工盐(卤)水最经济的方法,它主要是利用太阳能蒸发水分和进行自冷冻。此法适用于气候干燥、有沉积芒硝类矿层、干盐湖或存在地下盐水、晶间卤水地区。 根据生产任务的大小,可以使用一个晒盐池或一套滩田系统。盐水池的数目按照加工工艺而定,盐池的大小则取决于生产季节、加工溶液的总量、气候条件和溶解盐的性质和浓度。盐水的加工可以在静态或动态下进行。静态下加工是利用有冬季结晶出芒硝,例如山西运城盐湖。 2.工厂法 工厂法是冷冻含Na2SO4 的盐水制取芒硝结晶的方法,是用真空结晶或用制冷剂进行热交换的冷却结晶。 结晶方式可根据技术经济效果和母液的用途来选择。采用真空冷却结晶可使被冷却体系的温度达到0~5℃,当母液不作为废液排出时采用此法。采用制冷剂进行热交换的冷却结晶法,是从天然盐水和人工制备的海水型盐水,或从平均气温偏高地区的地下浸取芒硝矿时得到的浸取液制取芒硝时使用。 (二) 工业无水硫酸钠的制取 中国芒硝资源丰富,种类较多,生产工业无水硫酸钠的工艺也不同,目前国内主要的生产方法有: 1.以天然芒硝矿为原料的全溶蒸发脱水法 以天然硝矿为原料生产工业无水硫酸钠,采用的生产方法为全溶蒸发脱水法。在乡镇企业中,将天然硝矿全部溶解生产30°~31°Be的饱和溶液,经澄清后,除去固体杂质,再经蒸发,离心脱水,干燥后即可制得成品。该生产工艺的蒸发脱水主要有平锅法和火塔法。平锅法现在江苏省洪泽县西顺河矿区和四川眉山、丹棱、雅安、新津一带约300余家乡镇企业采用。该方法的优点是:设备简单,工艺简单,投资小,收效快;缺点是:能耗高,产量小,产品质量差,环境污染严重。 火塔法是使芒硝溶液和烟道气在钢板制的塔中进行直接逆流换热的一种方法。蒸发的蒸汽和烟气从塔顶由引风机抽走,含无水硫酸钠结晶的悬浮液从塔底引出,经离心机甩干即制得含Na2SO4 85%的产品。该法的优点是操作简便,耗煤低。缺点是设备腐蚀严重,环境污染严重,劳动强度大,产品质量差等。 2.以盐湖卤水为原料制取工业无水硫酸钠 以盐湖卤水为原料,经滩晒、自然冷冻制得粗芒硝。因自然冷冻芒硝中带入部分泥沙等固体杂质,故盐池芒硝(水硝)也采用全溶蒸发脱水制取无水硫酸钠。其生产过程与以矿硝为原料的生产方法一致。

氯化钠的结晶曲线概要

氯化钠的结晶曲线 菁品试题如图为氯化钠、碳酸钠(俗称纯碱)在水中的溶解度曲线. (1)当温度为10℃时,碳酸钠的溶解度为10 10 g; (2)当温度低于30℃ 低于30℃ 时,氯化钠的溶解度大于碳酸钠的溶解度; (3)生活在盐湖附近的人们习惯“夏天晒盐,冬天捞碱”. 请你解释原因:“夏天晒盐”氯化钠的溶解度受温度影响不大,夏天温度高水分蒸发快,氯化钠易结晶析出 氯化钠的溶解度受温度影响不大,夏天温度高水分蒸发快,氯化钠易结晶析出 ;“冬天捞碱”碳酸钠的溶解度受温度影响大,冬天温度低,碳酸钠易结晶析出 碳酸钠的溶解度受温度影响大,冬天温度低,碳酸钠易结晶析出 .考点:固体溶解度曲线及其作用;晶体和结晶的概念与现象.专题:结合课本知识的信息.分析:根据固体物质的溶解度曲线可以:①查出某物质在某温度下的溶解度,如:温度为10℃时,碳酸钠的溶解度为10g;在②比较不同物质在同一温度下的溶解度大小,如:在30℃时,氯化钠和碳酸钠的溶解度相等;③判断通过降温还是蒸发溶剂的方法使溶质从溶液中结晶析出等.解答:解:(1)由两物质的溶解度曲线不难看出,在10℃时,碳酸钠的溶解度为10g,故答案为:10 (2)在30℃时,氯化钠和碳酸钠的溶解度相等,而低于30℃时,氯化钠的溶解度大于碳酸钠的溶解度,高于30℃时,氯化钠的溶解度小于碳酸钠的溶解度,故答案为:低于30℃(3)由于氯化钠的溶解度受温度的影响很小,因此应通过蒸发溶剂的方法得到氯化钠晶体;而碳酸钠的溶解度随温度的升高而增大,且溶解度受温度的影响很大,因此应主要通过降温结晶的方法得到碳酸钠晶体;故答案为:氯化钠的溶解度受温度影响不大,夏天温度高水分蒸发快,氯化钠易结晶析出;碳酸钠的溶解度受温度影响大,冬天温度低,碳酸钠易结晶析出.点评:本题难度不是很大,主要考查了固体溶解度曲线所表示的意义及根据溶解度曲线解决相关的问题,培养学生分析问题和解决问题的能力. 答题:lili老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮

(完整版)硫酸钠三效结晶蒸发器介绍及调试

硫酸钠三效结晶蒸发器介绍及调试: 一、原理: 蒸发器是通过加热使溶液浓缩或从溶液中析出晶粒的设备。主要由加热室和蒸发室两部分组成。加热室向液体提供蒸发所需要的热量,促使液体沸腾汽化。蒸发室使气液两相完全分离。加热室中产生的蒸汽带有大量液沫,到了较大空间的蒸发室后,这些液体借自身凝聚或除沫器等的作用得以与蒸汽分离。 二、调试: 正常开车程序: 1.打开效间浓缩液管阀门,开原水泵加水至各效蒸发室上部视镜后停原水泵,关效间浓缩液管阀门,各效间闪蒸罐下部阀门开1/3,上部阀门关闭。如果安装有换热室不冷凝气排出口,同时关闭不冷凝气阀门。真空泵开前控制阀门关闭2/3左右,确保真空泵不过载。开启循环冷却水阀门及循环冷却水水泵。 2.依次打开各效强制循环泵,出盐泵,真空泵(如果真空度过高,真空泵震动且噪音增大,可适当开启真空泵的气蚀阀门,适当吸气真空度调至-0.08左右)。 3.等一、二效蒸发室蒸发后缓慢调整闪蒸罐下部阀门,以抽出大量冷凝水,微量蒸汽为准,末效蒸发室开始蒸发后,调整真空度-0.08左右。 4.时刻观察二次蒸汽压力表,防止压力到达正压(此时说明换热器有存水,此时开大闪蒸罐下部阀门)。同时查看冷凝器与真空泵前的视盅,看蒸发水量。5.一效蒸发室液位下降至中部视镜后,开原水泵进水,维持液位稳定,待各效蒸发室蒸发后,打开效间浓缩液管阀门调整各效液位平衡。 6.整个系统运行稳定后,可根据出水量提高蒸汽温度、压力、原水进水量达到设计要求。 7.随时观察收晶罐是否有盐析出,部分关闭盐分离器上部清液回流阀,使整个盐分离器及收晶罐处于正压状态,便于盐分的排出;勤于观察,做到随时排盐防止堵塞。 8.三效硫酸钠晶体浓度达到15%以后,开启离心机,分离的硫酸钠固体排至储料池,滤液回到滤水罐。滤水罐满后自动开启抽液泵,将滤水罐内的液体送至

氯化钠废水蒸发结晶方案

含氯化钠废水蒸发结晶技术方案 一、蒸发器选型简述 本设计方案针对含钠盐废水,采用双效顺流强制循环蒸发装置。氯化钠溶液蒸发属于蒸发结晶,因此蒸发器采用抗盐析、抗结疤堵管能力强的强制循环蒸发器。 由于该混合溶液具有腐蚀性,长期运转考虑,蒸发材质可选用316L不锈钢,其余采用碳钢材质。 二、原液组成 工艺参数:氯化钠含量约15%,同时含有一些有机物,水量为20T/D。三、主要工艺参数 工艺参数 进料流量㎏/h 1000 进料浓度 % 15 出料浓度 % 100 进料温度℃25 生蒸汽压力 Mpa(绝) ≥0.4 生蒸汽温度℃143.4 冷却水上水温度℃≤30 冷却水回水温度℃40 蒸发量 Kg/h 850 四、工艺流程简介 4.1原液准备系统 工厂产生的含氯化钠盐废水溶液流入原液池,原液池起到储存、调节原液的作用,满足废水蒸发处理设备的连续稳定运行。原液池配备有原液提升泵,原液提升泵将含盐废水均匀输送至蒸发处理系统,调节原液泵后的控制阀门保持原液提升量与蒸发量的平衡。 4.2 蒸汽及二次蒸汽系统 来自锅炉房的蒸汽通过分汽缸后用阀门调节进入Ⅰ效加热室,控制表压为

3.0Kgf/cm2。生蒸汽管路上设置有安全阀,超压后自动排泄报警,确保蒸发系统的安全。Ⅰ效蒸发室蒸发后的二次蒸汽经蒸汽管路进入Ⅱ效加热室。Ⅰ效加热室的冷凝水排回锅炉房。Ⅱ效加热室的冷凝水进入Ⅱ效闪蒸罐,Ⅱ效闪蒸罐中产生的闪发汽体回到冷凝器进口,冷凝水经阀门调节进入冷凝水平衡缸。 Ⅱ效蒸发室排出的二次蒸汽进入冷凝器,冷凝器冷凝产生的冷凝水与Ⅱ效加热室产生的冷凝水汇集,最终由真空泵抽出外排。 4.3 盐浆系统 本工艺采用转效排盐,集中排母液的方式进行生产。Ⅰ效集盐角中的盐排到Ⅱ效下循环管中。Ⅱ效集盐角中的盐浆由盐浆泵抽入漩涡盐分离器进行分离进入沉盐器,沉盐器收集满后将盐排入离心机离心分离,离心母液回蒸发室再次蒸发结晶,离心机离心分离出来的盐分可以直接出售,如果要求更低的含水率,也可以再进入干燥系统进一步脱离水处理。 4.4 二次蒸汽循环冷凝系统 Ⅱ效蒸发室产生的二次蒸汽进入冷凝器,冷凝器采用循环冷却水进行换热降温。根据该蒸发设备的处理量,该循环水的循环量一般应控制在34.0m3/h,最佳温度控制在30℃以下。 4.5 事故及洗罐 系统工作出现事故及运转过程中洗罐时,首先停止进料,将蒸发设备中的母液排净。洗罐水用冷凝水储池的水,洗罐完毕后,将洗罐水排掉,初次洗罐水排入原液池,排空蒸发罐后,首先将部分母液通过原液泵进入蒸发罐,然后通过原液泵补充加入原液,使蒸发罐中的液位满足工艺要求。

添加剂对硫酸钠晶体粒度的影响

添加剂对硫酸钠晶体粒度的影响 唐 娜,白丽荣,沙作良,王学魁,韩焱熙(天津科技大学海洋科学与工程学院,天津 300457) 摘 要: 溶液结晶过程中,添加剂的加入对晶体的结晶动力学和热力学特征将产生一 定的影响。文章研究了十二烷基苯磺酸钠和重铬酸钾作为添加剂对无水硫酸钠晶体粒度的影响。研究结果表明:十二烷基苯磺酸钠的加入增大了硫酸钠结晶过程的界面能,从而抑制自发成核过程的发生,促进晶体的生长,改善晶体的粒度。分别以十二烷基苯磺酸钠和重铬酸钾作为添加剂,在有效添加剂量为40m g /k g 时,0.177m m 以上硫酸钠筛上物分别为67.18%和51.12%。搅拌速度对硫酸钠晶体粒度有重要影响,正交实验确定的最佳结晶控制条件为:添加剂加入量40m g /k g 、搅拌速度240r /m i n 、晶种量40g 、停留时间40m i n 。 关键词: 添加剂;硫酸钠;结晶;晶体粒度 中图分类号:T Q 131.1 文献标识码:A 文章编号:1673-6850(2007)06-0001-03 T h e E f f e c t o f A d d i t i v e s o n C r y s t a l S i z e o f S o d i u mS u l p h a t e T A N GN a ,B A I L i r o n g ,S H AZ u o l i a n g ,WA N GX u e k u i ,H A NY a n x i (C o l l e g e o f M a r i n e S c i e n c e a n d E n g i n e e r i n g ,T i a n j i n U n i v e r s i t y o f S c i e n c e & T e c h n o l o g y ,T i a n j i n 300457,C h i n a ) A b s t r a c t : T h e a d d i t i v e s w i l l e f f e c t t h e c h a r a c t e r i s t i c s o f c r y s t a l d y n a m i c s a n d c r y s t a l t h e r m o -d y n a m i c s i n a a q u e o u s s o l u t i o n c r y s t a l l i z a t i o n p r o c e s s .T h e e f f e c t o f a d d i t i v e s o nt h e c o n t r o l o f c r y s -t a l s i z e f o r s o d i u m s u l p h a t e i s d i s c u s s e d i n t h e p a p e r .T h e a d d i t i v e s c h o s e n a r e t h e s o d i u m d o d e c y l b e n z e n es u l f o n a t e a n dp o t a s s i u mb i c h r o m a t e r e s p e c t i v e l y .T h e r e s u l t s s h o w s t h a t t h e c r y s t a l l i z a t i o n i n t e r f a c i a l e n e r g y o f s o d i u m s u l p h a t ei s i n c r e a s e dw i t hs o d i u m d o d e c y l b e n z e n es u l f o n a t ea s a d d i -t i v e ,t h e nt h e c r y s t a l n u c l e u s f o r m a t i o ni s i n h i b i t e d c r y s t a l g r o w t h i s p r o m o t e d a n d c r y s t a l s i z e i s i m -p r o v e d .U s i n gt h es o d i u m d o d e c y l b e n z e n es u l f o n a t ea n dp o t a s s i u m b i c h r o m a t ea sa d d i t i v e s ,t h e c r y s t a l s i z e s w h i c h a r e b i g g e r t h a n 0.177m m a r e 67.18%a n d 51.12%r e s p e c t i v e l y ,t h e c o n c e n t r a -t i o n o f b o t h a d d i t i v e s a r e 40m g /k g .T h eo p t i m u mt e c h n o l o g yw a s s t u d i e du s i n go r t h o g o n a l t e s t d e -s i g n :t h e c o n c e n t r a t i o n o f a d d i t i v e i s 40m g /k g ,t h e s t i r r i n g r a t e i s 240r /m i n ,t h e w e i g h t o f c r y s t a l s e e di s 40g ,a n dt h e r e t e n t i o nt i m e i s 40m i n ,t h e m i x i n g s p e e di s t h e m o s t i m p o r t a n t f a c t o r w h i c h e f f e c t t h e c r y s t a l s i z e o f s o d i u m s u l p h a t e . K e yw o r d s : a d d i t i v e ;s o d i u ms u l p h a t e ;c r y s t a l l i z a t i o n ;c r y s t a l s i z e 收稿日期:2007-04-19作者简介:唐娜(1972-),女,汉族,辽宁海城人,博士,副教授,主要研究方向:海卤水资源综合利用、膜分离、海水淡化。 1 前言 无水硫酸钠是日常生活和工业经济中不可缺少 的商品和原料,主要产于美国、加拿大、日本等国家。近几年我国无水硫酸钠市场中一般粒度的无水硫酸 钠的供给已远大于需求[1] ,而大颗粒无水硫酸钠以其纯度高、质量好、外形美观、容易与母液分离、易电解、溶解度小、洗涤方便等优点而畅销[2] 。目前,国内生产大颗粒无水硫酸钠的工艺条件还处于探索阶 段,市售的无水硫酸钠产品粒度都比较小。在盐类溶液结晶过程中,晶体的粒度与粒度分布与晶体的成核速率和生长速率、晶体在结晶器内 停留时间关系密切[3] 。微量的表面活性剂在无机盐饱和液中具有降低表面张力和增大溶液表面活性的作用,使溶液的结晶速率发生变化,从而可以控制晶体产品的粒度[4] 。添加剂的存在可以促进成核,也可减慢晶核的形成速率,或抑制晶核生长,但对不 1  第36卷第6期 盐业与化工

冷冻结晶技术+膜过滤组合工艺处理硫酸钠废水的优越性

冷冻结晶技术+膜过滤组合工艺处理硫酸钠废水的优越 性 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

冷冻结晶技术+膜过滤组合工艺处理硫酸钠废水的优越性 在化工企业中,有许多废水是含较高浓度的硫酸钠废水,因含盐量较高无法直接进行生化处理,因此一般采用多效蒸发结晶技术,得到无水硫酸钠固废,冷凝水回用或进一步处理;近些年随着MVR热泵蒸发器的兴起,因其较低的处理能耗得到较多推崇,但是由于压缩风机均为进口设备,投资较高。那么,究竟有没有一个投资相对更小、处理能耗更低的工艺路线呢。 针对硫酸钠的物料特性,其既可以通过蒸发得到无水硫酸钠结晶,又可以通过冷冻得到含十个结晶水的芒硝(即十水硫酸钠);同时,随着膜浓缩技术的进步,通过膜浓缩可以将原料液及结晶母液浓度提升至15%左右,因此我们独辟蹊径,采用膜浓缩及冷冻结晶脱硝组合工艺,得到芒硝晶体及膜过滤得到的洁净水。 那么,这种组合结晶的工艺和多效蒸发结晶技术、MVR蒸发结晶技术相比,在投资及能耗上究竟有多大优势及合理性呢,就此,我们以日处理200吨含量为18%的硫酸钠废水为例,进行具体比较。 一、设计条件: 每天处理200m3其中含硫酸钠18%,比重为1131kg/m3,按每天运行20小时计。 来料温度200C 二、设备选型 根据硫酸钠的特性及本系统废水中硫酸钠的含量,可选用下列几种处理方式 1)通过冷冻结晶+膜浓缩组合处理工艺得到十水硫酸钠与纯水。 2)通过多效强制循环蒸发工艺得到硫酸钠。 3)通过热泵+多效强制循环蒸发组合处理工艺得到硫酸钠。

三、各处理工艺介绍 1、冷冻结晶+膜浓缩组合处理工艺 (1)工艺流程 200C的物料溶液通过连续冷冻结晶器通过不断冷却产生过饱和度从而得到十水硫酸钠警惕,出料泵取出的晶浆经稠厚器进一步消除饱和度后进入离心机固液分离后,固体进入下工序,母液进入膜过滤工序进行再浓缩,可将母液浓度提升至15%左右,浓缩后的纯水进入生产工序回用,浓缩液进入结晶器继续参与结晶。 通过结晶得到十水硫酸钠作为固体产品与纯水,母液则通过膜浓缩在体系内循环继续参与结晶。 (2)工艺特点: 1)为了使晶体有更好的生长环境和更高的收率、更低的能耗,采用本方案采用母液预冷+冷冻水冷却结晶。采用预冷换热,可以有效利用能量,运行费用低,操作稳定性好。 2)配大流量、低扬程、低转速的轴流泵作为循环动力,可以使物料均匀冷却,避免产生大量细晶核。并防止了循环晶浆中的晶粒与循环泵的叶轮高速碰撞而出现大量二次成核现象。 3)根据结晶数据曲线及结晶要求,结晶器采用了外冷式的Krystal分级结晶器。 4)本装置可采用人工控制或自动控制,操作简单、稳定。 5)可充分利用冷量,能量消耗低。 (3)工艺能耗 冷冻机组功率消耗:440Kw/h 其他设备功率消耗(不含离心机功率):80Kw/h。 电费按0.6元/kw,则每小时的总能量消耗为:312元/小时,约合处理每立方水的成本为:31.2元。 (4)结晶器设备投资

氯化钠蒸发结晶器

氯化钠蒸发结晶器 项目设计咨询:安工 QQ: 蒸发结晶而获得纯度较高的固态氯化钠产品。其生产过程一般有下列四大工序组成: (1)原水的制备; (2)原水精制; (3)蒸发结晶; (4)氯化钠晶体的分离、干燥、包装。 根据蒸发结晶方式,目前世界上精制盐的生产方法大致可分为三大类,即:多效蒸发结晶法,蒸汽压缩法(热泵法)及多效闪急蒸发法。其中,多效蒸发法应用最为广泛,是目前主要的生产方法。多效蒸发结晶系统一般采用四至五效,因通常有数效蒸发器处于负压状态操作,又称作“多效真空蒸发法”. 蒸发与氯化纳结晶 氯化钠的溶解度随温度变化影响非常小,因此以水溶液为原料生产精制盐的过程是通过蒸发使溶剂(水)汽化,料液不断浓缩,氯化钠浓度不断增大,直至达到过饱和而结晶析出。即氯化钠结晶所要求的过饱和度是通过蒸发水分而获得的。这个过程涉及到传热与蒸发,结晶,相平衡等方面的基础理论,是真空制盐生产的最主要的工序。 1.多效蒸发流程 在单效蒸发器中每蒸发1kg的水要消耗比1kg多一些的加热蒸汽。在工业生产中,蒸发大量的水分必须消耗大量的加热蒸汽。为了减少加热蒸汽消耗量,可采用多效蒸发操作。多效蒸发时,要求后效的操作压强和溶液的沸点均较前效为低,因此可以引入前效的二次蒸汽作为后效的加热介质,即后效的加热室成为前效二次蒸汽的冷凝器,仅第一效需要消耗生蒸汽。一般多效蒸发装置的末效或后几效是在负压(真空)条件下操作 由于各效(末效除外)的二次蒸汽都作为下一效蒸发器的加热蒸汽,故提高

了生蒸汽的利用率,即经济性。表3-3列出了最小的(D/W)min。 表中:D—生蒸汽量 W—蒸发水量 真空盐多效蒸发系统通常由4~5台蒸发器及真空系统组成,按蒸汽流向,依次为I效,II效,III效……蒸发器。 锅炉蒸汽(生蒸汽)通入首效(I效)蒸发器的加热室,通过加热管与卤水进行热交换。加热蒸汽释放热量被冷凝为液态水,由加热室下部排出,返回锅炉。蒸发器内的卤水则在加热室被加热至过热状态后进入蒸发室。 过热的卤水在蒸发室内急剧沸腾汽化。卤水部分汽化,产生的蒸汽称作“二次蒸汽”,引入II效蒸发器的加热室,作为热源使II效蒸发器内的卤水被加热,部分汽化,产生II效“二次蒸汽”,用作III效的热源,依次类推直至末效蒸发器。末效二次蒸汽则有真空系统引出。 按卤水加料方式不同,常见的多效蒸发操作流程有以下几种: 1)并流(顺流)加料法 图3-14 并流加料的四效蒸发装置流程示意图 并流(顺流)加料蒸发流程的原料液与蒸汽的流向相同,都由第一效顺序流至末效。原料液进入第一效,浓缩后排入第二效,依次流过后面各效,被不断浓缩。完成液由末效取出。并流加料的四效蒸发装置流程见图3-14。 当蒸发过程中有晶体析出时,根据具体情况,晶体可与料液一起输送流动,

含氯化钠废水蒸发器方案

含氯化钠废水蒸发设备方案 一、蒸发器选型简述 本设计方案针对含氯化钠废水,采用三效顺流强制循环蒸发装置。氯化钠溶液蒸发属于蒸发结晶,因此蒸发器采用抗盐析、抗结疤堵管能力强的强制循环蒸发器。 由于氯化钠溶液的腐蚀性,长期运转考虑,蒸发材质可选用TA2,其余采用不锈钢316L材质。 二、原液组成 进料量及组分:溶液处理量为1m3/h(20h/d),氯化钠的含量200g/L,不含有易燃易爆及极易起沫的物料。 三、主要工艺参数 四、工艺流程简介 4.1原液准备系统 工厂产生的含氯化钠废水流入原液池,原液池起到储存、调节原液的作用,满足废水蒸发处理设备的连续稳定运行。原液池配备有原液提升泵,原液提升泵将含盐废水均匀输送至蒸发处理系统,调节原液泵后的控制阀门保持原液提升量与蒸发量的平衡。 4.2 蒸汽及二次蒸汽系统 来自锅炉房的蒸汽通过分汽缸后用阀门调节进入Ⅰ效加热室,控制表压为

4.0Kgf/cm2。生蒸汽管路上设置有安全阀,超压后自动排泄报警,确保蒸发系统的安全。Ⅰ效蒸发室蒸发后的二次蒸汽经蒸汽管路进入Ⅱ效加热室。Ⅰ效加热室的冷凝水排回锅炉房。Ⅱ效加热室的冷凝水进入Ⅱ效闪蒸罐,Ⅱ效闪蒸罐中产生的闪发汽体回到冷凝器进口,冷凝水经阀门调节进入冷凝水平衡缸。 二效蒸发室排出的二次蒸汽进入冷凝器,冷凝器冷凝产生的冷凝水与Ⅱ效加热室产生的冷凝水汇集至冷凝水罐,最终由冷凝水泵抽至外界水池储存并进一步生化处理。 4.3 盐浆系统 本工艺采用转效排盐,集中排母液的方式进行生产。Ⅰ效集盐角中的盐排到Ⅱ效下循环管中。Ⅱ效集盐角中的盐浆由盐浆泵抽入漩涡盐分离器进行分离进入沉盐器,沉盐器收集满后将盐排入离心机离心分离,离心母液回蒸发室再次蒸发结晶,离心机离心分离出来的盐分可以直接出售,如果要求更低的含水率,也可以再进入干燥系统进一步脱离水处理。 4.4 二次蒸汽循环冷凝系统 Ⅱ效蒸发室产生的二次蒸汽进入冷凝器,冷凝器采用循环冷却水进行换热降温。根据该蒸发设备的处理量,该循环水的循环量一般应控制在201.6m3/h,最佳温度控制在30℃以下。 4.5 事故及洗罐 系统工作出现事故及运转过程中洗罐时,首先停止进料,将蒸发设备中的母液排净。洗罐水用冷凝水储池的水,洗罐完毕后,将洗罐水排掉,初次洗罐水排入原液池,排空蒸发罐后,首先将部分母液通过原液泵进入蒸发罐,然后通过原液泵补充加入原液,使蒸发罐中的液位满足工艺要求。

应用MVR蒸发的氯化钠-氯化钾分离结晶工艺

应用MVR蒸发的氯化钠-氯化钾分离结晶工艺 文/张海春 一、背景 以炼铁烟道灰为原料提取金属锌的工艺过程中可得到一股同时含有氯化钠 和氯化钾的混合溶液。钾是重要的农业肥料,无论从经济角度还是从环保角度,此股废水都应该加以处理并回收其中氯化钠、氯化钾,同时达到水零排放的目的。 二、工艺过程 氯化钾、氯化钠存在于钢灰提锌工艺氧化锌的漂洗水之中,浓度一般不高,且为高钠低钾溶液。对此溶液进行高温蒸发处理,氯化钠率先饱和并以晶体的形式析出。随着蒸发的进行,在氯化钾接近饱和前对此母液做冷却处理(或真空闪蒸降温),则氯化钾会达到饱和并析出,而氯化钠不析出。本工艺利用了氯化钠和氯化钾在不同温度下二者溶解度的变化速率不同将二者分开。 高温蒸发与低温冷却二者温差越大,系统分离效果越好。传统蒸发过程多采用多效逆流+闪蒸、或多效错流工艺,随着近年能源结构的改变以及国产单级高温升MVR压缩机制造工艺的成熟,MVR蒸发器在无机盐蒸发领域的应用得到了极

大的拓展,节能效果非常显著。虽然其蒸发温度不能达到多效蒸发器那般高,但其100℃左右的蒸发温度却也能够很好地应用于钾钠分离工艺。 三、选型举例 (1)进水条件 来水速度:20t/h; 浓度:NaCl11%,KCl6%; 温度:30℃ (2)公用工程 名称性能参数备注 低压饱和蒸汽耗量(t/h) 1.6压力(MPa)>0.1 循环冷却水耗量(t/h)120供水温度(℃)32回水温度(℃)39 电源电压范围(三相)(V)频率(Hz)或高压 装机功率(kW)1200轴功率950kW (3)配置一览 序号名称规格、型号数量备注 1原液罐200m34台 2加热器180㎡1台 3加热器40㎡2台一开一备4冷凝器10㎡1台 5冷凝器120㎡1台 6加热器700㎡1台降膜 7加热器600㎡2台 8分离室10m31台 9结晶器40m31台 10结晶器20m31台 11稠厚器3m32台 12离心机LLW3503台两开一备

氯化钠的提纯(实验教案)

氯化钠的提纯(实验教案) 实验内容: 实验一 氯化钠的提纯 学时:2学时 一、主要教学要求 1、 了解提纯NaCl 的原理和方法。 2、 学习称量、溶解、沉淀、减压过滤、蒸发浓缩、结晶及干燥等基本操作,掌握煤气 灯的使用。 3、 定性地检查产品纯度。 二、教学的方法及教学手段 讲解,教师演示,巡回指导、学生独立实验。 三、教学重点 煤气灯使用,溶解、沉淀、减压过滤、蒸发浓缩、结晶及干燥等基本操作。 四、教学难点: 煤气灯使用,减压过滤,蒸发浓缩。 五、实验原理 粗食盐中通常有K +、Ca 2+、Mg 2+、SO 42-、CO 32-等可溶性杂质的离子,还含有不溶性的杂质如泥沙。 不溶性的杂质可用过滤、溶解的方法除去。 可溶性的杂质要加入适当的化学试剂除去。 (1)加BaCl 2除SO 42— Ba 2+ + SO 42— = BaSO 4↓(白色) (2)加NaOH 、Na 2CO 3除Mg 2+、Ca 2+、Ba 2+ 2 Mg 2++2OH — + CO 32— =Mg 2(OH)2CO 3 ↓(白色) (3)加HCl 除过量OH — 、CO 32— OH — + H + = H 2O CO 32— + 2 H + = CO 2↑+ H 2O (4)K +通过过滤留在母液中。 五、主要仪器与试剂 参见教材85页。 六、操作步骤

七、实验结果 1. 产品纯度检验 (1) 产品外观:①粗盐;②精盐。 (2) 产量,产率。 (3) 产品纯度检验(粗盐和精盐各称1 g,分别溶于5 mL蒸馏水中,三等分,按表1-1进行检验) 表1-1 NaCl溶液纯度检验 八、实验操作要点 1. 称量:台秤的使用 调零、砝码、读数、精度、称量。 2. 煤气灯使用 演示煤气灯燃烧的三种情况。 3. 减压过滤: 演示减压过滤的基本流程。 (1)布氏漏斗,吸滤瓶,安全瓶,水泵,必须按要求连接紧密不漏气,布氏漏斗下端斜口应正对吸滤瓶测管。 (2)滤纸要比布氏漏斗内径略小,但必须覆盖全部小孔,滤纸不能太大,否则易透滤。 (3)要用母液全部转移晶体,并用洁净的玻璃塞挤压晶体,使母液尽量除去。 (4)停止吸滤,用少量冷溶剂洗涤晶体1~2次,将晶体洗涤干净,减压吸干。 4. 蒸发:蒸发皿的使用,蒸发注意事项。 5. 登记产率 根据学生的产率、实验报告、实验表现,给予学生成绩。 2

冷冻结晶技术+膜过滤组合工艺处理硫酸钠废水的优越性

冷冻结晶技术+膜过滤组合工艺处理硫酸钠废水的优越性 在化工企业中,有许多废水是含较高浓度的硫酸钠废水,因含盐量较高无法直接进行生化处理,因此一般采用多效蒸发结晶技术,得到无水硫酸钠固废,冷凝水回用或进一步处理;近些年随着MVR热泵蒸发器的兴起,因其较低的处理能耗得到较多推崇,但是由于压缩风机均为进口设备,投资较高。那么,究竟有没有一个投资相对更小、处理能耗更低的工艺路线呢。 针对硫酸钠的物料特性,其既可以通过蒸发得到无水硫酸钠结晶,又可以通过冷冻得到含十个结晶水的芒硝(即十水硫酸钠);同时,随着膜浓缩技术的进步,通过膜浓缩可以将原料液及结晶母液浓度提升至15%左右,因此我们独辟蹊径,采用膜浓缩及冷冻结晶脱硝组合工艺,得到芒硝晶体及膜过滤得到的洁净水。 那么,这种组合结晶的工艺和多效蒸发结晶技术、MVR蒸发结晶技术相比,在投资及能耗上究竟有多大优势及合理性呢,就此,我们以日处理200吨含量为18%的硫酸钠废水为例,进行具体比较。 一、设计条件: 每天处理200m3其中含硫酸钠18%,比重为1131kg/m3,按每天运行20小时计。 来料温度200C 二、设备选型 根据硫酸钠的特性及本系统废水中硫酸钠的含量,可选用下列几种处理方式1)通过冷冻结晶+膜浓缩组合处理工艺得到十水硫酸钠与纯水。 2)通过多效强制循环蒸发工艺得到硫酸钠。 3)通过热泵+多效强制循环蒸发组合处理工艺得到硫酸钠。 三、各处理工艺介绍

1、冷冻结晶+膜浓缩组合处理工艺 (1)工艺流程 200C的物料溶液通过连续冷冻结晶器通过不断冷却产生过饱和度从而得到 十水硫酸钠警惕,出料泵取出的晶浆经稠厚器进一步消除饱和度后进入离心机固液分离后,固体进入下工序,母液进入膜过滤工序进行再浓缩,可将母液浓度提升至15%左右,浓缩后的纯水进入生产工序回用,浓缩液进入结晶器继续参与结晶。 通过结晶得到十水硫酸钠作为固体产品与纯水,母液则通过膜浓缩在体系内循环继续参与结晶。 (2)工艺特点: 1)为了使晶体有更好的生长环境和更高的收率、更低的能耗,采用本方案采用母液预冷+冷冻水冷却结晶。采用预冷换热,可以有效利用能量,运行费用低,操作稳定性好。 2)配大流量、低扬程、低转速的轴流泵作为循环动力,可以使物料均匀冷却,避免产生大量细晶核。并防止了循环晶浆中的晶粒与循环泵的叶轮高速碰撞而出现大量二次成核现象。 3)根据结晶数据曲线及结晶要求,结晶器采用了外冷式的Krystal分级结晶器。 4)本装置可采用人工控制或自动控制,操作简单、稳定。 5)可充分利用冷量,能量消耗低。 (3)工艺能耗 冷冻机组功率消耗:440Kw/h 其他设备功率消耗(不含离心机功率):80Kw/h。 电费按0.6元/kw,则每小时的总能量消耗为:312元/小时,约合处理每立方水的成本为:31.2元。 (4)结晶器设备投资 结晶器主体设备投资318万元(不含安装、离心机及膜处理部分)

氯化钠等浓缩结晶分离干燥技术方案-F

氯化钠结晶分离干燥 技术方案 氯化钠等浓缩结晶分离干燥技术方案一,设计基础条件:

根据计算后,盐的总量为312.58kg,含水量:1771.2kg。即浓度为:15%左右。 考虑到不确定因素,请按此数据放大一倍,即考虑水分含量为3500kg。即浓缩系统考虑每小时蒸发量为3500kg。 主要成分:氯化钠170kg,硫酸钠142.58kg。 二,方案选择: 1,采用三效蒸发浓缩设备,工艺流程见附图。 2,氯化钠等溶液通过进料泵经流量计进入预热器后,再进入一效加热器,在一效蒸发器内进行蒸发,蒸发出的二次蒸汽供二效加热器使用,由于真空作用,一效蒸发器蒸发过的溶液进入二效加热器再次加热并进入二效蒸发器进行蒸发,在二效蒸发过程中,考虑到有部分晶体析出,因此在二效蒸发器下部加装一台强制循环泵,避免结晶的物料粘附到加热管的内壁上。达到一定浓度后的溶液进入三效蒸发器再次蒸发,同样原因三效蒸发器也加装了一台循环泵。过饱和的物料在三效蒸发器的下部通过出料泵进入结晶釜完结晶。 结晶完成后进入离心机分离出氯化钠等晶体,分离出的溶液回到蒸发器继续蒸发浓缩。 将氯化钠等晶体通过流化床干燥达到含水要求后,再用包装机组进行包装,得到每袋50公斤的成品氯化钠等。 蒸发出的水和汽通过预热器、冷凝器后进入液封槽,再通过水泵排走。 三,设备材料的选择: 由于需要蒸发浓缩的氯化钠等溶液,因此材料选择特别重要,详细选择见列表。 四,设备说明及价格 A:三效浓缩设备说明: 1)、加热器: 一、二、三效加热器采用石墨加热器,加热面积分别为:80m2 、80㎡,80㎡。二、三效加热器壳程防腐处理。 2)、蒸发器:蒸发器采用碳钢制作,内表面进行搪瓷处理。蒸发器设有人孔、视孔、温度计、真空表等装置。 3)、预热器:预热器采用石墨材料,二台预热器的面积都为:30m2 。壳程防腐处理。 4)、进料泵:采用材质为氟塑料的泵为进料泵。 5)、循环泵、循环出料泵: 循环泵、循环出料泵,要求密封良好,耐温,保证在负压状态下,能使高

硫酸钠蒸发结晶工艺计算详情

650m3/d硫酸钠蒸发结晶工艺计算 1、进料条件: 原料:650m3/d 原料的质量流量:702t/d 原料密度:1.08g/ml 原料温度:40℃硫酸钠质量为9% 操作压力为70.136kpa 2、降膜蒸发器计算: 2.1、降膜蒸发器蒸发量计算: 原料先通过降膜蒸发器蒸发浓缩浓缩至25% 蒸发量W1=F*(1-0.09/0.25)=702t/d*(1-0.09/0.25)=449.28t/d=18.72t/h 完成液的质量流量为702-449.28=252.72t/d 2.2、降膜蒸发器换热面积计算: 在70.136kpa时饱和蒸汽的温度为90℃,90℃是饱和水蒸气的汽化潜热值为2283KJ/Kg 比容为2.3m3/kg 沸点进料,热损失忽略, Q=2283*18.72t/h= 42737760KJ/h=11871.6kw 取传热系数1100w(㎡.℃),由试验可知9%硫酸钠溶液沸点升高约4℃,故沸点t=90+4=94℃,压缩机温升为14℃,则出压缩机后的二次蒸汽的温度为104 算数温差△t=104-94=10℃ 传热面积S=Q/(K*△t)= 11871.6/(1100*10)=1079㎡ 矫正后传热面积S'=S*1.1=1187㎡ 采用Φ38*1.5、长9m的管为加热管,其中管程:TA2 壳程304 ,则管数N= 1187/3.14/0.038/9=1105根,

3、强制循环蒸发器计算: 3.1、强制循环蒸发器蒸发量计算: 原料蒸发结晶后完成的浓度为100% 蒸发量W2=F'(1-0.25/1)=7.9t/h 3.2强制循环蒸发器换热面积计算: 在70.136kpa时饱和蒸汽的温度为90℃,90℃是饱和水蒸气的汽化潜热值为2283KJ/Kg 比容为2.3m3/kg 沸点进料,热损失忽略, 取传热系数900w/(㎡.℃),二次蒸汽释放的潜热Q'=7.9t/h*2283KJ/kg= 18035700KJ/h= 5009.92KW/Kg 假设物料在强制循环加热器的温升为1.7℃,则物料出强制循环加热器的温度为95℃,二次蒸汽进强制循环加热器的温度为104℃,二次蒸汽出强制循环加热器的温度为104℃, 热侧104℃----104℃ 冷侧94-----95.7℃ 则物料在加热器里换热过程中的对数平均温差 △Tm=(104-95.7)-(104-94)/ln[(104-95.7)/(104-94)]=9.49℃ 加热器换热面积S'= Q'/900/9.49=586㎡ 矫正面积s= S'*1.1=556㎡ 采用Φ38*1.5、长12m的管为加热管,其中管程:TA2 壳程304 则管数N= 556/3.14/0.038/12=388根 轴流泵的流量=388*2*0.035*0.035/4*3.14/3600=2072m3/h

冷冻脱硝工艺简介

1、技术原理 冷冻法是物理方法,将含硫酸根的盐水冷冻降温,硫酸根将以芒硝的形式结晶析出。当盐水中硫酸根质量浓度小于25g/L时,该法受到成本限制。硝分离单元是通过冷冻结晶使富硝盐水中的硫酸根以芒硝(Na2SO4·10H2O)的形式从淡盐水中分离出来。 利用冷冻法将富硝盐水中的硫酸根结晶分离是目前国内较为先进的脱硝方法,但该法的应用逐渐暴露出冷冻设备易堵塞等问题。我公司针对上述问题进行了一系列的自主研发和工艺改进,已研发出一套新型脱硝技术方案,并已向国家专利局提出了国家发明专利申请。 2、工艺流程简介 图冷冻脱硝工艺流程框图 富硝盐水首先进入预冷换热器进行预冷,预冷后温度可降至15~20℃。预冷后的富硝盐水进入兑卤槽,与兑卤槽循环液均匀混合,稳定降温至-5℃左右。兑卤槽循环液是通过兑卤循环泵泵至冷冻换热器获取冷量,冷冻换热器的冷源为冷冻机组的制冷剂。 兑卤槽在循环换热过程中因温度下降会有芒硝晶体析出并沉降,根据晶体析出情况定期泵至沉硝槽,在沉硝槽中晶体进一步长大。含大量芒硝晶体的浆料随

后送至离心机进行离心分离,得到产品芒硝。沉硝槽的上清液只含少量的硫酸根离子(出槽淡盐水硫酸钠浓度为6~10 g/L,出槽淡盐水脱硝后返回前端),溢流收集于冷盐水储槽,经预冷换热器回收冷量后回流至淡盐水储槽进一步处理。 冷冻脱硝的吨水直接运行成本(电以0.65元计)约为30~40元。 3、技术特点 本系统工艺设计的主要技术特点如下: (1)采用逐级降温、三段沉硝,能很好地解决硝分离单元芒硝结晶堵塞严重的问题,冷冻效率高。富硝盐水在浓缩液储罐进行一次沉硝,并根据氯化钠和硫酸钠在水中的互溶度合理设定预冷温度,从而避免预冷换热器的堵塞。二次沉硝发生在兑卤槽,温度降至-(5~7)℃左右,冷冻换热器换热温差小,兑卤循环液流速大,从而有效避免了冷冻换热器的堵塞。三次沉硝发生在沉硝槽,温度在-(7~8)℃左右,沉降的晶体固液比高,有利于离心分离。 (2)换热网络合理,有利于节省能耗。沉硝槽溢流冷盐水用作预冷换热器的热源,既回收了热量(或冷量),同时也减轻了返回化盐工序后对系统工艺温度的影响。 (3)运行管理方便,工艺运转自动化程度高,设备维护简单。

相关文档
相关文档 最新文档