文档库 最新最全的文档下载
当前位置:文档库 › 大学物理1作业答案(老师划的重点)

大学物理1作业答案(老师划的重点)

大学物理1作业答案(老师划的重点)
大学物理1作业答案(老师划的重点)

1 -11 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-

2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.

题 1-11 图

分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即2

002

1t a t x x x x +

+=v 和

2

002

1t a t y y y y +

+=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.

解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得

??

?

+=

=

t

t

t t 0

)d 46(d d j i a v

v

j i t t 46+=v

又由t

d d r =

v 及初始条件t =0 时,r 0=(10 m)i ,积分可得

?

??

+==

t

t r

r t t t t 0

)d 46(d d 0

j i r v

j i r 2

2

2)310(t t ++=

由上述结果可得质点运动方程的分量式,即

x =10+3t 2

y =2t 2

消去参数t ,可得运动的轨迹方程

3y =2x -20 m

这是一个直线方程.直线斜率3

2tan d d =

==

αx

y k ,α=33°41′.轨迹如图所示.

1 -14 为迎接香港回归,特技演员柯受良在1997年6月1日驾车飞越黄河壶口,如图所示,柯驾车从跑道东端启动,到达跑道终端时速度大小为

1500=v h km 1-?,他随即以仰角

5=α冲出,飞越跨度达57 m ,安全着陆在西岸木桥上,

求:

题 1-14 图

(1) 柯飞车跨越黄河用了多长时间?

(2) 若起飞点高出河面10 m ,柯驾车飞行的最高点距河面为几米? (3) 西岸木桥和起飞点的高度差为多少?

分析 由题意知,飞车作斜上抛运动,对包含抛体在内的一般曲线运动 来说,运用叠加原理是求解此类问题的普适方法,操作程序是:建立一个恰当的直角坐标系,将运动分解为两个相互正交的直线运动,由于在抛体运动中,质点的加速度恒为g ,故两个分运动均为匀变速直线运动或其中一个为匀速直线运动,直接列出相关运动规律方程即可求解,本题可建立图示坐标系,图中m m x y 和分别表示飞车的最大高度和飞跃跨度.

解 在图示坐标系中,有

t v x )c o s

(0α= (1) 2

021s i n

(g t

t v y -=)α (2)

gt v v y -=αsin 0 (3)

(1) 由式(1),令57m ==x x m ,得飞跃时间

37.1cos 0m m ==

α

v x t s

(2)由式(3),令0=y v ,得飞行到最大高度所需时间

g

v t αsin 0m =

将’

m t 代入式(2),得飞行最大高度

67.02sin 2

2

0m ==

g

v y αm

则飞车在最高点时距河面距离为

10m +=y h m 67.10= m

(3)将37.1m =t s 代入式(2),得西岸木桥位置为 y = - 4.22 m “-”号表示木桥在飞车起飞点的下方.

1 -16 一质点沿半径为R 的圆周按规律2

02

1bt t s -

=v 运动,v 0 、b 都是常量.(1) 求t

时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?

分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.

解 (1) 质点作圆周运动的速率为

bt t

s -==

0d d v v

其加速度的切向分量和法向分量分别为

b t

s a t -==

22

d d , R

bt R

a n 2

02

)

(-=

=

v v

故加速度的大小为

R

)

(4

02222

bt b a a

a a t t

n

-+=

+=

v

其方向与切线之间的夹角为

??

?

???--==Rb bt a a θt n

20)(arctan arctan v

(2) 要使|a |=b ,由

b bt b R R

=-+4

022)

(1v 可得 b

t 0v =

(3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为

b

s s s t 22

0v =

-=

因此质点运行的圈数为

bR

R

s n π4π22

v =

=

1 -20 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?

分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足h

l αarctan ≥.再由相对速度的矢量关系122

v v v -=',即可求出所需车速v 1.

题 1-20 图

解 由122

v v v -='[图(b)],有 θ

θcos sin arctan

221v v v -=α

而要使h

l αarctan ≥,则

h

l θ

θ≥-cos sin 221v v v

??

? ??+≥θh θl sin cos 21v v

2 -8 如图(a)所示,已知两物体A 、B 的质量均为m =3.0kg 物体A 以加速度a =1.0 m·s-2 运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)

分析 该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.

解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A 、B 及滑轮列动力学方程,有

m A g -F T =m A a (1) F ′T1 -F f =m B a ′ (2) F ′T -2F T1 =0 (3)

考虑到m A =m B =m , F T =F′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力

()N 2.72

4f =+-=

a

m m mg F

题 2-8 图

讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.

2 -1

3 一质量为10 kg 的质点在力F 的作用下沿x 轴作直线运动,已知F =120t +40,

式中F 的单位为N, t 的单位的s.在t =0时,质点位于x =5.0 m 处,其速度v 0=6.0 m·1

s -.

求质点在任意时刻的速度和位置.

分析 这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a =d v /d t ,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v (t );由速度的定义v =d x /d t ,用积分的方法可求出质点的位置.

解 因加速度a =d v /d t ,在直线运动中,根据牛顿运动定律有

t

m

t d d 40120v =+

依据质点运动的初始条件,即t 0 =0 时v 0 =6.0 m·s-1 ,运用分离变量法对上式积分,得

()??

+=

t

t t 0

d 0.40.12d 0

v

v v

v =6.0+4.0t+6.0t 2

又因v =d x /d t ,并由质点运动的初始条件:t 0 =0 时 x 0 =5.0 m,对上式分离变量后积分,有

()??

++=

t

x

x t t t x 0

2

d 0.60.40.6d

x =5.0+6.0t+2.0t 2 +2.0t 3

2 -15 质量为m 的跳水运动员,从10.0 m 高台上由静止跳下落入水中.高台距水面距离为h .把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为b v 2 ,其中b 为一常量.若以水面上一点为坐标原点O ,竖直向下为Oy 轴,求:(1) 运动员在水中的速率v 与y 的函数关系;(2) 如b /m =0.40m -1

,跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0 的1/10? (假定跳水运动员在水中的浮力与所受的重力大小恰好相等)

题 2-15 图

分析 该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P 、浮力F 和水的阻力f F 的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.

解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为

gh 20=

v

运动员入水后,由牛顿定律得

P -f F -F =ma

由题意P =F 、f F =b v 2

,而a =d v /d t =v (d v /d y ),代 入上式后得

-b v 2= m v (d v /d y )

考虑到初始条件y 0 =0 时, gh 20=

v ,对上式积分,有

?

?=??

? ??-v

v v

v 0

d d 0t

y b m

m

by m

by e

gh e

//02--==v v

(2) 将已知条件b/m =0.4 m -1 ,v =0.1v 0 代入上式,则得

m 76.5ln 0

=-

=v v b m y

3 -8 F x =30+4t (式中F x 的单位为N,t 的单位为s)的合外力作用在质量m =10 kg 的物体上,试求:(1) 在开始2s 内此力的冲量;(2) 若冲量I =300 N·s,此力作用的时间;(3) 若物体的初速度v 1 =10 m·s -1 ,方向与F x 相同,在t =6.86 s 时,此物体的速度v 2 .

分析 本题可由冲量的定义式?

=2

1

d t t t F I ,求变力的冲量,继而根据动量定理求物体的

速度v 2.

解 (1) 由分析知

()s N 68230d 43020

2

2

0?=+=+=

?t t t t I

(2) 由I =300 =30t +2t 2 ,解此方程可得

t =6.86 s(另一解不合题意已舍去)

(3) 由动量定理,有

I =m v 2- m v 1

由(2)可知t =6.86 s 时I =300 N·s ,将I 、m 及v 1代入可得

1

1

2s

m 40-?=+=

m

m I v v

3 -9 高空作业时系安全带是非常必要的.假如一质量为51.0 kg 的人,在操作时不慎从高空竖直跌落下来,由于安全带的保护,最终使他被悬挂起来.已知此时人离原处的距离为2.0 m ,安全带弹性缓冲作用时间为0.50 s .求安全带对人的平均冲力.

分析 从人受力的情况来看,可分两个阶段:在开始下落的过程中,只受重力作用,人体可看成是作自由落体运动;在安全带保护的缓冲过程中,则人体同时受重力和安全带冲力的作用,其合力是一变力,且作用时间很短.为求安全带的冲力,可以从缓冲时间内,人体运动状态(动量)的改变来分析,即运用动量定理来讨论.事实上,动量定理也可应用于整个过程.但是,这时必须分清重力和安全带冲力作用的时间是不同的;而在过程的初态和末态,人体的速度均为零.这样,运用动量定理仍可得到相同的结果.

解1 以人为研究对象,按分析中的两个阶段进行讨论.在自由落体运动过程中,人跌落至2 m 处时的速度为

gh 21=

v (1)

在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有

()12Δv v m m t -=+P F

(2)

由式(1)、(2)可得安全带对人的平均冲力大小为

()N 10

14.1Δ2ΔΔ3

?=+

=+

=t

gh mg t

m Δmg F v

解2 从整个过程来讨论.根据动量定理有

N 1014.1/2Δ3

?=+=

mg g h t

mg F

3 -11 一只质量kg 11.01=m 的垒球以1

1s m 17-?=v 水平速率扔向打击手,球经球棒击出后,具有如图(a )所示的速度且大小1

2s

m 34-?=v ,若球与棒的接触时间为0.025

s,求:(1)棒对该球平均作用力的大小;(2)垒球手至少对球作了多少功?

分析 第(1)问可对垒球运用动量定理,既可根据动量定理的矢量式,用几何法求解,如图(b )所示;也可建立如图(a )所示的坐标系,用动量定量的分量式求解,对打击、碰撞一类作用时间很短的过程来说,物体的重力一般可略去不计.

题 3-11 图

解 (1) 解 1 由分析知,有

12mv mv t F -=?

其矢量关系如图(b )所示,则

)60180cos())((2)()()(2122212

--+=?mv mv mv mv t F

解之得 N 9.197=F

解 2 由图(a )有

x x

x mv mv

t F 12-=?

02-=?y

y mv

t F

将,则和代入解得及y x y x x F F v v v v v v 60sin 60cos ,22221=-==

N 9.19722=+=

y

x F

F F

(2) 由质点动能定理,得

J 7.472

12

12

122

=-

=

mv mv

W

3 -21 用铁锤把钉子敲入墙面木板.设木板对钉子的阻力与钉子进入木板的深度成正比.若第一次敲击,能把钉子钉入木板1.00 ×10 -2 m .第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深?

分析 由于两次锤击的条件相同,锤击后钉子获得的速度也相同,所具有的初动能也相同.钉子钉入木板是将钉子的动能用于克服阻力作功,由功能原理可知钉子两次所作的功相等.由于阻力与进入木板的深度成正比,按变力的功的定义得两次功的表达式,并由功相等的关系即可求解.

解 因阻力与深度成正比,则有F =kx (k 为阻力系数).现令x 0=1.00 ×10 -2 m,第二次钉入的深度为Δx ,由于钉子两次所作功相等,可得

?

?

+=

x

x x x x kx x kx Δ0

00

d d

Δx =0.41 ×10 -2

m

3 -22 一质量为m 的地球卫星,沿半径为3R E 的圆轨道运动, R E 为地球的半径.已知地

球的质量为m E .求:(1) 卫星的动能;(2) 卫星的引力势能;(3) 卫星的机械能.

分析 根据势能和动能的定义,只需知道卫星的所在位置和绕地球运动的速率,其势能和动能即可算出.由于卫星在地球引力作用下作圆周运动,由此可算得卫星绕地球运动的速率和动能.由于卫星的引力势能是属于系统(卫星和地球)的,要确定特定位置的势能时,必须规定势能的零点,通常取卫星与地球相距无限远时的势能为零.这样,卫星在特定位置的势能也就能确定了.至于卫星的机械能则是动能和势能的总和.

解 (1) 卫星与地球之间的万有引力提供卫星作圆周运动的向心力,由牛顿定律可得

()E

2

2

E E 33R m

R m

m G

v

=

则 E

E 2

k 62

1R m m G

m E ==

v

(2) 取卫星与地球相距无限远(r →∞)时的势能为零,则处在轨道上的卫星所具有的势能为

E

E P 3R m m G

E -=

(3) 卫星的机械能为

E

E E

E E

E P k 636R m m G

R m m G

R m m G

E E E -=-=+=

3 -29 如图所示,一质量为m ′的物块放置在斜面的最底端A 处,斜面的倾角为α,高度为h ,物块与斜面的动摩擦因数为μ,今有一质量为m 的子弹以速度v 0 沿水平方向射入物块并留在其中,且使物块沿斜面向上滑动.求物块滑出顶端时的速度大小.

题 3-29 图

分析 该题可分两个阶段来讨论,首先是子弹和物块的撞击过程,然后是物块(包含子弹)沿斜面向上的滑动过程.在撞击过程中,对物块和子弹组成的系统而言,由于撞击前后的总动量明显是不同的,因此,撞击过程中动量

不守恒.应该注意,不是任何碰撞过程中动量都是守恒的.但是,若取沿斜面的方向,因撞击力(属于内力)远大于子弹的重力P 1 和物块的重力P 2 在斜面的方向上的分力以及物块所受的摩擦力F f ,在该方向上动量守恒,由此可得到物块被撞击后的速度.在物块沿斜面上滑的过程中,为解题方便,可重新选择系统(即取子弹、物块和地球为系统),此系统不受外力作用,而非保守内力中仅摩擦力作功,根据系统的功能原理,可解得最终的结果.

解 在子弹与物块的撞击过程中,在沿斜面的方向上,根据动量守恒有

()10cos v m m αmv '+= (1)

在物块上滑的过程中,若令物块刚滑出斜面顶端时的速度为v 2 ,并取A 点的重力势能为零.由系统的功能原理可得

()α

h α

g m m μsin cos '+-

()()()212

22

12

1v v m m gh m m m m '+-

'++'+=

(2)

由式(1)、(2)可得

()1cot 2cos 2

02+-??

?

??'+=

αμgh αm m m v v 4 -11 质量为m 1 和m 2 的两物体A 、B 分别悬挂在图(a )所示的组合轮两端.设两轮的半径分别为R 和r ,两轮的转动惯量分别为J 1 和J 2 ,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计.试求两物体的加速度和绳的张力.

题 4-11 图

分析 由于组合轮是一整体,它的转动惯量是两轮转动惯量之和,它所受的力矩是两绳索张力矩的矢量和(注意两力矩的方向不同).对平动的物体和转动的组合轮分别列出动力学方程,结合角加速度和线加速度之间的关系即可解得.

解 分别对两物体及组合轮作受力分析,如图(b ).根据质点的牛顿定律和刚体的转动定律,有

111111a m F g m F P T T =-='- (1) 222222a m g m F P F T T =-=-' (2)

()αJ J r F R F T T 2121+=- (3) 11T T F F =',22T T F F =' (4)

由角加速度和线加速度之间的关系,有

αR a =1 (5) αr a =2 (6)

解上述方程组,可得

gR r

m R m J J r m R m a 2

22

121211+++-=

gr r

m R m J J r m R m a 2

22

121212+++-=

g m r

m R m J J Rr m r m J J F T 12

22

121221211++++++=

g m r

m R m J J Rr m R m J J F T 22

22

121121212++++++=

4 -16 一质量为m′、半径为R 的均匀圆盘,通过其中心且与盘面垂直的水平轴以角速度ω转动,若在某时刻,一质量为m 的小碎块从盘边缘裂开,且恰好沿垂直方向上抛,问它可能达到的高度是多少? 破裂后圆盘的角动量为多大?

分析 盘边缘裂开时,小碎块以原有的切向速度作上抛运动,由质点运动学规律可求得上抛的最大高度.此外,在碎块与盘分离的过程中,满足角动量守恒条件,由角动量守恒定律可计算破裂后盘的角动量.

题 4-16 图

解 (1) 碎块抛出时的初速度为

R ω=0v

由于碎块竖直上抛运动,它所能到达的高度为

g

R ωg

h 222

22

=

=

v

(2) 圆盘在裂开的过程中,其角动量守恒,故有

L L L '-=0

式中ωR m L 2

2

1'=

为圆盘未碎时的角动量;ωmR L 2

='为碎块被视为质点时,碎块对轴的

角动量;L 为破裂后盘的角动量.则

ωR m m L 2

21??

? ??-'=

4 -20 为使运行中的飞船停止绕其中心轴的转动,可在飞船的侧面对称地安装两个切向控制喷管(如图所示),利用喷管高速喷射气体来制止旋转.若飞船绕其中心轴的转动惯量J =2.0 ×103 kg· m 2 ,旋转的角速度ω=0.2 rad· s -1 ,喷口与轴线之间的距离r =1.

5 m ;喷气以恒定的流量Q =1.0 kg· s -1和速率u =50 m· s -1 从喷口喷出,问为使该飞船停止旋转,喷气应喷射多长时间?

分析 将飞船与喷出的气体作为研究系统,在喷气过程中,系统不受外力矩作用,其角动量守恒.在列出方程时应注意:(1) 由于喷气质量远小于飞船质量,喷气前、后系统的角动量近似为飞船的角动量J ω;(2) 喷气过程中气流速率u 远大于飞船侧面的线速度ωr ,因此,整个喷气过程中,气流相对于空间的速率仍可近似看作是 u ,这样,排出气体的总角动量()mur m r ωu m

≈+?d .经上述处理后,可使问题大大简化.

解 取飞船和喷出的气体为系统,根据角动量守恒定律,有

0=-mur ωJ (1)

因喷气的流量恒定,故有

Qt m 2= (2)

由式(1)、(2)可得喷气的喷射时间为

s 67.22==

Qur

ωJ t

题 4-20 图

4 -21 如图所示,长为l 、质量为m 的均质杆,可绕点O 在竖直平面内转动,令杆至水平位置由静止摆下,在竖直位置与质量为

2

m 的物体发生完全非弹性碰撞,碰撞后物体沿摩擦

因数为μ的水平面滑动,试求此物体滑过的距离s .

分析 本题可分为三个过程,即细杆绕点O 的转动过程,细杆与物体的完全非弹性碰撞以及碰撞后物体在粗糙水平面上的滑动过程。注意前两个过程,只能运用刚体定轴转动所满

足的力学规律.其中,第一个过程满足机械能守恒,如以细杆摆至垂直位置时细杆质心为势能零点,则细杆在水平位置的势能应为2

l mg

(而不是mgl ),摆至垂直位置时细杆的动能为

2

2

1ωJ (而不是

2

2

1mv );第二个过程细杆和物体对点O 的角动量守恒(而不是动量守恒,想

一想为什么?),此外对完全非弹性碰撞,碰撞后瞬间满足ωω''=,l v 为碰撞后细杆的角速度,v 为碰撞后物体的速度.

解 由分析知,有 转动过程 2

2

12

ωJ l mg

=

碰撞过程 l

v l m J J )

2

(2

+

滑动过程 2

)2

(2102

v m s g m -

=-

μ 将2

3

1ml J =

代入以上三式,解得物体滑过的距离为

μ

256l s =

讨论 碰撞时作用在细杆-物体系统的外力均通过点O ,外力矩为零,故系统对点O 的角动量守恒,但此时转轴的点O 处会产生水平方向的轴力分量,使合外力并不为零,故系统动量并不守恒,这是初学者容易犯的一种错误.

题 4-21 图

4 -2

5 我国1970年4月24日发射的第一颗人造卫星,其近地点为4.39 ×105 m ,远地点为2.38

×106 m .试计算卫星在近地点和远地点的速率.(设地球半径为6.38×106 m )

分析 当人造卫星在绕地球的椭圆轨道上运行时,只受到有心力———万有引力的作用.因此,卫星在运行过程中角动量是守恒的,同时该力对地球和卫星组成的系统而言,又是属于保守内力,因此,系统又满足机械能守恒定律.根据上述两条守恒定律可求出卫星在近地点和远地点时的速率.

解 由于卫星在近地点和远地点处的速度方向与椭圆径矢垂直,因此,由角动量守恒定律有

2211v v mr mr = (1)

又因卫星与地球系统的机械能守恒,故有

2

2

21

2

12

121r Gmm m r Gmm m E

E

-

=

-

v v (2)

式中G 为引力常量,m E 和m 分别为地球和卫星的质量,r 1 和r 2 是卫星在近地点和远地点时离地球中心的距离.由式(1)、(2)可解得卫星在近地点和远地点的速率分别为

()

1

32112E 1s m 1011.8-??=+=

r r r r Gm v

1

312

12s

m 1031.6-??==

v v r r

4 -27 如图所示,一质量为m 的小球由一绳索系着,以角速度ω0 在无摩擦的水平面上,作半径为r 0 的圆周运动.如果在绳的另一端作用一竖直向下的拉力,使小球作半径为r 0/2 的圆周运动.试求:(1) 小球新的角速度;(2) 拉力所作的功.

题 4-27 图

分析 沿轴向的拉力对小球不产生力矩,因此,小球在水平面上转动的过程中不受外力矩作用,其角动量应保持不变.但是,外力改变了小球圆周运动的半径,也改变了小球的转动惯量,从而改变了小球的角速度.至于拉力所作的功,可根据动能定理由小球动能的变化得到. 解 (1) 根据分析,小球在转动的过程中,角动量保持守恒,故有

1100ωJ ωJ =

式中J 0 和J 1 分别是小球在半径为r 0 和1/2 r 0 时对轴的转动惯量,即2

00mr J =和

2

014

1mr J =

,则

000

14ωωJ J ω==

(2) 随着小球转动角速度的增加,其转动动能也增加,这正是拉力作功的结果.由转动的动能定理可得拉力的功为

2

0202

002

112

32

121ωmr ωJ ωJ W =

-

=

5-7 如图(a )所示,两个轻弹簧的劲度系数分别为1k 、2k .当物体在光滑斜面上振动时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率.

题5-7 图

分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点O ,Ox 轴正向沿斜面向下,由受力分析可知,沿Ox 轴,物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ.

证 设物体平衡时两弹簧伸长分别为1x 、2x ,则由物体受力平衡,有

2211sin x k x k mg ==θ (1)

按图(b )所取坐标,物体沿x 轴移动位移x 时,两弹簧又分别被拉伸1x '和2x ',即21

x x x '+'=.则物体受力为 ()()111222sin sin x x k mg x x k mg F '+-='+-=θθ (2)

将式(1)代入式(2)得

112

2x k x k F '-='-=

(3)

由式(3)得11

k F x /-='、22k F x /-=',而21x x x '+'=,则得到

()[]kx x k k k k F -=+-=2121/

式中()2121k k k k k +=/为常数,则物体作简谐运动,振动频率

()m k k k k π

m k ωv 2121/21/π

21π2/+=

=

=

讨论 (1) 由本题的求证可知,斜面倾角θ 对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2) 如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其作简谐运动,且振动频率均为()m k k v /π

2121+=

,读者可以一试.通过这些例

子可以知道,证明物体是否作简谐运动的思路是相同的.

5-10 某振动质点的x -t 曲线如图(a )所示,试求:(1) 运动方程;(2) 点P 对应的相位;(3) 到达点P 相应位置所需的时间.

分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过x -t 图线确定振动的三个特征量A 、ω和0?,从而写出运动方程.曲线最大幅值即为振幅A ;而ω、0?通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便.

解 (1) 质点振动振幅A =0.10 m.而由振动曲线可画出t 0 =0 和t 1 =4 s时旋转矢量,如图(b ) 所示.由图可见初相3/π0-=?(或3/π50=?),而由()3201//ππω+=-t t 得1s 24/π5-=ω,则运动方程为

()m 3/π24π5cos 10.0?

?

?

??-=t x

题5-10 图

(2) 图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c ) 所示.当初相取3/π0-=?时,点P 的相位为()000=-+=p p t ω??(如果初相取成3/π50=?,则点P 相应的相位应表示为()π200=-+=

p p t ω??.

(3) 由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t .

5-12 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.

分析 根据v -t 图可知速度的最大值v max ,由v max =Aω可求出角频率ω,进而可求出周期T 和加速度的最大值a max =Aω2 .在要求的简谐运动方程x =A cos (ωt +φ)中,因为A 和ω已得出,故只要求初相位φ即可.由v -t 曲线图可以知道,当t =0 时,质点运动速度v 0 =v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿x 轴正向向着平衡点运动.利用v 0 =-Aωsinφ就可求出φ.

解 (1) 由ωA v =max 得1s 51-=.ω,则

s 2.4/π2==ωT

(2)222max s m 1054--??==.ωA a (3) 从分析中已知2/sin

0ωA ωA =-=v ,即

21sin /-=?

6/π5,6/π--=?

因为质点沿x 轴正向向平衡位置运动,则取6/π5-=,其旋转矢量图如图(b )所示.则

运动方程为 ()cm 6π55.1cos 2??? ?

?

-=t x

题5-12 图

5-15 如图(a )所示,质量为1.0 ×10-2 kg 的子弹,以500 m·s -1的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为4.99 kg ,弹簧的劲度系数为8.0 ×103 N·m -1 ,若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程.

题5-15 图

分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度v 0 ,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量m 1 +m 2 和弹簧的劲度系数k 确定,振幅和初相可根据初始条件(初速度v 0 和初位移x 0 )求得.初相位仍可用旋转矢量法求.

解 振动系统的角频率为

()1

21s

40-=+=

m m k /ω

由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度v 0 为

1

2

110s

m 0.1-?=+=

m m v m v

又因初始位移x 0 =0,则振动系统的振幅为

()m 10

5.2//2

02

02

0-?==+=

ωωx A v v

图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位2/π0=?,则简谐运动方程为

()()m π0.540cos 10

5.22

+?=-t x

5-19 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1) 合振动的振

幅及初相;(2) 若有另一同方向、同频率的简谐运动()()m 10cos 07033?+=t x .,则3?为多少时,x 1 +x 3 的振幅最大? 又3? 为多少时,x 2 +x 3 的振幅最小?

题5-19 图

分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动

的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212

22

1cos 2??-++=

A A A A A ,

其大小与两个分振动的初相差12??-相关.而合振动的初相位

()()[]22112211cos cos sin sin arctan

?????A A A A ++=/

解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=???,

故合振动振幅为

()m 10

87cos 22

12212

22

1-?=-++=

.??A A A A A

合振动初相位

()()[]

rad

1.48arctan11cos cos sin sin arctan

22112211==++=?????A A A A /

(2) 要使x 1 +x 3 振幅最大,即两振动同相,则由π2Δk =?得

,...2,1,0,π75.0π2π213±±=+=+=k k k ??

要使x 1 +x 3 的振幅最小,即两振动反相,则由()π12Δ+=k ?得

(),...2,1,0,π25.1π2π1223±±=+=++=k k k ??

5-20 两个同频率的简谐运动1 和2 的振动曲线如图(a )所示,求(1)两简谐运动的运动方程x 1 和x 2;(2) 在同一图中画出两简谐运动的旋转矢量,并比较两振动的相位关系;(3) 若两简谐运动叠加,求合振动的运动方程.

分析 振动图已给出了两个简谐运动的振幅和周期,因此只要利用图中所给初始条件,由旋转矢量法或解析法求出初相位,便可得两个简谐运动的方程.

解 (1) 由振动曲线可知,A =0.1 m,T =2s,则ω=2π/T =πs-1 .曲线1

表示质点初始时刻在x =0 处且向x 轴正向运动,因此φ1 =-π/2;曲线2 表示质点初始时刻在x =A /2 处且向x 轴负向运动,因此φ2 =π/3.它们的旋转矢量图如图(b )所示.则两振动的运动方程分别为

()()m 2/ππcos 1.01-=t x 和 ()()m 3/ππc o s

1.02+=t x (2) 由图(b )可知振动2超前振动1 的相位为5π/6. (3)()?ω+'=+=t A x x x cos 21

其中()m 0520cos 212212

22

1.=-++=

'??A A A A A

()12

π0.268arctan cos cos sin sin arctan

2

2112211-

=-=++=?????A A A A

则合振动的运动方程为 ()()m π/12πc o s 052.0-=t x

题5-20 图

6-5 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x =1.0 m处质点的振动曲线并讨论其与波形图的不同.

分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率υ、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式

??

????+??? ??=0cos ?ωu x t A y 书写,然后通过比较确定各特征量(式中u x

前“-”、“+”的选取分

别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质

的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可

大学物理活页作业答案(全套)

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r )(21m j i r )(242m j i r )(3212m j i r r r )/(32s m j i t r v (2))(22SI j t i dt r d v )(2SI j dt v d a )/(422s m j i v )/(222 s m j a 8.解: t A tdt A adt v t o t o sin cos 2 t A tdt A A vdt A x t o t o cos sin

9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5 s m t h dt ds v /1094.1cos 32 (2)当旗杆与投影等长时,4/ t h s t 0.31008.144 10.解: ky y v v t y y v t dv a d d d d d d d -k y v d v / d y C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2 020 2 121ky v C )(22 22y y k v v o o

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg θ (B)(m +M )g tg θ (C)mg tg θ (D)Mg tg θ 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数μ=0.5,(1)今用水平力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力f =____5N____,m A 的加速度a A =_____1.7____. (g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 ,v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 2 2 121 Km x m m m + . 4. 一弹簧变形量为x 时,其恢复力为F =2ax -3bx 2,现让该弹簧由x =0变形到x =L ,其弹力的功为: 2 3 aL bL - . 5. 如图,质量为m 的小球,拴于不可伸长的轻绳上,在光滑水平桌面上作匀速圆周运动,其半径为R ,角速度为ω,绳的另一端通过光 滑的竖直管用手拉住,如把绳向下拉R /2时角速度ω’为 F m A m B m M F θ A O B R v A v B x m 1 m 2 F m R

大学物理A活页作业.docx

练习 1质点运动学(一) 班级学号姓名成 绩. 1. 一质点在平面上运动,已知质点位置矢量的表示式为r at 2 i bt 2 j (其中a、b为常量), 则该质点作 (A) 匀速直线运动.(B) 变速直线运动. (C) 抛物线运动.(D)一般曲线运动.[] 2.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为,某一时间内的平均 速度为 v ,平均速率为v,它们之间的关系必定有: (A) v v, v v() v v, v v B (C) v v, v v() v v, v v[] D 3.一质点沿直线运动 ,其运动学方程为 x = 6 t -t 2(SI),则在 t 由 0至 4s 的时间间隔内,质点 的位移大小为 ___________,在 t 由 0 到 4s 的时间间隔内质点走过的路程为_______________.4.一质点作直线运动,其坐标 x 与时间 t 的关系曲线如图所示.则该质点在第秒瞬时速度为零;在第秒至第秒间速度与加速度同方向. x (m) 5 t (s) O 1 2 3 4 5 6 5. 有一质点沿 x 轴作直线运动, t 时刻的坐标为 x = t 2–2 t 3(SI) .试求: (1)第 2 秒内的平均速度; (2)第 2 秒末的瞬时速度; (3)第 2 秒内的路程.

6.什么是矢径矢径和对初始位置的位移矢量之间有何关系怎样选取坐标原点才能够使两者一致 练习 2质点动力学(一) 班级学号姓名成 绩. 1.质量分别为 m1和 m2的两滑块 A 和 B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为,系统在水平拉力 F 作用下匀速 F 运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,B A 二者的加速度 a A和 a B分别为 x (A) a A=0 , a B=0.(B) a A>0 , a B<0. (C) a A<0 , a B>0.(D) a A<0 , a B=0. [] 2.体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则 到达顶点的情况是 (A)甲先到达.(B)乙先到达. (C)同时到达.(D)谁先到达不能确定.[] 3.分别画出下面二种情况下,物体 A 的受力图. (1)物体 A 放在木板 B 上,被一起抛出作斜上抛运动, A 始终位于 B 的上面,不计空气阻力; A v B A B (1)C(2)

大学物理活页作业答案全套(供参考)

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r (2))(22SI j t i dt r d v )(2SI j dt v d a 8.解: 9.解:(1)设太阳光线对地转动的角速度为ω (2)当旗杆与投影等长时,4/ t 10.解: ky y v v t y y v t dv a d d d d d d d -k y v d v / d y 已知y =y o ,v =v o 则2 020 2 121ky v C 2.质点运动学单元练习(二)答案 1.D 2.A 3. B

4.C 5.14 s m t dt ds v ;2 4 s m dt dv a t ;22 2 8 s m t R v a n ; 6.s rad o /0 .2 ;s rad /0 .4 ;2 /8 .0s rad r a t ; 7.解:(1)由速度和加速度的定义 )(22SI j i t dt r d v ;)(2SI i dt v d a (2)由切向加速度和法向加速度的定义 (3) )(1 22/322 SI t a v n 8.解:火箭竖直向上的速度为gt v v o y 45sin 火箭达到最高点时垂直方向速度为零,解得 9.解:s m u v /6.3430tan 10.解: l h v u ;u h l v 3.牛顿定律单元练习答案 1.C 2.C 3.A 4.kg Mg T 5.36721 ;2/98.02.0s m M T a 5.x k v x 2 2 ;x x x v k dt dx k dt dv v 222

大学物理A活页作业任务

练习1 质点运动学(一) 班级 学号 姓名 成绩 . 1. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 2 2 (其中a 、b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动. [ ] 2.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为 ,某一时间内的平均速 度为v ,平均速率为v ,它们之间的关系必定有: (A )v v v,v (B )v v v,v (C )v v v,v (D )v v v,v [ ] 3.一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点 的位移大小为___________,在t 由0到4s 的时间间隔内质点走过的路程为_______________. 4.一质点作直线运动,其坐标x 与时间t 的关系曲线如图所示.则该质点在第 秒瞬时 速度为零;在第 秒至第 秒间速度与加速度同方向.

5. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求: (1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程. 6. 什么是矢径?矢径和对初始位置的位移矢量之间有何关系?怎样选取坐标原点才能够使两者一致? 练习2 质点动力学(一) 班级 学号 姓名 成绩 . 1.质量分别为m 1和m 2的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为 ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为 (A) a A =0 , a B =0. (B) a A >0 , a B <0. (C) a A <0 , a B >0. (D) a A <0 , a B =0. [ ] 2. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是

大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。 1 R I B 80μ= 方向 垂直纸面向外 2 R I R I B πμμ2200- = 方向 垂直纸面向里 3 R I R I B 4200μπμ+ = 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。试求圆筒内部的磁感应强度。 解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2 作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B 的 大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B 的方向与线元垂直, 在de , cd fe ,上各点0=B .应用安培环路定理 ∑??=I l B 0d μ 可得 ab i ab B 0μ= σωμμR i B 00== 圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.

67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。 解:) (22r R I J -= π 1012 1 r J B ?= μ 2022 1 r k J B ?-=μ j Ja O O k J r r J B B 021******** 21)(2 1 μμμ=?=-?= += r R Ia ) (22 2 0-= πμ 68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。

大学物理_作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x 2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 5 3 += t r (SI 单位)

求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)=m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 1、在图示系统中,滑轮可视为半径为R 、质量为m 0 的匀质圆盘。设绳与滑轮之间无滑动,水平面光滑,并且m 1=50kg ,m 2=200kg ,m 0=15kg ,R=0.10m ,求物体的加速度及绳中的张力。 解 将体系隔离为1m ,0m , 2m 三个部分,对1 m 和2m 分别列牛顿方程,有 a m T g m 222=- a m T 1 1= 因滑轮与绳子间无滑动,则有运动学条件 R a β= 联立求解由以上四式,可得 由此得物体的加速度和绳中的张力为 m 2 T 1

大学物理9~13课后作业答案

第八章 8-7 一个半径为的均匀带电半圆环,电荷线密度为,求环心处点的场强. 解: 如8-7图在圆上取 题8-7图 ,它在点产生场强大小为 方向沿半径向外 则 积分 ∴ ,方向沿轴正向. 8-8 均匀带电的细线弯成正方形,边长为,总电量为.(1)求这正方形轴线上离中心为处的场强;(2)证明:在处,它相当于点电荷产生的场强. 解: 如8-8图示,正方形一条边上电荷在点产生物强方向如图,大小为 ∵ ∴ R λO ?Rd dl =?λλd d d R l q ==O 20π4d d R R E ε? λ= ? ?ελ ?d sin π4sin d d 0R E E x ==??ελ ?πd cos π4)cos(d d 0R E E y -= -=R R E x 000π2d sin π4ελ??ελπ = =? d cos π400=-=???ελπR E y R E E x 0π2ελ = =x l q r E l r >>q E 4q P P E ? d ()4π4cos cos d 22 021l r E P + -= εθθλ22cos 22 1l r l + = θ12cos cos θθ-=24π4d 22 220l r l l r E P + += ελ

在垂直于平面上的分量 ∴ 题8-8图 由于对称性,点场强沿方向,大小为 ∵ ∴ 方向沿 8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×C ·m -3求距球心5cm , 8cm ,12cm 各点的场强. 解: 高斯定理 , 当时,, 时, ∴ , 方向沿半径向外. cm 时, ∴ 沿半径向外. 8-11 半径为 和(>)的两无限长同轴圆柱面,单位长度上分别带有电量和-,试求:(1)<;(2) <<;(3) >处各点的场强. 解: 高斯定理 P E ? d βcos d d P E E =⊥42 4π4d 2 2 22 22 l r r l r l r l E + + += ⊥ελP OP 2)4(π44d 422 22 0l r l r lr E E P + += ?=⊥ελl q 4= λ2)4(π42 2220l r l r qr E P ++= ε510-02π4ε∑=q r E 5=r cm 0=∑q 0=E ?8=r cm ∑q 3π 4p =3 (r )3内r -()202 3π43π4r r r E ερ内 -=41048.3?≈1C N -?12=r 3π 4∑=ρq -3(外r )内3r () 420331010.4π43π4?≈-=r r r E ερ内 外1C N -?1R 2R 2R 1R λλr 1R 1R r 2R r 2R 0d ε∑?= ?q S E s ??0 d ε ∑ ? = ? q S E s ? ?

大学物理习题与作业答案

大学物理习题与作业答 案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

理想气体 状 态方程 5-1一容器内储有氧气,其压强为105 Pa ,温度为270 C ,求:(1)气体分子的数密度;(2)氧气的质量密度;(3)氧分子的质量;(4)分子间的平均距离(设分子均匀等距分布)。 解:(1)nkT p =,32523 5 /m 1044.2) 27273(1038.11001.1?=+???==-kT p n (2)R M m T pV mol = ,335mol kg/m 30.1)27273(31.810321001.1=+????== =∴-RT pM V m ρ (3)n m O 2 =ρ , kg 1033.510 44.230.126 25 2-?=?= = ∴n m O ρ (4)m 1045.31044.2119 325 3 -?=?==n d 5-2在容积为V 的容器中的气体,其压强为p 1,称得重量为G 1。然后放掉一部分气体,气体的压强降至p 2,再称得重量为G 2。问在压强p 3下,气体的质量密度多大 解:设容器的质量为m ,即放气前容器中气体质量为m g G m -=1 1,放气后容器中气体质量为m g G m -= 2 2。 由理想气体状态方程有 RT M m g G RT M m V p mol 1mol 11-==, RT M m g G RT M m V p mol 2 mol 22-==

上面两式相减得 V p p G G g M RT )()(1212mol -=-,)(1 21 2mol p p G G gV RT M --= 当压强为3p 时,1 21 2 33mol 3p p G G gV p RT p M V m --?=== ρ 压强、温度的微观意义 5-3将10-2kg 的氢气装在10-3m 2的容器中,压强为105Pa ,则氢分子的平均平动动能为多少 解:RT M m pV mol = ,mR pV M T mol =∴ 5-4体积33m 10-=V ,压强Pa 105=p 的气体分子平均平动动能的总和为多少 解:kT N t 2 3=∑ε,其中N 为总分子数。kT V N nkT p = = ,kT pV N = 5-5温度为0℃和100℃时理想气体分子的平均平动动能各为多少欲使分子的平均 平动动能等于1eV ,气体的温度需多高(1eV=10-19J ) 解:C 0?时,J 1065.52731038.12 32321230--=?=???==kT t ε C 100?时,J 1072.73731038.12 3 232123100--=?=???== kT t ε J 106.1eV 119-?= ,∴分子具有1eV 平均动能时,气体温度为 能量均分、理想气体内能

大学物理活页答案(马文蔚 版)高等教育出版社

10.机械波单元练习(一)答案 1. B 2. C 3. B 4. 1.67m 5. 0cos[()]x l y A t u ω?-=- + 6. 6,30 7. 解:(1)由波动方程可知振幅0.05m A =,角频率20πω=,/3πu ω=,则 波速16.67m s u -=?,频率/2π10Hz νω==,波长2π 2/3m u λω ==。 (2)max π 3.14m/s A ω==≈v 8. 解:(1)由图可知振幅 0.1m A =,波长4m λ=,波速1100m s u -=? 则2π2π/50πu T ω λ == =。 又O 点初始时刻位于平衡位置且向y 轴正向运动,则由旋转矢量法可得 π/2?=-,因此波动方程为 0.1cos[50π(/100)π/2](m)y t x =-- (2)P 处质点的振动方程为 0.1cos(50π3π/2)(m)y t =- 9. 解:由图可知振幅 0.1m A =,波长100m λ=,则角频率 2π2ππu T ωλ = ==。 由P 点的运动方向可知波向x 轴负方向传播。又由图可知原点O 初始时刻位于A /2处,且向y 轴负方向运动,则由旋转矢量法可得0π/3?=。则波动方程为

0.1cos[π(/50)π/3](m)y t x =++ 10.解:(1)以A 点为坐标原点的波动方程为 2310cos[3π(/30)](m) y t x -=?- (2)π 2π 2 B A AB AB u ω??λ =-=- =- 则以B 点为坐标原点的波动方程为 2310cos[3π(/30)π/2](m)y t x -=?-- 11.机械波单元练习(二)答案 1. C 2. B 3. C 4. /2λ,π 5. 550Hz ,458.3Hz 6. 0.08W/m 2 7. 解:两列波传到1 S 2S 连线和延长线上任一点P 的相位差 21 21 20102π π2π r r r r ???λ λ --?=--=-- 1S 左侧各点: 21 10 π2π π2π 6π4 r r ?λ -?=--=--=-,振动都加强; 2S 右侧各点: 21 10 π2π π2π 4π4 r r ?λ --?=--=--=,振动都加强;

大学物理习题与作业答案

理想气体状态方程 5-1一容器内储有氧气,其压强为?105Pa ,温度为270 C ,求:(1)气体分子的数密度;(2)氧气的质量密 度;(3)氧分子的质量;(4)分子间的平均距离(设分子均匀等距分布)。 解:(1) nkT p =,32523 5 /m 1044.2) 27273(1038.11001.1?=+???==-kT p n (2) R M m T pV mol =Θ,335mol kg/m 30.1)27273(31.810321001.1=+????== =∴-RT pM V m ρ (3) n m O 2=ρΘ, kg 1033.510 44.230 .12625 2-?=?= =∴n m O ρ (4) m 1045.310 44.21193253 -?=?==n d 5-2在容积为V 的容器中的气体,其压强为p 1,称得重量为G 1。然后放掉一部分气体,气体的压强降至p 2, 再称得重量为G 2。问在压强p 3下,气体的质量密度多大 解: 设容器的质量为m ,即放气前容器中气体质量为m g G m -= 1 1, 放气后容器中气体质量为m g G m -=22。 由理想气体状态方程有 RT M m g G RT M m V p mol 1mol 11-==, RT M m g G RT M m V p mol 2 mol 22-== 上面两式相减得 V p p G G g M RT )()(1212mol -=-, )(1 21 2mol p p G G gV RT M --= 当压强为3p 时, 1 21 2 33mol 3p p G G gV p RT p M V m --?=== ρ 压强、温度的微观意义 5-3将?10-2kg 的氢气装在?10-3m 2的容器中,压强为?105 Pa ,则氢分子的平均平动动能为多少 解: RT M m pV mol = Θ,mR pV M T mol =∴ J 1088.331 .8102100.4109.31021038.1232323222 35323 mol -----?=??????????===mR pV M k kT t ε 5-4体积33m 10-=V ,压强Pa 105=p 的气体分子平均平动动能的总和为多少 解:kT N t 23=∑ε,其中N 为总分子数。 kT V N nkT p ==Θ,kT pV N = J 15010102 3 232335=??===∑∴-pV kT kT pV t ε

大学物理A活页作业答案

练习1 质点运动学(一)参考答案 1. B ; 2. D; 3. 8m, 10m. 4. 3, 3 6; 5. 解:(1) 5.0/-==??t x v m/s (2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 6. 答:矢径r 是从坐标原点至质点所在位置的有向线段. 而位移矢量是从某一个初始时刻质点所在位置到后一个时刻质点所在位置的有向线段.它们的一般关系为 0r r r -=? 0r 为初始时刻的矢径, r 为末时刻的矢径,△r 为位移矢量. 若把坐标原点选在质点的初始位置,则0r =0,任意时刻质点对于此位置的位移为△r =r , 即r 既是矢径也是位移矢量.

练习2 质点动力学(一)参考答案 1.D 2.C 3. 4. l/cos 2θ 5.如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m= m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。 解:(1) m M m )(m 0 0+= +===μμ联立方程得: g m M N N T T g (2) (1) (2) BA A A P B

g M m m m M T g M m m a Ma Mg T a m m T g m m ++=+==-+=-+)(计算结果,得到 利用)()(0''0'0)1(μ 6.解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律 t m K d d v v =- ∴ ? ?=-=-v v v v v v d d , d d 0t t m K t m K ∴ m Kt /0e -=v v (2) 求最大深度 解法一: t x d d = v t x m Kt d e d /0-=v t x m Kt t x d e d /0 00 -? ? =v ∴ )e 1()/(/0m Kt K m x --=v K m x /0max v = 解法二: x m t x x m t m K d d )d d )(d d (d d v v v v v ===- ∴ v d K m dx -= v v d d 0 m a x ? ?-=K m x x ∴ K m x /0max v =

大学物理活页作业答案(上册)

1 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r -+= )(21m j i r += )(242m j i r -= )(3212m j i r r r -=-=? )/(32s m j i t r v -=??= (2))(22SI j t i dt r d v -== )(2SI j dt v d a -== )/(422s m j i v -= )/(222--=s m j a 8.解: t A tdt A adt v t o t o ωω-=ωω-==??sin cos 2 t A tdt A A vdt A x t o t o ω=ωω-=+=??cos sin 9.解:(1)设太阳光线对地转动的角速度为ω

s rad /1027.73600 *62 /5-?=π= ω s m t h dt ds v /1094.1cos 32 -?=ωω== (2)当旗杆与投影等长时,4/π=ωt h s t 0.31008.144=?=ω π = 10.解: ky y v v t y y v t dv a -==== d d d d d d d -k =y v d v / d y ??+=- =-C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2 020 2 121ky v C --= )(22 22y y k v v o o -+=

同济大学普通物理活页作业答案(苍松教学)

第一章 质点运动学 班号 学号 姓名 日期 一、 选择题 1. 一个质点在Oxy 平面上运动,已知质点的运动方程为j t i t r 2 2 52-=(SI ),则该质点作 (A )匀速直线运动; (B )变速直线运动; (C )抛物线运动; (D )一般曲线运动。 ( B ) 2.一个质点作曲线运动,r 表示位置矢量,s 表示路程,τ表示曲线的切线方向。下列几个表达式中,正确的表达式为C (A ) a t =d d v ; (B )v =t r d d ; (C ) v =t s d d ; (D )τa =t d d v 。 ( C ) 3.沿直线运动的物体,其速度的大小与时间成反比,则其加速度的大小与速度大小的关系是 (A )与速度大小成正比; (B )与速度大小的平方成正比; (C )与速度大小成反比; (D )与速度大小的平方成反比。 ( B ) 4.下列哪一种说法是正确的 (A) 在圆周运动中,加速度的方向一定指向圆心; (B) 匀速率圆周运动的速度和加速度都恒定不变; (C) 物体作曲线运动时,速度的方向一定在运动轨道的切线方向上,法向分速度恒等于零;因此其法向加速度也一定等于零; (D) 物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零。 ( D ) 5. 如图所示,路灯距离地面高度为H ,行人身高为h ,如果人以匀速v 背向路灯行走,则人头的影子移动的速度为 (A) v H h H -; (B )v h H H -; (C ) v H h ; (D ) v h H 。 ( B ) 6.一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为 t v ,那么它运动的时间是 (A) g t 0v v -; (B) g t 20 v v -; H h v 选择题5图

大学物理-作业与答案

大学物理-作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为:5 4; 22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运 动的轨道方程;(2)s 11 =t 和s 22 =t 时,质点的位 置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球

悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 53 +=t r (SI 单位) 求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)=m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 m 2 T 1

大学物理课后作业答案

大学物理课后作业答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

第八章 8-7 一个半径为的均匀带电半圆环,电荷线密度为,求环心处点的场强. 解: 如8-7图在圆上取 题8-7图 ,它在 点产生场强大小为 方向沿半径向外 则 积分 ∴ ,方向沿轴正向. 8-8 均匀带电的细线弯成正方形,边长为,总电量为.(1)求这正方形轴线上离中心为处的场强;(2)证明:在处,它相当于点电荷产生的场强. 解: 如8-8图示,正方形一条边上电荷在点产生物强方向如图,大小为 ∵ R λO ?Rd dl =?λλd d d R l q ==O 20π4d d R R E ε? λ= ? ?ελ ?d sin π4sin d d 0R E E x ==??ελ ?πd cos π4)cos(d d 0R E E y -= -=R R E x 000π2d sin π4ελ ??ελπ = =? d cos π400=-=???ελπR E y R E E x 0π2ελ = =x l q r E l r >>q E 4q P P E d ()4π4cos cos d 22 021l r E P + -= εθθλ22cos 22 1l r l + = θ12cos cos θθ-=

∴ 在垂直于平面上的分量 ∴ 题8-8图 由于对称性,点场强沿方向,大小为 ∵ ∴ 方向沿 8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2× C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理, 当时,, 时, ∴ , 方向沿半径向外. cm 时, ∴ 沿半径向外. 24 π4d 2 2 22 0l r l l r E P + + = ελ P E d βcos d d P E E =⊥424π4d 22 22220l r r l r l r l E + ++= ⊥ελP OP 2)4(π44d 422 22 0l r l r lr E E P + += ?=⊥ελl q 4= λ2)4(π42 2220l r l r qr E P ++= ε510-02π4ε∑=q r E 5=r cm 0=∑q 0=E 8=r cm ∑q 3 π 4p =3 (r )3内r -() 202 3π43 π4r r r E ερ 内-= 41048.3?≈1C N -?12=r 3π 4∑=ρ q -3 (外r )内3r () 4 20331010.4π43π4?≈-=r r r E ερ内 外1C N -?0 d ? ? ? ? ? q S E s ? ?

同济大学普通物理活页作业答案

第一章 质点运动学 班号 学号 姓名 日期 一、 选择题 1. 一个质点在Oxy 平面上运动,已知质点的运动方程为j t i t r 2 252-=(SI ),则该质点 作 (A )匀速直线运动; (B )变速直线运动; (C )抛物线运动; (D )一般曲线运动。 ( B ) 2.一个质点作曲线运动,r 表示位置矢量,s 表示路程,τ表示曲线的切线方向。下列几个表达式中,正确的表达式为C (A ) a t =d d v ; (B )v =t r d d ; (C ) v =t s d d ; (D )τa =t d d v 。 ( C ) 3.沿直线运动的物体,其速度的大小与时间成反比,则其加速度的大小与速度大小的关系是 (A )与速度大小成正比; (B )与速度大小的平方成正比; (C )与速度大小成反比; (D )与速度大小的平方成反比。 ( B ) 4.下列哪一种说法是正确的 (A) 在圆周运动中,加速度的方向一定指向圆心; (B) 匀速率圆周运动的速度和加速度都恒定不变; (C) 物体作曲线运动时,速度的方向一定在运动轨道的切线方向上,法向分速度恒等于零;因此其法向加速度也一定等于零; (D) 物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零。 ( D ) 5. 如图所示,路灯距离地面高度为H ,行人身高为h 匀速v 背向路灯行走,则人头的影子移动的速度为 (A) v H h H -; (B )v h H H -; (C ) v H h ; (D ) v h H 。 ( B ) 6.一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为 t v ,那么它运动的时间是 (A) g t 0v v -; (B) g t 20 v v -; 选择题5图

大学物理学-课后习题答案-赵近芳-全

习题及解答(全) 习题一 1-1||与有无不同? 和有无不同?和有无不同?其不同在哪里?试 举例说明. 解:(1) 是位移的模,是位矢的模的增量,即 , ; (2)是速度的模,即. 只是速度在径向上的分量. ∵有(式中叫做单位矢),则 式中就是速度径向上的分量, ∴ 不同如题1-1图所示. 题1-1图 (3) 表示加速度的模,即,是加速度在切向上的分量. ∵有表轨道节线方向单位矢),所以 式中就是加速度的切向分量. (的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求 出r =,然后根据=,及=而求得结果;又有人先计算速度和加速度 的分量,再合成求得结果,即 =及= 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有, r ?r ?t d d r t d d r t d d v t d d v r ??r r ?1 2r r -=1 2r r r -=?t d d r t d d r ==v t s d d t r d d r r ?r =r ?t ?r ?t r t d d d d d d r r r +=t r d d t r t d d d d 与r t d d v t v a d d =t v d d a ττ (v =v t v t v t v d d d d d d ττ +=dt dv t t r d ?d d ?d τ 与 x x t y y t 2 2y x +v t r d d a 22d d t r v 2 2d d d d ??? ??+??? ??t y t x a 2 22222d d d d ???? ??+???? ??t y t x j y i x r +=

同济大学普通物理活页作业答案

第一章质点运动学 班号学号姓名日期一、选择题 1.一个质点在Oxy平面上运动,已知质点得运动方程为(SI),则该质点作(A)匀速直线运动; (B)变速直线运动; (C)抛物线运动;(D)一般曲线运动。 (B) 2.一个质点作曲线运动,表示位置矢量,s表示路程,表示曲线得切线方向。下列几个表达式中,正确得表达式为C (A); (B); (C);(D)。 ( C) 3.沿直线运动得物体,其速度得大小与时间成反比,则其加速度得大小与速度大小得关系就是 (A)与速度大小成正比;(B)与速度大小得平方成正比; (C)与速度大小成反比; (D)与速度大小得平方成反比。 ( B ) 4.下列哪一种说法就是正确得 (A)在圆周运动中,加速度得方向一定指向圆心; (B)匀速率圆周运动得速度与加速度都恒定不变; (C) 物体作曲线运动时,速度得方向一定在运动轨道得切线方向上,法向分速度恒等于零;因此其法向加速度也一定等于零; (D)物体作曲线运动时,必定有加速度,加速度得法向分量一定不等于零。 (D) 5.如图所示,路灯距离地面高度为H,行人身高为h 以匀速v背向路灯行走,则人头得影子移动得速度为 (A) ;(B); (C);(D)。 ( B) 6。一物体从某一确定高度以得速度水平抛出, 度为,那么它运动得时间就是 选择题5图(A); (B); (C);(D)。 ( C ) 7.一个质点沿直线运动,其速度为(式中k、v0为常量)。当时,质点位于坐标原点,则此 质点得运动方程为: (A);(B); (C);(D)。

( C) 8.在相对地面静止得坐标系内,A、B两船都以2 m?s—1得速率匀速行驶。A船沿Ox轴正方向行驶,B船沿Oy轴正方向行驶。今在A船上设置与静止坐标系方向相同得坐标系,则从A船上瞧B船,它对A船得速度为(SI) (A); (B); (C);(D)。 ( B ) 二、填空题 1。一个质点沿Ox轴运动,其运动方程为(SI).当质点得加速度为零时,其速度得大小v= 1.5 m·s—1。 2.一个质点在Oxy平面内得运动方程为(SI).则t =1s时,质点得切向加速度= 6、4 ms-2,法向加速度=4、8ms—2。 3.一个质点沿半径R= 1 m得圆周运动,已知走过得弧长s与时间t得关系为,那 么当质点得总加速度恰好与半径成角时,质点所经过得路程s = 2.5 m。 4.一个质点沿Ox方向运动,其加速度随时间变化关系为a = 3+2 t(SI),如果初始时刻质点得速度v0 =5m·s—1,则当s时,质点得速度v=23m·s—1 5。一个质点沿直线运动,其运动学方程为(SI),则在t由0至4s得时间间隔内,质点得位移大小为___8m___,在t由0到4s得时间间隔内质点走过得路程为____10m_ 6.一质点沿半径为R得圆周运动,在t =0时经过P点,此后它得速率(其中A、B为正得已知常量)变化。则质点沿圆周运动一周后再经过P点时得切向加速度= B ,法向 加速度=。 7.飞轮作加速转动时,轮边缘上一点得运动学方程为(SI)。设飞轮半径为2m。当此点得速率30m?s-1时,其切向加速度为6m·s-2,法向加速度为__450 m·s—2_。 8.一船以速度在静水湖中匀速直线航行,一位乘客以初速在船中竖直向上抛出一石子,则站在岸上得观察者瞧石子运动得轨道就是抛物线。取抛出点为坐标原点,Ox轴沿方向,Oy轴沿竖直向上方向,石子得轨道方程就是. 三、计算题 1.物体在平面直角坐标系Oxy中运动,其运动方程为 (式中,x,y以m计,t以s计)。 (1)以时间t为变量,写出质点位矢得表达式; (2) 求质点得运动轨道方程; (3) 求t =1s时与t=2s时得位矢,并计算这一秒内质点得位移; (4) 求t=4s时质点得速度与加速度。 解:(1)m (2)两式消去t得质点得运动轨道 (3)m;m

相关文档
相关文档 最新文档