文档库 最新最全的文档下载
当前位置:文档库 › 三段式电流保护课程设计

三段式电流保护课程设计

三段式电流保护课程设计
三段式电流保护课程设计

学号125

《电力系统继电保护》

课程设计

(2012届本科)

题目:三段式电流保护课程设计

学院:物理与机电工程学院

专业:电气工程及其自动化

作者姓名:

指导教师:职称:

完成日期: 2015 年 12 月 25日

摘要

本次课程设计以电网的某条线路为例进行了三段式电流保护的分析设计。重点进行了电路的化简,求各节点短路电流,继电保护中电流保护整定值的具体计算,并对计算出的数值进行灵敏度校验。由于题中所给部分数据缺失,保护3限时电流速断未进行整定计算。

关键字:继电保护;电流保护

目录

1设计原始资料 (1)

1.1具体题目 (1)

2设计要考虑的问题 (2)

2.1设计规程 (2)

2.1.1短路电流计算规程 (2)

2.1.2保护方式的选取及整定计算 (3)

2.2设计的保护配置 (3)

2.2.1主保护配置 (3)

2.2.2后备保护配置 (3)

3短路电流计算 (3)

3.1等效电路的建立 (3)

3.2保护短路点及短路点的选取 (4)

3.3短路电流的计算 (5)

3.3.1最大运行方式短路电流计算 (5)

3.3.2最小运行方式短路电流计算 (5)

4保护的配合及整定计算 (6)

4.1主保护的整定计算 (6)

4.1.1动作电流的整定 (6)

5原理图及展开图的的绘制 (8)

5.1原理接线图 (8)

5.2交流回路展开图 (8)

5.3直流回路展开图 (9)

6继电器的选择 (9)

7保护的评价 (11)

参考文献 (12)

1设计原始资料

1.1 具体题目

如图所示网络,过电流保护1、2、3的最大负荷电流分别为300、400、500A ,E φ=37/ 3KV ,Z 1=0.4Ω/km ,K rel Ⅰ=1.2,K rel Ⅱ=1.1,K rel ,Ⅲ=1.15,K ss =1.5,K res =0.85;L A?B =40Km ,L B?C =60Km,Z T =72Ω。t 1.max =t 2.max =0.5s ,t 3.max =1s 。Z s.min =3Ω,Z s.max =5 Ω。

B

图1.1 系统网络图

试对线路AB 、BC 的保护3、4进行电流保护的设计。

1.2 要完成的内容

(1)保护的配置及选择;

(2)短路电流计算(系统运行方式的考虑、短路点的考虑、短路类型的考虑);

(3)保护配合及整定计算;

(4)保护原理展开图及展开图的设计;

(5) 对保护的评价。

2设计要考虑的问题

2.1设计规程

2.1.1短路电流计算规程

在决定保护方式前,必须较详细地计算各短路点短路时,流过有关保护的短路电流,然后根据计算结果,在满足《继电保护和自动装置技术规程》和题目给定的要求条件下,尽可能采用简单的保护方式。其计算步骤及注意事项如下。

(1)系统运行方式的考虑

除考虑发电厂发电容量的最大和最小运行方式外,还必须考虑在设备检修或故障切除的情况下,发生短路时流过保护装置的短路电流最大和最小的系统运行方式,以便计算保护的整定值和保护灵敏度。在需采用电流电压联锁速断保护时,还必须考虑系统的正常运行方式。

(2)短路点的考虑

求不同保护的整定值和灵敏度时,应注意短路点的选择。若要绘制短路电流、电压与距离的关系曲线,每一条线路上的短路点至少要取三点,即线路的始端、中点和末端三点。

(3)短路类型的考虑

相间短路保护的整定计算应取系统最大运行方式下三相短路电流,以作动作电流整定之用;而在系统最小运行方式下计算两相短路电流,以作计算灵敏度之用。短路的计算选用三相短路或两相短路进行计算均可,因为对保护所取的残余而言,三相短路和两相短路的残余数值相同。

若采用电流电压连锁速断保护,系统运行方式应采用正常运行方式下的短路电流和电压的数值作为整定之用。

(4)短路电流列表

为了便于整定计算时查考每一点的短路时保护安装处的短路电流和,将计算结果列成表格。

流过保护安装处的短路电流应考虑后备保护的计算,即列出本线路各短路点短路时流过保护安装处的短路电流,还要列出相邻线路各点短路时流过保护安装处的短路电流。

计算短路电流时,用标幺值或用有名值均可,可根据题目的数据,用较简单的方法计算。

2.1.2保护方式的选取及整定计算

采用什么保护方式,主要视其能否满足规程的要求。能满足要求时,所采用的保护就可采用;不能满足要求时,就必须采取措施使其符合要求或改用其他保护方式。

选用保护方式时,首先考虑采用最简单的保护,以便提高保护的可靠性。当采用简单保护不能同时满足选择性、灵敏性和速动性要求时,则可采用较复杂的保护方式。

选用保护方式时,可先选择主保护,然后选择后备保护。通过整定计算,检验能否满足灵敏性和速动性的要求。

当采用的保护不能很好地满足选择性或速动性的要求时,允许采用自动重合闸来校正选择性或加速保护动作。

当灵敏度不能满足要求时,在满足速动性的前下,可考虑利用保护的相继动作,以提高保护的灵敏性。

在用动作电流、电压或动作时间能保证选择性时,不要采用方向元件以简化保护。

后备保护的动作电流必须配合,要保证较靠近电源的上一元件保护的动作电流大于下一元件保护的动作电流,且有一定的裕度,以保证选择性。

2.2设计的保护配置

2.2.1主保护配置

在满足线路灵敏度要求的情况下,选用三段式电流保护作为主保护。若灵敏度不满足要求时应选用三段式距离保护作为主保护。

2.2.2后备保护配置

过电流保护作为本线路的近后备保护和相邻线路远后备保护。

3短路电流计算

3.1等效电路的建立

由已知可得,线路的总阻抗的计算公式为

Z=Z1L

其中:Z1—线路单位长度阻抗;

L—线路长度。

所以,将数据代入公式(3.1.1)可得各段线路的线路阻抗分别为

Z A?B=Z1×L A?B=0.4×40=16(Ω)

Z B?C=Z1×L B?C=0.4×60=24(Ω)

经分析可知,对保护3最大运行方式即阻抗最小时,有

Z s.3.min=Z s.min+Z A?B=3+16=19(Ω)

对保护4最大运行方式即阻抗最小时,有

Z s.4.min=Z s.min=3 (Ω)

式中X s.min—最大运行方式下的阻抗值;

同理,对于保护3,最小运行方式即阻抗值最大,分析可知在只有X A?B和X B?C运行,相应地有

Z s.3.max=Z s.max+Z A?B=5+16=21(Ω)

对于保护4,最小运行方式即阻抗值最大,分析可知在只有X A?B运行,相应地有

Z s.4.max=Z s.max=5 (Ω)

由此可得最大运行方式等效电路如图3.1所示,最小运行方式等效电路图如图3.2所示。

C

图3.1 最大运行方式等效电路图

C

图3.2最小运行方式等效电路图

3.2保护短路点及短路点的选取

选取B、C点进行计算。

3.3 短路电流的计算

3.3.1 最大运行方式短路电流计算

在最大运行方式下流过保护元件的最大短路电流的公式为

I K .max =E φΣ=K φE φs Σ

式中 ?E —系统等效电源的相电动势;

k

Z —短路点至保护安装处之间的阻抗; s Z —保护安装处到系统等效电源之间的阻抗;

?K —短路类型系数、三相短路取1,两相短路取23。

(1)对于保护3等值电路图如图3.1所示,母线C 最大运行方式下发生三相短路电流保护的最大短路电流为

I K .C .max =

E φZ Σ=K φE φZ s 3..min +Z BC =1×37/ 319+24=0.497KA 对于保护4等值电路图如图3.1所示,母线B 最大运行方式下发生三相短路电流保护的最大短路电流为

I K 。B 。max =E φ

Z Σ=K φE φZ s .4.min +Z AB =1×37/ 33+16=1.124KA

3.3.2 最小运行方式短路电流计算

在最小运行方式下流过保护元件的最小短路电流的公式为

I K .min =

32E φZ s .max +Z L 式中 ?E —系统等效电源的相电动势;

Z s .max —保护安装处到系统等效电源之间的阻抗;

L Z —短路点到保护安装处之间的阻抗。

所以带入各点的数据可以计算得到C 点的的最小短路电流。

I K .C .min = 32E φZ S .3.max +Z BC = 32×37/ 321+24=0.411KA

所以带入各点的数据可以计算得到B 点的的最小短路电流 I K .B .min =

32E φZ S .4.max +Z AB = 32×37/ 35+16=0.881KA

4 保护的配合及整定计算

4.1 主保护的整定计算

4.1.1 动作电流的整定

对保护3相应的速断整定值

整定原则:按照躲过本线路末端最大短路电流来整定。

I set .3Ⅰ=K rel Ⅰ.I K .C .max =1.21×0.497=0.601

动作时限:t 3Ⅰ=0S

灵敏度校验:

最大保护范围:L max =(

K φE φI set .3Ⅰ?Z S .3.min )/Z 1=(37/ 30.601?19)/0.4=41.47Km L max

L BC =41.4760×100%=69.1%>50%(灵敏度满足要求)

最小保护范围:L min =(

K φE φI set .3Ⅰ?Z S .3.max )/Z 1=( 32×37/ 30.601?21)/0.4=24.46Km L m in

L BC =24.4660×100%=40.7%>15%(灵敏度满足要求)

对保护3相应的定时限过电流整定值

整定原则:按照大于本线路流过的最大负荷电流整定。

I set.3Ⅲ=

K rel Ⅲ.K SS K res .I L .3.max =1.23×1.50.91×0.5=1.014 灵敏度校验:

近后备:K sen =I K .C .min

I set .3Ⅲ=0.4111.014=0.405<1.3(不满足要求)

对保护4相应的速断整定值为

I set .4Ⅰ=K rel Ⅰ.I K .B .max =1.21×1.124=1.36

动作时限:t 4Ⅰ=0S

灵敏度校验:

最大保护范围:L max =(K φE φ

I set .4Ⅰ?Z S .4.min )/Z 1=(37/ 31.36?3)/0.4=31.77Km

L max

L AB =31.7740×100%=79.4%>50%(灵敏度满足要求)

最小保护范围:L min =(

K φE φI set .4Ⅰ?Z S .4.max )/Z 1=( 32×37/ 31.36?5)/0.4=21.51Km L m in

L AB =21.5140×100%=53.8%>15%(灵敏度满足要求)

保护4的限时电流速断定值

整定原则:按照躲过下级线路电流速断保护的最大动作电流来整定。

I set .4Ⅱ=K rel Ⅱ.I set.3=1.11×0.601=0.667

动作时限:t 4Ⅱ=0.5S

灵敏度校验:K sen =I K .B .min

I set .4Ⅱ=0.8810.667=1.32>1.3(灵敏度满足要求) 对保护4相应的定时限过电流整定值

I K .L .max =1200A=1.2KA

I set.4Ⅲ=

K rel Ⅲ.K SS K res .I L .4.max =1.23×1.50.91×1.2=2.43 动作时限:t 4Ⅲ={t 1.max ,t 2.max ,t 3.max }+Δt=1S+0.5S=1.5S

灵敏度校验:

近后备:K sen =

I K .B .min I set .4Ⅲ=0.8812.43=0.36<1.5(灵敏度不满足要求) 远后备:K sen =I K .C .min

I set .4Ⅲ=0.4112.43=0.169<1.2(灵敏度不满足要求) 当电流保护灵敏度不满足要求时,利用其他形式保护进行该线路的保护。

5原理图及展开图的的绘制

5.1原理接线图

如图5.1所示,每个继电器的线圈和触点都画在一个图形内,所有元件都用设备文字符号标注,如图中KA表示电流继电器,KT表示时间继电器,KS表示信号继电器。原理接线图对整个保护的工作原理给出了一个完整的概念。

图5.1 三段式电流保护原理接线图

5.2交流回路展开图

展开图中交流回路和直流回路分开表示,分别如图5.2和图5.3所示。其特点是每个继电器的输出量和输出量根据实际动作的回路情况分别画在途中不同的位置上,但任然用同一个符号标注,一边查对。在展开图中,继电器线圈和出点的链接尽量暗中故障后的动作连接,自左而右,自上而下的排列。

图5.2 保护交流电流回路图

5.3直流回路展开图

图5.3 保护直流回路展开图

6继电器的选择

正确选用继电器的原则应该是:①继电器的主要技术性能,如触点负荷,动作时间参数,机械和电气寿命等,应满足整机系统的要求;②继电器的结构型式(包括安装方式)与外形尺寸应能适合使用条件的需要;③经济合理。

(1)按使用环境条件选择继电器型号

环境适应性是继电器可靠性指标之一,使用环境和工作条件的差异,对继电器性能

有很大的影响。

使用环境条件主要指温度(最大与最小)、湿度(一般指40摄氏度下的最大相对湿度)、低气压(使用高度1000米以下可不考虑)、振动和冲击。此外,尚有封装方式、安装方法、外形尺寸及绝缘性等要求。由于材料和结构不同,继电器承受的环境力学条件各异,超过产品标准规定的环境力学条件下使用,有可能损坏继电器,可按整机的环境力学条件或高一级的条件选用。

(2)根据输入量选定继电器的输入参数

在电磁继电器的输入参数中,与用户密切相关的是线圈的工作电压(或电流),而吸合电压(或电流) 则是继电器制造厂约束继电器灵敏度并对其进行判断、考核的参数,它只是一个工作下限参考值。不少用户因不了解继电器动作原理的特殊性,往往把吸合电压(或电流)错认为是继电器应可靠工作的电压(或电流),而把工作电压值取在吸合电压值上,这是十分危险也是不允许的。因为吸合值只是保证继电器可靠动作的最小输入量,而继电器动作后,还需要一个保险量,以提高维持可靠闭合所需的接触压力、抗环境作用所需的电磁吸力。否则,一旦环境温度升高或在机械振动和冲击条件下,或输入回路电流波动和电源电压降低时,仅靠吸合值是不可能保证可靠工作的。所以选择继电器时,首先看继电器技术条件规定的额定工作电压是否与整机线路所能提供的电压相符,绝不能与继电器吸合值相比。

(3)根据负载情况选择继电器触点的种类与参数与被控电路直接连接的触点是继电器的接触系统。国外和国内长期实践证明,约百分之七十以上的故障发生在触点上。这除了与继电器本身结构与制造因素密切相关之外,未能正确选用和使用也是重要因素之一。且大多数问题是由于用户的实际负载要求与继电器触点额定负载不同而引起的。①根据控制要求确定触点组合形式,如需要的是常开还是常闭触点或转换触点;②根据被控回路多少确定触点的对数和组数;③根据负载性质与容量大小确定触点有关参数,如额定电压、电流与容量,有时还需要考虑对触点接触电阻、抖动时间、分布电容等的要求。关于触点切换的额定值,电磁继电器一般规定它的性质及大小。它的含义是指在规定的动作次数内,在定的电压和频率下,触点所能切换的电流的大小。这一负载值是由继电器结构要素决定的。为了便于考核比较,一般只规定阻性负载。在实际使用中需要切换其它性质的负载。

(4)按工作状态选择继电器

继电器的工作状态主要是指输入信号对线圈的作用状态。继电器线圈的设计是对应于不同的输入信号状态的,有长期连续作用的信号,有短期重复工作(脉冲)信号。连续工作是指线圈能连续地承受工作信号的长期作用。对脉冲信号还要考虑脉冲频率、通断比等。因此,要根据信号特点选用适合于不同工作状态的继电器,一般不允许随便使用,特别要注意不能将短期工作状态的继电器使用在连续工作状态,高温工作条件下尤其要

注意。在实际切换功率负载或大功率负载时,尤其要考虑不宜切换速率过高。一般应少于10-20次/min。最大循环速率为:0.1次/(最大吸合时间最大释放时间)s。

(5)按安装工作位置、安装方式及尺寸、重量的选择

继电器工作位置与其结构有关,大多数继电器可在任意位置下工作,但也有部分继电器工作位置有具体的规定。例如普通水银继电器,就规定要直立安装,其偏斜极限不得超过30℃,否则,由于水银的连接中断将不起继电器作用。

继电器除需满足在各种稳态的线路和环境条件下工作的要求外,还必须考虑到各种动态特性,即吸合时间、释放时间,由于电流的波动因素造成的抖动,以及触点碰撞造成的回跳等。

7保护的评价

在做继电保护配置时我们应该使配置的结果满足继电保护的基本要求,就是要保证可靠性、选择性、速动性和灵敏性。可是这四个指标在很多情况下是互相矛盾的,因此我们要根据实际情况让它们达到一定的平衡即可。

通过设计过程可以看出,最大运行方式下三相短路的短路电流与最小运行方式下得两相的短路电流相差很大。按躲过最大运行方式下末端最大短路电流整定的电流速断保护的动作值很大,最小运行方式下灵敏度不能满足要求。限时电流速断保护的定值必须与下一级线路电流速断保护的定值相配合,所以其定值也很大,灵敏度也均不能满足要求。过电流整定按照躲过最大负荷电流整定,其动作之受运行方式的限制不大,作为近后备和远后备灵敏度都能满足要求,一般采用受运行方式变化影响很小的距离保护。

参考文献

[1] 《电力系统继电保护和自动装置设计规范》GB50062-1922

[2] 《发电机变压器组继电保护技术说明书》各继电保护装置生产商;

[3] 《电气工程毕业设计指南:继电保护分册》韩笑主编,中国水利水电出版社;

[4] 《小型水电站机电设计手册电气二次分册》中国水利水电出版社;

[5] 《电力系统基础》,韦钢主编,中国电力出版社;

[6] 刘介才,工厂供电,北京:机械工业出版社,2004;

[7] 《电力工程设计手册第二分册》西北电力设计院;

[8] 《电力系统继电保护整定计算》四川大学;

[9] 《继电保护整定计算》许建安主编中国水利水电出版社;

[10] 《电力系统继电保护》第二版,马勇翔主编,重庆大学出版社;

[11] 《电力系统继电保护原理及新技术》第二版,李侑光主编,科学出版社。

[12] 于永源,杨绮雯,电力系统分析. 北京:中国电力出版社,2007;

三段式电流保护的设计(完整版)

学号 2010 《电力系统继电保护》 课程设计 (2010届本科) 题目:三段式电流保护课程设计 学院:物理与机电工程学院 专业:电气程及其自动化 作者姓名: 指导教师:职称:教授 完成日期:年12 月26 日

目录 1 设计原始资料........................................................................................................................................ - 3 - 1.1 具体题目..................................................................................................................................... - 3 - 1.2 要完成的内容............................................................................................................................. - 3 - 2 设计要考虑的问题................................................................................................................................ - 3 - 2.1 设计规程..................................................................................................................................... - 3 - 2.1.1 短路电流计算规程.......................................................................................................... - 3 - 2.1.2 保护方式的选取及整定计算 .......................................................................................... - 4 - 2.2 本设计的保护配置..................................................................................................................... - 5 - 2.2.1 主保护配置...................................................................................................................... - 5 - 2.2.2 后备保护配置.................................................................................................................. - 5 - 3 短路电流计算........................................................................................................................................ - 5 - 3.1 等效电路的建立......................................................................................................................... - 5 - 3.2 保护短路点及短路点的选取..................................................................................................... - 6 - 3.3 短路电流的计算......................................................................................................................... - 6 - 3.3.1 最大方式短路电流计算 .................................................................................................. - 6 - 3.3.2 最小方式短路电流计算 .................................................................................................. - 7 - 4 保护的配合及整定计算........................................................................................................................ - 8 - 4.1 主保护的整定计算..................................................................................................................... - 8 - 4.1.1 动作电流的计算............................................................................................................ - 8 - 4.1.2 灵敏度校验...................................................................................................................... - 9 - 4.2 后备保护的整定计算................................................................................................................. - 9 - 4.2.1 动作电流的计算.............................................................................................................. - 9 - 4.2.2 动作时间的计算............................................................................................................ - 10 - 4.2.3 灵敏度校验.................................................................................................................... - 10 - 5 原理图及展开图的的绘制.................................................................................................................. - 10 - 5.1 原理接线图............................................................................................................................... - 10 - 5.2 交流回路展开图........................................................................................................................- 11 - 5.3 直流回路展开图....................................................................................................................... - 12 - 6 继电保护设备的选择.......................................................................................................................... - 12 - 6.1 电流互感器的选择................................................................................................................... - 12 - 6.2 继电器的选择........................................................................................................................... - 13 - 7 保护的评价.......................................................................................................................................... - 14 -

继电保护习题

继 电 保 护 习 题 第一章 绪 论 思 考 题 1.何为主保护?何为后备保护? 2.何为近后备保护?何为远后备保护? 3.电流互感器和电压互感器在作用原理上有什么主要差别? 4.简述电流互感器、电压互感器的使用注意事项。 5.负序电压、负序电流是如何取得的?在继电保护中为什么要采用这些电气量? 作 业 题 1.在电力系统中继电保护的作用是什么?(1) 2.电力系统对继电保护的基本要求是什么?如何处理这些要求之间的关系?(1) 3.电压变换器、电流变换器和电抗变换器的作用是什么?在使用上有什么差别?(2) 4.如图所示,已知系统电抗Ω=∑=∑1121X X ,Ω=∑220X ,电压互感器的变比1100=ΓT n 。试求:在变电所出线端K 点发生单相接地短路时,变电所测到的零序电压mnO U 是多少?(3) 5.某技术工作者在实现零序电压零序器接线时,将电压互感器付方开口三角形侧B 相绕组的极性接反了,若已知电压互感器的原方相间电压为110kV ,原方绕组与开口三角形绕组之间的变比为kV n pTO 1.0/)3/110(=,求正常情况下m 、n 两端的输出电压?(3) 110kV 0mn U K (1) 4题图

第二章 相间短路的电流保护和方向性电流保护 思 考 题 1.电磁型过电流继电器的动作电流与哪些因素有关? 2.无时限电流速断保护为什么比带时限电流速断保护的灵敏度差? 3.低电压继电器与过电压继电器有什么不同之处?这两种电压继电器能否互相代替? 4.在电力系统中,能采用纯电压元件作为输电线路的保护吗?为什么? 5.三段式电流保护中,那一段最灵敏?那一段最不灵敏?他们是采用什么措施来保证选择性的? 6.过电流保护的时限是根据什么原则确定的? 7.三段式电流保护的保护范围如何确定?在一条输电线路上是否一定要采用三段式电流保护?用两段行吗?为什么? 8.在电流保护的整定计算中,采用了各种系数,如可靠系数k K ,灵敏系数m K 1,返回系数h K ,分支系数fz K ,自启动系数zq K ,接线系数jx K 等等,试说明它们的意义和作用。 9.在?/Y 接线的变压器后发生两相短路时,采用完全星型接线方式和不完全星型两继电器接线方式的电流保护,其灵敏度有什么不同?为什么采用不完全星型三继电器接线方式就能使它的灵敏度与完全星型接线相同? 10.在什么情况下采用电流保护时必须要装设方向元件才能保证选择性? 11.在输电线路上采用方向电流保护时,什么情况下会出现死区? 12.不同的输电线路阻抗角是不同的,为什么功率方向继电器的内角α采用?30或?45,就能保证在不同线路阻抗角下使功率方向继电器工作在较灵敏状态? 13.按?90接线的功率方向继电器在三相短路和两相短路时,会不会出现死区?为 mn U 5 题图

三段式过流保护

无时限电流速断保护(电流I段) 反应电流增大而能瞬时动作切除故障的电流保护,称为电流速断保护也称为无时限电流速断保护。 1.几个基本概念 (1)系统最大运行方式与系统最小运行方式 最大运行方式:就是在被保护线路末端发生短路时,系统等值阻抗最小,而通过保护装置的短路电流为最大的运行方式。 最小运行方式:就是在同样短路条件下,系统等值阻抗最大,而通过保护装置的短路电流为最小的运行方式。 (2)最小短路电流与最大短路电流 在最大运行方式下三相短路时,通过保护装置的短路电流为最大,称之为最大短路电流。在最小运行方式下两相短路时,通过保护装置的短路电流为最小,称之为最小短路电流。(3)保护装置的起动值 对应电流升高而动作的电流保护来讲,使保护装置起动的最小电流值称为保护装置的起动电流。 (4)保护装置的整定 所谓整定就是根据对继电保护的基本要求,确定保护装置起动值,灵敏系数,动作时限等过程。 2、整定计算 (1)动作电流 为保证选择性,保护装置的起动电流应按躲开下一条线路出口处短路时,通过保护的最大短路电流来整定。即 Idz>Id.max=KK Id.Bmax 式中可靠系数KK =1.2~1.3, 结论:电流速断保护只能保护本条线路的一部分,而不能保护全线路,其最大和最小保护范围Lmax和Lmin。 (2) 保护范围(灵敏度KLm)计算(校验) 《规程》规定,在最小运行方式下,速断保护范围的相对值Lb%>(15%~20%)时,为合乎要求,即 (3)动作时限 无时限电流速断保护没有人为延时,在速断保护装置中加装一个保护出口中间继电器。一方面扩大接点的容量和数量,另一方面躲过管型避雷器的放电时间,防止误动作。t=0s 3、对电流速断保护的评价 优点:是简单可靠,动作迅速。 缺点:(1)不能保护线路全长; (2)运行方式变化较大时,可能无保护范围。 注意: (1) 在最大运行方式下整定后,在最小运行 方式下无保护范围。 二、限时电流速断保护(电流II段)的电流速断保护 限时电流速断保护:按与相邻线路电流速断保护相配合且以较短时限获得选择性的电流保护。 1、工作原理 (1)为了保护本条线路全长,限时电流速断保护的保护范围必须延伸到下一条线路中去。(2)为了保证选择性,就必须使限时电流速断保护的动作带有一定的时限。

三段式电流保护的整定及计算范文

第1章输电线路保护配置与整定计算 重点:掌握110KV及以下电压等级输电线路保护配置方法与整定计算原则。 难点:保护的整定计算 能力培养要求:基本能对110KV及以下电压等级线路的保护进行整定计算。 学时:4学时 主保护:反映整个保护元件上的故障并能以最短的延时有选择地切除故障的保护称为主保护。 后备保护:主保护拒动时,用来切除故障的保护,称为后备保护。 辅助保护:为补充主保护或后备保护的不足而增设的简单保护。 一、线路上的故障类型及特征: 相间短路(三相相间短路、二相相间短路) 接地短路(单相接地短路、二相接地短路、三相接地短路) 其中,三相相间短路故障产生的危害最严重;单相接地短路最常见。相间短路的最基本特征是:故障相流动短路电流,故障相之间的电压为零,保护安装处母线电压降低;接地短路的特征: 1、中性点不直接接地系统 特点是: ①全系统都出现零序电压,且零序电压全系统均相等。 ②非故障线路的零序电流由本线路对地电容形成,零序电流超前零序电压90°。 ③故障线路的零序电流由全系统非故障元件、线路对地电容形成,零序电流滞后零序电压90°。显然,当母线上出线愈多时,故障线路流过的零序电流愈大。 ④故障相电压(金属性故障)为零,非故障相电压升高为正常运行时的相间电压。 ⑤故障线路与非故障线路的电容电流方向和大小不相同。

因此中性点不直接接地系统中,线路单相故障可以反应零序电压的出现构成零序电压保护;可以反应零序电流的大小构成零序电流保护;可以反应零序功率的方向构成零序功率方向保护。 2、中性点直接接地系统 接地时零序分量的特点: ①故障点的零序电压最高,离故障点越远处的零序电压越低,中性点接地变压器处零序电压为零。 ②零序电流的分布,主要决定于输电线路的零序阻抗和中性点接地变压器的零序阻抗,而与电源的数目和位置无关。 ③在电力系统运行方式变化时,如果输电线路和中性点接地的变压器数目不变,则零序阻抗和零序等效网络就是不变的。但电力系统正序阻抗和负序阻抗要随着系统运行方式而变化,将间接影响零序分量的大小。 ④对于发生故障的线路,两端零序功率方向与正序功率方向相反,零序功率方向实际上都是由线路流向母线的。 二、保护的配置 小电流接地系统(35KV及以下)输电线路一般采用三段式电流保护反应相间短路故障;由于小电流接地系统没有接地点,故单相接地短路仅视为异常运行状态,一般利用母线上的绝缘监察装置发信号,由运行人员“分区”停电寻找接地设备。对于变电站来讲,母线上出线回路数较多,也涉及供电的连续性问题,故一般采用零序电流或零序方向保护反应接地故障。 对于短线路、运行方式变化较大时,可不考虑Ⅰ段保护,仅用Ⅱ段+Ⅲ段保护分别

电流三段式保护

电流三段式保护 电流速断、限时电流速断和过电流保护都是反应电流增大而动作的保护,它们相互配合构成一整套保护,称做三段式电流保护。三段的区别主要在于起动电流的选择原则不同。其中速断和限时速断保护是按照躲开某一点的最大短路电流来整定的,而过电流保护是按照躲开最大负荷电流来整定的。 当线路发生短路时,重要特征之一是线路中的电流急剧增大,当电流流过某一预定值时,反应于电流升高而动作的保护装置叫过电流保护。 电源的保护功能主要是过压、过流保护两种功能。 两者之间的关系为: 任何一种电源在发生故障时,都有可能使输出电流失去控制,为了使用户的负载不致因此而损坏,电源一般都设有过流保护。当有些负载是容性负载时,由于大容量的电解电容器并联在一起,当电源发生故障时,电流就可能大幅度上升,而电压的升值却不甚明显,这时电源内部的过流保护部件会首先启动,电源会自动切断输出。 过流保护值是不能人工设定的,机内已经定死,一般为额定电流的1.2~1.5倍。需要说明的是,过压保护会立即快速启动,过流保护则有一秒左右的延时。这是因为如电源正常工作时,如电源的负载发生突然短路,此时电源输出的瞬间电流是数倍或数十倍的额定电流值,可以认为是一个电流冲击,远远超过过流保护的数值,但这时并不希望过流保护起作用。而希望短路解除后,电压自动恢复正常。因此在设计过流保护时,要避开突发短路时的电流冲击,而仅考虑使输出过电流的时长达到一定的值才启动过流保护。 过流保护是针对机内故障的,因此既然发生,电源就不应自动恢复。如果一定要再现,必须关机后重新开机。而短路保护、电流报警、短路报警功能是面对用户的,如果电流已经下降,短路已经排除,相对的报警声就会自动解除,电压就会自动恢复正常。 电力系统中线路的电流保护以三段式电流保护为出发点,进而衍生出电压闭锁式(启动式)、功率方向式电流保护,而且像阻抗保护等其他需要有选择性的保护也借鉴了这种三段式(多段式)的保护方式 1. I段,无时限电流速断保护 保护范围:本段线路(一般线路全长的80~85%,最少线路全长的15%)。 动作定值:按最大运行方式下(三相短路)线路末端发生故障整定;灵敏度按最小运行方式下(两相短路)来进行校验。 动作时限:速断保护,无时限。 2. II段,带时限电流速断保护 保护范围:延伸至下一段线路(为保护本段线路全长)。 动作定值:大于下一段线路一段保护动作定值。小于本段线路I段保护定值。 动作时限:大于下一段线路一段保护动作时限。大于本段线路I段保护时限。 3. III段,定时限过流保护 保护范围:做本线主保护的后备保护,即近后备保护,并做相邻下一线路(或元件)的后备保护,即远后备保护。保护范围要求超越相邻线路末端。 动作定值:保证在正常并伴有电动机启动时的负荷电流下不动作;保证外部故障切除,下一母线有电动机启动下的负荷电流不动作。比I段和II段定值小很多。 动作时限:各线路III段保护的延时必须相互配合。

实验三三段式电流保护实验

实验三三段式电流保护实验 【实验名称】 三段式电流保护实验 【实验目的】 1.掌握无时限电流速断保护、限时电流速断保护及过电流保护的电 路原理,工作特性及整定原则; 2.理解输电线路阶段式电流保护的原理图及保护装置中各继电器 的功用; 3.掌握阶段式电流保护的电气接线和操作实验技术。 【预习要点】 1.复习无时限电流速断保护、限时电流速断保护及过电流保护相关 知识。 2.根据给定技术参数,对三段式电流保护参数进行计算与整定。【实验仪器设备】

【实验原理】 1.无时限电流速断保护 三段式电流保护通常用于3-66kV电力线路的相间短路保护。在被保护线路上发生短路时,流过保护安装点的短路电流值,随短路点的位置不同而变化。在线路的始端短路时,短路电流值最大;短路点向后移动时,短路电流将随线路阻抗的增大而减小,直至线路末端短路时短路回路的阻抗最大,短路电流最小。短路电流值还与系统运行方式及短路的类型有关。图3-1曲线1表示在最大运行方式下发生三相短路时,线路各点短路电流变化的曲线;曲线2则为最小运行方式下两相短路时,短路电流变化的曲线。 图3-1 瞬时电流速断保护的整定及动作范围 由于本线路末端f1点短路和下一线路始端的f2点短路时,其短路电流几乎是相等的(因f1离f2很近,两点间的阻抗约为零)。如果要求在被保护线路的末端短路时,保护装置能够动作,那么,在下一线路始端短路时,保护装置不可避免地也将动作。这样,就不能保证应有的选择性。为了保证保护动作的选择性,将保护范围严格地限制在本线路以内,就应使保护的动作电流I op1.1(为保护1的动作电流折算到一次电路的值)大于最大运行方式下线路末端发生三相短路时的短路电流I f.B.max,即 I op1.1 I f.b.max,I op1.1=K rel I f.b.max 式中,K rel—可靠系数,当采用电磁型电流继电器时,取K rel=1.2~1.3。 显然,保护的动作电流是按躲过线路末端最大短路电流来整定,可保证在其

电力系统继电保护课程设计——三段式电流保护的设计

电力系统继电保护课程设计 题目:三段式电流保护的设计 班级: 姓名: 学号: 指导教师: 设计时间: 1 设计原始资料

具体题目 如图所示网络,系统参数为?E =115/3kV ,1G X =15Ω、2G X =10Ω、3G X =10Ω, 1L =2L =60km 、3L =40km 、C B L -=50km 、D C L -=30km 、E D L -=20km ,线路阻抗Ω/km, I rel K =、II rel K =III rel K =,max C B I -=300A ,max D C I -=200A ,max E D I -=150A ,ss K =,re K =。 图 系统网络图 试对线路BC 、CD 进行电流保护的设计。 要完成的内容 (1)保护的配置及选择; (2)短路电流计算(系统运行方式的考虑、短路点的考虑、短路类型的考虑); (3)保护配合及整定计算; (4)保护原理展开图的设计; (5)对保护的评价。 2 设计要考虑的问题 设计规程 短路电流计算规程 在决定保护方式前,必须较详细地计算各短路点短路时, 流过有关保护的短 A B

路电流,然后根据计算结果,在满足《继电保护和自动装置技术规程》和题目给定的要求条件下,尽可能采用简单的保护方式。其计算步骤及注意事项如下。 (1)系统运行方式的考虑 除考虑发电厂发电容量的最大和最小运行方式外,还必须考虑在设备检修或故障切除的情况下,发生短路时流过保护装置的短路电流最大和最小的系统运行方式,以便计算保护的整定值和保护灵敏度。在需采用电流电压联锁速断保护时,还必须考虑系统的正常运行方式。 (2)短路点的考虑 求不同保护的整定值和灵敏度时,应注意短路点的选择。若要绘制短路电流、电压与距离的关系曲线,每一条线路上的短路点至少要取三点,即线路的始端、中点和末端三点。 (3)短路类型的考虑 相间短路保护的整定计算应取系统最大运行方式下三相短路电流,以作动作电流整定之用;而在系统最小运行方式下计算两相短路电流,以作计算灵敏度之用。短路的计算选用三相短路或两相短路进行计算均可,因为对保护所取的残余而言,三相短路和两相短路的残余数值相同。 若采用电流电压连锁速断保护,系统运行方式应采用正常运行方式下的短路电流和电压的数值作为整定之用。 (4)短路电流列表 为了便于整定计算时查考每一点的短路时保护安装处的短路电流和,将计算结果列成表格。 流过保护安装处的短路电流应考虑后备保护的计算需要,即列出本线路各短路点短路时流过保护安装处的短路电流,还要列出相邻线路各点短路时流过保护安装处的短路电流。 计算短路电流时,用标幺值或用有名值均可,可根据题目的数据,用较简单的方法计算。 保护方式的选取及整定计算

三段式电流保护的整定及计算

三段式电流保护的整定 及计算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

2三段式电流保护的整定计算 1、瞬时电流速断保护 整定计算原则:躲开本条线路末端最大短路电流 整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取~。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验: 式中: X1——线路的单位阻抗,一般Ω/KM; Xsmax——系统最大短路阻抗。 要求最小保护范围不得低于15%~20%线路全长,才允许使用。 2、限时电流速断保护

整定 计算 原 则: 不超 出相 邻下 一元 件的 瞬时 速断 保护 范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取~; △t——时限级差,一般取; 灵敏度校验: 规程要求: 3、定时限过电流保护 定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备 以及相邻线路或元件的远后备。

动作电流按躲过最大负荷 电流整定。 式中: KⅢrel——可靠系数,一 般取~; Krel——电流继电器返回 系数,一般取~; Kss——电动机自起动系数,一般取~; 动作时间按阶梯原则递推。 灵敏度分别按近后备和远后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短路电流。即:最小运行方式下,两相相间短路电流。 要求:作近后备使用时,Ksen≥~ 作远后备使用时,Ksen≥ 注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端; 4、三段式电流保护整定计算实例 如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。已知:1)线路AB长20km,线路BC长30km,线路电抗每公里欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。试对AB线路的保护进行整定计算并

2三段式电流保护的整定及计算

2三段式电流保护的整定计算 1、瞬时电流速断保护 整定计算原则:躲开本条线路末端最大短路电流 整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取1.2~1.3。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验:

式中: X1— —线 路的 单位 阻抗, 一般 0.4Ω /KM; Xsmax ——系统最大短路阻抗。 要求最小保护范围不得低于15%~20%线路全长,才允许使用。 2、限时电流速断保护 整定计算原则: 不超出相邻下一元件的瞬时速断保护范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取1.1~1.2; △t——时限级差,一般取0.5S; 灵敏度校验:

规程要求: 3、定时限过电流保护 定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备 以及相邻线路或元件的远后备。 动作电流按躲过最大负荷 电流整定。 式中: KⅢrel——可靠系数,一般 取1.15~1.25; Krel——电流继电器返回系数,一般取0.85~0.95; Kss——电动机自起动系数,一般取1.5~3.0; 动作时间按阶梯原则递推。 灵敏度分别按近后备和远后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短路电流。即:最小运行方式下,两相相间短路电流。 要求:作近后备使用时,Ksen≥1.3~1.5 作远后备使用时,Ksen≥1.2

三段式零序电流保护(精)

实习(实训报告 实习(实训名称:电力系统继电保护课程设计学院: 专业、班级: 指导教师: 报告人: 学号: 时间: 2017年 1月 5日 目录 1设计题 目 ...............................................................................................................................3 2分

析设计要求 (4) 2.1设计规定 (5) 2.2本线路保护 计 .......................................................................................................................6 2.3 系统等效电路图.............................................................................. . (7) 3三段式零序电流保护整定计 算 ............................................................................................8 3.1 三段式零序电流保护中的原则 ...........................................................................................9 3.2 M侧保护 1零序电流保护Ⅰ段整定 (10) 3.3 N侧保护 1零序电流保护Ⅰ段整 定 (11) 4 零序电流保护评 价 ..............................................................................................................12 4.1原理与内容………………………………………………… . …………………………… .13 4.2零序电流保护的优缺点………………………………………………………………… ..13 5 总 结 (1) 4 参考文 献 .......................................................................................................................................... 15 1设计题目 如图 1所示为双电源网络中,已知线路的阻抗km X /4. 01Ω=, km X /4. 10Ω=,两侧系统等值电源的参数:

三段式过电流保护

三段式过电流保护: 第Ⅰ段―――电流速断保护 第Ⅱ段―――限时电流速断保护 第Ⅲ段―――过电流保护 ①电流速断保护: 电流速断保护按被保护设备的短路电流整定,当短路电流超过整定值时,则保护装置动作,断路器跳闸,电流速断保护一般没有时限,不能保护线路全长(为避免失去选择性),即存在保护的死区.为克服此缺陷,常采用略带时限的电流速断保护以保护线路全长.时限速断的保护范围不仅包括线路全长,而深入到相邻线路的无时限保护的一部分,其动作时限比相邻线路的无时限保护大一个级差。 特点: 1.没有时限。 2.不能保护线路全长(存在死区)(一般设定为保护线路全长的85%)。 ②限时电流速断保护: 电流速断保护不能保护线路全长,故需要增加一段新的保护,用以切除本线路上速断范围以外的故障,同时也作为电流速断保护的后备保护(电流速断保护拒动,可能原因主要有测量误差,非金属性短路)(非金属性短路即存在过渡电阻,此时短路电流比金属性短路电流小,可能达不到电流速断保护的整定值)。 特点: 1.有时限,一般比下一条线路的速断保护高出一个时间阶段△t,通常取0.5s。 2.能保护线路全长,要求灵敏度大于1.3~1.5。(灵敏度指保护长度比总长度,零度1即表示保护全长)。 3.电流速断保护与限时电流速断保护配合,构成一条线路的主保护,保证了全线路范围的故障都能在0.5秒内切除,在一般情况下都能满足速动要求。 ③过电流保护: 当电流超过预定最大值时,使保护装置动作的一种保护方式。一般可用熔断体(没有太大冲击电流时,即负荷中电动机容量较少)或断路器。 特点: 1.有时限。如果下一级有限时电流速断保护,则比限时电流速断保护高出一个时间 阶段(区别于定时限,过电流保护作为第三段保护时,可以使反时限:故障电流越大,动作时间越短)。 2.能保护线路全长。

继保课程设计

继电保护课程设计题目: 三段式电流保护设计 院系名称:电气工程学院专业班级:电气F1202 学生姓名:雷建磊学号: 指导教师:邵锐教师职称:讲师

目录

1 设计内容 课题简介 《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特安排了本次课程设计。电能是现代社会中最重要、也是最方便的能源。而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。电力系统继电保护就是为达到这个目的而设置的。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。 具体题目 如图所示网络,系统参数为Un=115kV ,1G X =15Ω、Xg3=10Ω, 1L =60km 、 3L =40km 、C B L -=50km 、D C L -=30km 、E D L -=20km ,线路阻抗Xo=Ω/km ,I rel K =、II rel K =III rel K =,max C B I -=300A ,max D C I -=200A ,max E D I -=150A ,ss K =,Kre=.

论文三段式电流保护整定校验方案设计

城市架空线路入地改造预算方案设计

当保护线路上发生短路故障时,其主要特征为电流增加和电压降低。电流保护主要包括:无限时电流速断保护、限时电流速断保护和定时限过电流保护。电流速断、限时电流速断、过电流保护都是反映电流升高而动作的保护装置。它们之间的区别主要在于按照不同的原则来选择启动电流。速断是按照躲开某一点的最大短路电流来整定,限时电流速断是按照躲开下一级相邻元件电流速断保护的动作电流整定,而过电流保护则是按照躲开最大负荷电流来整定。但由于电流速断不能保护线路全长,限时电流速断又不能作为相邻元件的后备保护,因此,为保证迅速而有选择地切除故障,常将电流速断、限时电流速断和过电流保护组合在一起,构成三段式电流保护。具体应用时,可以只采用速断加过电流保护,或限时电流速断加过电流保护,也可以三者同时采用。但是在三段式电流保护电路在实施的过程中会存在着一定的问题,所以需要对于三段式电路进行整定和校验,这样才能够使的线路能够正常的进行传输电量。

三段式电流保护通常用于3-66kV电力线路的相间短路保护。在被保护线路上发生短路时,流过保护安装点的短路电流值,随短路点的位置不同而变化。在线路的始端短路时,短路电流值最大;短路点向后移动时,短路电流将随线路阻抗的增大而减小,直至线路末端短路时短路回路的阻抗最大,短路电流最小。短路电流值还与系统运行方式及短路的类型有关。所以对于三段式电流保护电路进行整定以及校验是至关重要的。这样有助于对于线路正常进行运输。减少安全事故发生的概率。 关键词:整定;校验;三段式电流

前言 (1) 摘要 (2) 第1章绪言 (4) 第2章城市架空线路入地改造预算方案设计 (5) 2.1任务描述 (5) 2.2任务要求 (5) 第3章信息咨询 (6) 3.1三段式电流保护 (6) 3.2三段式电流保护的优缺点 (11) 3.3三段式电流保护动作时限的整定 (11) 3.4三段式电流保护装置灵敏性的校验 (12) 第4章制定三段式电流保护整定校验方案工作计划 (14) 4.1设计进度计划 (14) 4.2设计任务划分 (14) 4.3设计必备工具 (14) 4.4所需设备 (14) 4.5三段式电流保护整定校验工作原理 (15) 第5章实施三段式电流保护整定校验方案工作计划 (19) 5.1前期准备 (19) 5.2三段式电流保护整定计算 (19) 5.3三段式电流保护电路 (23) 第6章过程检查与控制 (26) 第7章技术总结 (30) 7.1三段式电流保护整定原则 (30) 7.2.三段式电流保护整定方法 (31) 7.3设计总结 (32) 致谢 (33) 参考文献 (34)

继电保护课后习题参考答案

第一章 1、继电保护在电力系统中的任务是什么? 答:(1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行; (2)反应电气元件的不正常运行状态,并根据运行维护条件,而动作于发出信号、减负荷或跳闸。 2、什么是故障、异常运行和事故?短路故障有那些类型?相间故障和接地故障在故障分量上有何区别?对称故障与不对称故障在故障分量上有何区别? 答:电力系统中电气元件的正常工作遭到破坏,但没有发生故障,这种情况下属于不正常运行状态。事故,就是指系统或其中一部分的工作遭到破坏,并造成对用户少送电或电能质量变坏到不能容许的地步,甚至造成人身伤亡和电气设备的损坏。相间故障无零序分量。对称故障只有正序分量。 3、什么是主保护、后备保护?什么是近后备保护、远后备保护?在什么情况下依靠近后备保护切除故障?在什么情况下依靠远后备保护切除故障? 答:当本元件的主保护拒绝动作时,由本元件的另一套保护作为后备保护,由于这种后备作用是在主保护安装处实现,因此,称之为近后备保护。在远处实现对相邻元件的后备保护,称为远后备保护。 4、简述继电保护的基本原理和构成方式。 答:基本原理:1、过电流保护2、低电压保护3、距离保护4、方向保护5、差动原理的保护6、瓦斯保护7、过热保护等。构成方式:1、测量部分2、逻辑部分3、执行部分 5、什么是电力系统继电保护装置? 答:继电保护装置,就是指能反应电力系统中元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种装置。 6、电力系统对继电保护的基本要求是什么? 答:1、选择性:继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。2、速动性:在发生故障时,力求保护装置能迅速动作切除故障,以提高电力系统并联运行的稳定性,减少用户在电压降低的情况下工作的时间,以及缩小故障元件的损坏程度。3、灵敏性:继电保护的灵敏性,是指对于其保护范围内发生故障或不正常运行状态的反应能力。4、可靠性:保护装置的可靠性是指在该保护装置规定的保护范围内发生了他应该动作的故障时,他不应该拒绝动作,而在任何其他该保护不该动作的情况下,则不应该误动作 第二章 1、何谓三段式电流保护?其各段是如何保证动作选择性的?试述各段的工作原理、整定原则和整定计算方法、灵敏性校验方法和要求以及原理接线图的特点。画出三段式电流保护各段的保护范围和时限配合特性图。 答:电流速断是按照躲开某一点的最大短路电流来整定,限时速断是按照躲开前方各相邻元件电流速断保护的动作电流整定,而过电流保护则是按照躲开最大负荷电流来整定。 2、在什么情况下采用三段式电流保护?什么情况下可以采用两段式电流保护?什么情况下可只用一段定时限过电流保护?Ⅰ、Ⅱ段电流保护能否单独使用?为什么? 答:越靠近电源端,则过电流保护的动作时限就越长,因此一般都需要装设三段式的保护。线路倒数第二级上,当线路上故障要求瞬时切除时,可采用一个速断加过电流的两段式保护。保护最末端一般可只采用一段定时限过电流保护。I、II段电流保护不能单独使用,I 段不能保护线路的全长,II段不能作为相邻元件的后备保护。 3、如何确定保护装置灵敏性够不够?何谓灵敏系数?为什么一般总要求它们至少大于

相关文档