文档库 最新最全的文档下载
当前位置:文档库 › 磷酸铁锂性能

磷酸铁锂性能

磷酸铁锂性能
磷酸铁锂性能

磷酸铁锂性能

磷酸铁锂电极材料主要用于各种锂离子电池.自1996年日本的NT T首次揭露AyMPO4(A为碱金属,M为CoFe两者之组合:LiFeCOPO4)的橄榄石结构的锂电池正极材料之后, 1997年美国德克萨斯州立大学J ohn. B. Goodenough等研究群,也接着报导了LiFePO4的可逆性地迁入脱出锂的特性,美国与日本不约而同地发表橄榄石结构(LiMPO4), 使得该材料受到了极大的重视,并引起广泛的研究和迅速的发展。与传统的锂离子二次电池正极材料,尖晶石结构的LiMn2O4和层状结构的Li CoO2相比,LiMPO4 的原物料来源更广泛、价格更低廉且无环境污染。

1. 高能量密度,其理论比容量为170mAh/g,产品实际比容量可超过1

40 mAh/g(0.2C, 25°C);

2. 安全性,是目前最安全的锂离子电池正极材料;不含任何对人体有

害的重金属元素;

3. 寿命长。在100%DOD条件下,可以充放电2000次以上;(原因:

磷酸铁锂晶格稳定性好,锂离子的嵌入和脱出对晶格的影响不大,故而具有良好的可逆性。存在的不足是电子离子传到率差,不适宜大电流的充放电,在应用方面受阻。解决方法:在电极表面包覆导电材料、掺杂进行电极改性。)

4. 无记忆效应;

5. 充电性能,磷酸铁锂正极材料的锂电池,可以使用大倍率充电,最快

可在1小时内将电池充满。

具体的物理参数:

松装密度:0.7g/cm

振实密度:1.3g/cm

中位径2­­——4um

比表面积<30m/g

涂片参数:

LiFePo4:C:PVDF=90:3:7

极片压实密度:2.1-2.4g/cm

电化性能:

克容量>140mAh/g 测试条件:半电池,0.1C,电压4.0-2.0V

循环次数1000次

国内国际磷酸铁锂材料生产商:

国内:天津斯特兰北大先行湖南瑞翔苏州恒正其中天津斯特兰现在材料稳定批量产业化生产北大先行小批量生产国际:加拿大Phostech、美国Valence、美国A123、日本sony. 其中A123规模最大且得到美国政府的大力资助。

磷酸铁锂是一种新型锂离子电池电极材料。目前全球已经有很多厂家开始了工业化生产,国外美国Valence(威能)公司和A123(高博),国内天津斯特兰,北大先行等。其特点是放电容量大,价格低廉,无毒性,不造成环境污染。世界各国正竞相实现产业化生产。

但是其振实密度低,影响电容量。

目前主要的生产方法为活法,产品指标不稳定。

锂离子电池的性能主要取决于正负极材料,磷酸铁锂作为锂离子电池的正极材料是近几年才出现的事,国内开发出大容量磷酸铁锂电池是2005年7月。其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,穿刺不爆炸。磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点,是新一代锂离子电池的理想正极材料。

本项目属于高新技术项目中功能性能源材料的开发,是国家“863”

计划、“973”计划和“十一五”高技术产业发展规划重点支持的领域。

目前锂离子电池还是以小容量、低功率电池为主,中大容量、中高功率的锂离子电池尚未大规模生产,使得锂离子电池在中大容量UPS、中大型储能电池、电动工具、电动汽车中尚未得到广泛应用。其中一个重要原因是锂离子电池正极材料尚未取得重大突破。

正极材料是锂离子电池的重要组成部分。

迄今研究最多的正极材料是LiCoO2、LiNiO2、LiMn2O4 及以上三种材料的衍生物,如LiNi0.8Co0.2O2、LiNi1/3Co1/3Mn1/3O2 等。

LiCoO2 是唯一大规模商品化的正极材料,目前90%以上的商品化锂离子电池采用LiCoO2 作为正极材料。LiCoO2 的研究比较成熟,综合性能优良,但价格昂贵,容量较低,存在一定的安全性问题。

LiNiO2 成本较低,容量较高,但制备困难,材料性能的一致性和重现性差,存在较为严重的安全问题。LiNi0.8Co0.2O2 可看成LiNiO2 和LiCoO2的固溶体,兼有LiNiO2 和LiCoO2 的优点,一度被人们认为是最有可能取代LiCoO2 的新型正极材料,但仍存在合成条件较为苛刻(需要氧气气氛)、安全性较差等缺点,综合性能有待改进;同时由于含较多昂贵的Co,成本也较高。

尖晶石LiMn2O4 成本低,安全性好,但循环性能尤其是高温循环性能差,在电解液中有一定的溶解性,储存性能差。

新型的三元复合氧化物镍钴锰酸锂(LiNi1/3Co1/3Mn1/3O2)材料集中了LiCoO2、LiNiO2、LiMn2O4等材料的各自优点:成本与LiNi0.8C o0.2O2 相当,可逆容量大,结构稳定,安全性较好,介于LiNi0.8Co0. 2O2 和LiMn2O4 之间,循环性能好,合成容易;但由于含较多昂贵的Co,成本也较高。对中大容量、中高功率的锂离子电池来说,正极材料的成本、高温性能、安全性十分重要。

上述LiCoO2、LiNiO2、LiMn2O4 及其衍生物正极材料尚不能满足要求。因此,研究开发能用于中大容量、中高功率的锂离子电池的新型正极材料成为当前的热点。

正交橄榄石结构的LiFePO4 正极材料已逐渐成为国内外新的研究热点。初步研究表明,该新型正极材料集中了LiCoO2、LiNiO2、LiMn 2O4 及其衍生物正极材料的各自优点:不含贵重元素,原料廉价,资源极大丰富;工作电压适中(3.4V);平台特性好,电压极平稳(可与稳压电源媲美);理论容量大(170mAh/g);结构稳定,安全性能极佳

(O 与P 以强共价键牢固结合,使材料很难析氧分解);高温性能和热稳定性明显优于已知的其它正极材料;循环性能好;充电时体积缩小,与碳负极材料配合时的体积效应好;与大多数电解液系统兼容性好,储存性能好;无毒,为真正的绿色材料。

与LiCoO2、LiNiO2、LiMn2O4 及其衍生物正极材料相比,LiFeP O4 正极材料在成本、高温性能、安全性方面具有突出的优势,可望成为中大容量、中高功率锂离子电池首选的正极材料。

该材料的产业化和普及应用对降低锂离子电池成本,提高电池安全性,扩大锂离子电池产业,促进锂离子电池大型化、高功率化具有十分重大的意义,将使锂离子电池在中大容量UPS、中大型储能电池、电动工具、电动汽车中的应用成为现实。

然而,磷酸铁锂堆积密度低的缺点一直受到人们的忽视和回避,尚未得到解决,阻碍了材料的实际应用。钴酸锂的理论密度为5.1g/cm3,商品钴酸锂的振实密度一般为2.0-2.4g/cm3;而磷酸铁锂的理论密度仅为3.6g/cm3,本身就比钴酸锂要低得多。

为提高导电性,人们掺入导电碳材料,又显著降低了材料的堆积密度,使得一般掺碳磷酸铁锂的振实密度只有1.0-1.2g/cm3。如此低的堆积密度使得磷酸铁锂的体积比容量比钴酸锂低很多,制成的电池体积将十分庞大,不仅毫无优势可言,而且很难应用于实际。

因此,提高磷酸铁锂的堆积密度和体积比容量对磷酸铁锂的实用化具有决定意义。粉体材料的颗粒形貌、粒径及其分布直接影响材料的堆积密度。

举例来说,Ni(OH)2氢氧化镍是用于镍氢电池和镍镉电池的正极材料。以前,人们采用片状的Ni(OH)2,其振实密度只有1.5-1.6g/cm3;目前采用的球形Ni(OH)2 的振实密度可达2.2-2.3g/cm3;球形Ni(OH)2 已基本上取代了片状的Ni(OH)2,显著提高了镍氢电池和镍镉电池的能量密度。

本实验室借鉴高密度球形Ni(OH)2 的研究成果,开发成功了锂离子电池高密度球形系列正极材料,包括LiCoO2 、LiMn2O4 LiNi0.8Co0. 2O2、LiNi1/3Co1/3Mn1/3O2 等。

其中LiCoO2、LiNi0.8Co0.2O2 的振实密度已可达到2.9g/cm3,远高于商品化的同类材料。研究和实际应用表明,球形产品不仅具有堆积密度高、体积比容量大等突出优点,而且还具有优异的流动性、分散性和可加工性能,十分有利于制作正极材料浆料和电极片的涂覆,提高电极片品质;此外,相对于无规则的颗粒,规则的球形颗粒表面比较容易包覆完整、均匀、牢固的修饰层,因此球形产品更有希望通过表面修饰进一步改善综合性能。

在此基础上,我们提出:球形化是锂离子电池正极材料的发展方向。目前国内外报导的LiFePO4 正极材料都是由无规则的颗粒组成的,粉体材料的堆积密度和能量密度较低。因此,本项目致力于LiFePO4 材料颗粒的球形化,通过颗粒的球形化来提高材料的堆积密度和体积比容量;在此基础上,发挥球形材料易于表面包覆的优势,进一步通过球形颗粒的表面修饰提高材料的综合性能;在对LiFePO4 材料颗粒的球形化和表面修饰的过程中,充分借鉴、吸收、利用人们在提高磷酸铁锂的

电导率方面已取得的优秀成果;最终制备出球形、高堆积密度、高体积比容量、高导电性的LiFePO4 正极材料,使之能应用于中大容量、中高功率的锂离子电池,促进该材料的产业化。

目前,本研究室采用二价铁盐或三价铁盐、磷酸或磷酸盐、氨水为原料,通过控制结晶技术合成高密度球形磷酸铁前驱体,再与锂源、碳源共混热处理,通过碳热还原法合成掺碳的高密度球形磷酸铁锂。该磷酸铁锂粉体材料由单分散球形颗粒组成、粒径5-10μm、堆积密度大(振实密度可达1.6-1.8g/cm3)、流动性好、可加工性能好,可逆容量140mAh/g

(完整版)磷酸铁锂动力电池特性及应用(精)

磷酸铁锂动力电池特性及应用 自锂离子电池问世以来,围绕它的研究、开发工作一直不断地进行着,上世纪90年代末又开发出锂聚合物电池,2002年后则推出磷酸铁锂动力电池。 锂离子电池内部主要由正极、负极、电解质及隔膜组成。正、负极及电解质材料不同及工艺上的差异使电池有不同的性能,并且有不同的名称。目前市场上的锂离子电池正极材料主要是氧化钴锂(LiCoO2),另外还有少数采用氧化锰锂(LiMn2O4)及氧化镍锂(LiNiO2)作正极材料的锂离子电池,一般将后两种正极材料的锂离子电池称为“锂锰电池”及“锂镍电池”。新开发的磷酸铁锂动力电池是用磷酸铁锂(LiFePO4)材料作电池正极的锂离子电池,它是锂离子电池家族的新成员。 一般锂离子电池的电解质是液体的,后来开发出固态及凝胶型聚合物电解质,则称这种锂离子电池为锂聚合物电池,其性能优于液体电解质的锂离子电池。 磷酸铁锂电池的全名应是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池”。 采用LiFePO4材料作正极的意义 目前用作锂离子电池的正极材料主要有:LiCoO2、LiMn2O4、LiNiO2及LiFePO4。这些组成电池正极材料的金属元素中,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)最便宜。正极材料的价格也与这些金属的价格行情一致。因此,采用 LiFePO4正极材料做成的锂离子电池应是最便宜的。它的另一个特点是对环境无污染。 作为可充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。 LiFePO4电池的结构与工作原理 LiFePO4电池的内部结构如图1所示。左边是橄榄石结构的LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li+可以通过而电子e-不能通过,右边是由碳(石墨)组成的电

磷酸铁锂电池充放电曲线和循环曲线

磷酸铁锂电池充放电曲线和循环曲线我公司生产的磷酸铁锂电池以其无毒、无污染,高安全性,循环寿命长,充放电平台稳定等优点受到锂电池专家的关注。我公司所生产的LiFePO4动力电池在国内、外均处于领先水平,填补了国内、外大功率磷酸铁锂动力电池的空白,并获得多项国家专利。10C充放电1000次循环容量衰减在25%以内,充放电平台稳定,安全性能优良,可大电流充放电,完全解决了钴酸锂,锰酸锂等材料做动力型电池所存在的安全隐患和使用寿命问题。磷酸铁锂动力电池将取代铅酸、镍氢电池、钴酸锂和锰酸锂锂电池,引领汽车工业走进绿色时代。我公司生产的磷酸铁锂18650-1200mAh的电池充放电曲线和大电流循环曲线如下:

我公司生产的磷酸铁锂CR123A-500mAh的电池大电流循环曲线如下

新型磷酸铁锂动力电池 中心议题: ?磷酸铁锂电池的结构与工作原理 ?磷酸铁锂电池的放电特性及寿命 ?磷酸铁锂电池的使用特点 ?磷酸铁锂动力电池的应用状况 自锂离子电池问世以来,围绕它的研究、开发工作一直不断地进行着,上世纪90年代末又开发出锂聚合物电池,2002年后则推出磷酸铁锂动力电池。 锂离子电池内部主要由正极、负极、电解质及隔膜组成。正、负极及电解质材料不同及工艺上的差异使电池有不同的性能,并且有不同的名称。目前市场上的锂离子电池正极材料主要是氧化钴锂(LiCoO2),另外还有少数采用氧化锰锂(LiMn2O4)及氧化镍锂(LiNiO2)作正极材料的锂离子电池,一般将后两种正极材料的锂离子电池称为“锂锰电池”及“锂镍电池”。新开发的磷酸铁锂动力电池是用磷酸铁锂(LiFePO4)材料作电池正极的锂离子电池,它是锂离子电池家族的新成员。

浅谈磷酸铁锂电池的性能与应用

龙源期刊网 https://www.wendangku.net/doc/9014376666.html, 浅谈磷酸铁锂电池的性能与应用 作者:张志伟 来源:《中国科技博览》2015年第30期 [摘要]随着科学技术发展速度不断加快,锂离子电池技术也得到了相应的发展,磷酸铁锂带电池应运而生,这种类型的电池所具优势明显,如安全性好、没有记忆效应、工作电压高、循环寿命长以及能量密度大等。下面笔者就磷酸铁锂电池的性能以及应用进行研究和分析。 [关键词]滇池;性能;磷酸铁锂;储能 中图分类号:TG113.22 文献标识码:A 文章编号:1009-914X(2015)30-0368-01 一、前言 目前在锂电池的研究中,所研究的主要正极材料包含有LMin2O4、LiCoO和LiNiO2等,但因钴资源有限,再加上其有毒,在制备钼酸锂上难度较大。自从磷酸铁锂所具的可逆嵌脱锂特性被报道以后,该材料也受到了广泛关注,关于该材料方面的研究和文献报道也随之增多,和传统锂电池比较,磷酸铁锂电池所具安全性能较好,原材料来源比较广泛,循环寿命长且成本较低等,目前在通信、电网建设中已得到广泛应用。 二、磷酸铁锂电池性能分析 磷酸铁锂电池正极由LiFePO4材料所构成,由铝箔连接正极;电池负极为碳石墨构成,由铜箔和负极连接;电池中间为聚合物隔膜,借助于此隔开电池正负极,其中锂电子能经过隔膜,而电子不可经过隔膜,在电池内存在电解质。于LiFePO4和FePO4间完成电池充放电反应,充电期间,LiFePO4缓慢脱离出锂离子成为FePO4;放电期间,锂离子嵌入FePO4逐渐形成为LiFePO4。当电池在充电时,自磷酸铁锂晶体电池中锂离子迁移至晶体的表面,于电场力不断作用下开始进入电解液,接着穿过隔膜,而后通过电解液迁移至石墨晶体表面,继而嵌入到石墨晶格。在此时,电子通过导电体逐渐流向电池正极铝箔集电极,通过极耳—电池正极柱—外电路—负极极柱—负极极耳逐步流向至铜箔集流体,最后再通过导电体流至石墨负极,从而使负极电荷可达到平衡。电池在放电期间,锂离子脱嵌于石墨晶体,进入电解液,接着穿过隔膜,通过电解液迁移至磷酸铁锂晶体表面,而后重新嵌入至磷酸铁锂晶格中,此时,电子通过导电体逐渐流向至铜箔集电极,通过极耳—电池负极柱—外电路—正极极柱—正极极耳而流向至铝箔集流体,并再通过导电体流至电池正极,以便正极电荷达到平衡。 磷酸铁锂电池借助于自身所具独特优势,如高工作电压、绿色环保、能量密度大、支持无极扩展以及循环寿命长等,将其组成为储能系统以后能够大规模储存电能。由磷酸铁锂电池构成的储能系统,除磷酸铁锂电池组外,还包含有电池管理系统、中央监控系统、换流装置以及变压器,其中换流装置中又包括整流器以及逆变器。该系统能量转换机理主要如下:在充电

温度对磷酸铁锂电池的影响分析

温度对磷酸铁锂电池的影响分析 锂离子电池具有工作电压高(是镍氢、镍镉电池的3倍)、比能大(可达165Wh/kg,是镍氢电池的3倍)、体积小、质量轻、循环寿命长、自放电低、无记忆效应、无污染等众多优点。在新能源行业磷酸铁锂电池被看好,电池循环寿命可达到6000次左右,放电稳定,被广泛应用在动力电池和储能等领域。 但其推广的速度及应用领域广度、深度却不尽如意。阻碍其快速推广的因素除了价格、电池材料自身引起的批次一致性等因素外,其温度性能也是重要因素。此文考察了温度对磷酸铁锂电池性能的影响,同时考察了电池组在高低温情况下的充放电情况。 一、单体(模组)常温循环汇总 常温测试电池的循环寿命可以看出,磷酸铁锂电池的长寿命优势,目前做到3314个循环,容量保持率依然在90%,而达到80%的寿命终止可能要做到4000次左右。 1、单体循环 目前已完成:3314cyc,容量保持率为90%。 受电芯的加工工艺和模组的成组工艺影响,电池在PACK完成后其中的不一致性已经形成,工艺越精湛成组的内阻越小,电芯间的差异性越小。以下模组

的循环寿命是目前大部分磷酸铁锂能做到的基本数据,这样在使用过程中就需要BMS对电池组定期进行均衡,减小电芯间差异,延长使用寿命。 2、模组循环 目前已完成:2834cyc,容量保持率为67.26%。 二、单体高温循环汇总 高温工况下加速电池的老化寿命。 1、单体充放电曲线 2、高温循环

高温循环完成1100cyc,容量保持率为73.8%。 三、低温对充放电性能影响 电池在0~-20℃温度下,放电容量分别相当于25℃温度下放电容量的88.05%、65.52%和38.88%;放电平均电压依次为3.134、2.963 V和2.788 V,一20℃放电平均电压比25℃时降低了0.431 V。从上述分析可知,随着温度的降低,锂离子电池的放电平均电压和放电容量均有所降低,尤其当温度为-20℃时,电池的放电容量和放电平均电压下降较快。

磷酸铁锂电池地放电特性及寿命

磷酸铁锂电池(以下简称锂铁电池)作为铁电池的一种,一直受到业界朋友的广泛关注(也有人说锂铁电池其实就是锂离子电池的一种)。就铁电池而言,它可以分为高铁电池和锂铁电池,今天我们以型号为STL18650的锂铁电池为例,来具体说明一下锂铁的电池的放电特性及寿命。 STL18650的锂铁电池(容量为1100mAh)在不同的放电率时其放电特性如图2所示。最小的放电率为0.5C,最大的放电率为10C,五种不同的放电率形成一组放电曲线。由图1中可看出,不管哪一种放电率,其放电过程中电压是很平坦的(即放电电压平稳,基本保持不变),只有快到终止放电电压时,曲线才向下弯曲(放电量达到800mAh以后才出现向下弯曲)。在0.5~10C的放电率范围内,输出电压大部分在2.7~3.2V范围内变化。这说明该电池有很好的放电特性。 图1 STL18650的放电特性 容量为1000mAh的STL18650在不同的温度条件下(从-20~+40℃)的放电曲线如图2所示。如果在23℃时放电容量为100%,则在0℃时的放电容量降为78%,而在-20℃时降到65%,在+40℃放电时其放电容量略大于100%。 从图3中可看出,STL18650锂铁电池可以在-20℃下工作,但输出能量要降低35%左右。 图2 STL18650在多温度条件下的放电曲线 STL18650的充放电循环寿命曲线如图4所示。其充放电循环的条件是:以1C充电率充电,以2C放电率放电,历经570次充放电循环。从图3的特性曲线可看出,在经过570次充放电循环,其放电容量未变,说明该电池有很高的寿命。

图3 STL18650的充放电循环寿命曲线 过放电到零电压试验 采用STL18650(1100mAh)的锂铁动力电池做过放电到零电压试验。试验条件:用0.5C充电率将1100mAh的STL18650电池充满,然后用1.0C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用0.5C充电率充满,然后用1.0C放电。最后比较两种零电压存放期不同的差别。 试验的结果是,零电压存放7天后电池无泄漏,性能良好,容量为100%;存放30天后,无泄漏、性能良好,容量为98%;存放30天后的电池再做3次充放电循环,容量又恢复到100%。 这试验说明该电池即使出现过放电(甚至到0V),并存放一定时间,电池也不泄漏、损坏。这是其他种类锂离子电池不具有的特性。

提高磷酸铁锂电池低温性能试验方案

低温改性磷酸铁锂电池实验方案 在电池制作过程中,试验从以下几点出发改善电池的低温性能: 1、正极箔材:利用表面涂有到点钛粉的铝箔替代原有箔材,提高电子导电率; 2、利用低温电解液; 3、与德方的低温正极材料按比例混合; 4、配料过程中掺杂碳纳米管; 5、增加电芯厚度; 6、利用孔隙率高的隔膜; 7、配料过程中添加一定量的石墨烯做导电剂;

HEV和EV中电池管理经验之谈 2011-10-09 20:24:04 来源:电子系统设计 就混合动力汽车(HEV) 和电动汽车(EV) 而言,使用锂离子电池,可在功率、能量密度、效率和环境影响之间取得最佳平衡。但同时,锂离子电池也是易损坏和危险的,而汽车环境又相当棘手、难以应付。混合动力汽车和电动汽车的电子产品面临的挑战是,弥补要求苛刻的汽车环境和电池敏感性之间的差距。汽车环境的苛刻和电池的敏感堪称地狱中的绝配。 考虑到汽车对能量、功率和环境的要求,安全、可靠地使用大型锂离子电池组绝对不是一个简单的任务。锂离子电池以满充电状态或满放电状态工作时,容量会降低。考虑到循环往复的充电、组与组之间的差别和不同的环境条件,每节电池的容量都会随着时间推移而降低并产生偏离。因此,电池组要实现15 年、5000 个充电周期的目标,每节电池都必须保持在有限的工作范围内工作。通过控制每节锂离子电池的充电状态(SOC),可以最大限度地提高电池组的容量,同时最大限度地减轻容量的降低。确保高效率、安全地使用汽车电池组,是电池管理系统(BMS) 的责任。 电池管理系统的任务是,仔细跟踪和控制每节电池的充电状态。电池管理系统的测量准确度至关重要,因为它决定了每节电池能多么靠近其可靠充电状态范围的边缘工作。最大限度地提高可用容量的能力决定了所需的电池数量,而电池数量对成本和重量有很大的影响。准确地测量每节电池的电压相当困难,因为电池组中的电池易受高共模电压和高频噪声的影响。为了理解这一点,我们想想以下事实:电动汽车/混合动力汽车的电池组通常电压非常高,由100 至200 个串联连接的电池组成。这类电池组必须提供可能超过200A 的快速充电和放电电流,在电池组的顶端,电压瞬态有可能超过100V。 对成本和可靠性的关注导致汽车电子产品向集成度更高、组件数更少的方向发展。在高度复杂的电池管理系统中,这种趋势尤其明显,在这类系统中,我们看到,诸如凌力尔特LTC6802 这类电池监视IC 已经出现。在新式电池管理系统中,这类高度集成的器件是关键的数据采集组件,与之前的分立式解决方案相比,这类器件降低了成本、减少了所需占用的空间和组件数。电池监视器的主要功能是,直接测量串联连接电池的电压,典型情况下每个IC 监视12 个通道。这类IC 中还包括电池容量平衡控制和额外的测量输入(如用于温度的输入)。为了应对高压电池组,这类器件一般设计为通过菊花链式串行接口相互通信。在电池管理系统中,有一个组成部分一般不可能成功集成到电池监视IC 中,那就是嵌入式软件。充电状态算法是受到严密保护的技术,是特定于化学组成、尺寸、外形、工作条件和应用的。就新式高压、大功率电池组而言,现成有售的算法不可能有用,嵌入式软件使故障机制影响分析(FMEA) 变得复杂了,在使用嵌入式软件的情况下,系统设计师无法进行直接控制。图1 说明了由任意节电池组成的电池模块的基本配置,其中电池组管理系统的算法是软件编码的,并由开发商独家控制。 图1:由很多节电池组成的电动汽车/ 混合动力汽车电池模块的基本拓扑。 电池监视IC 的一个关键考虑因素是,怎样处理将遇到的汽车噪声。例如,很多电池监视器使用快速SAR 转换器实现电池的数字化,在超过100 个通道的数据采集系统中,这似乎是有利的。然而,汽车环境是有噪声的,需要进行大量的滤波,而且这种滤波决定有效吞吐量,而不是采样率。由于这个原因,增量累加(DS) ADC 比SAR 转换器有优势。就给定的10kHz 噪声抑制量而言,每秒1000 次采样的DS ADC 提供的吞吐量与每秒100 万次采样的SAR ADC 提供的吞吐量相同。例如,LTC6802 采用一个每秒1000 次采样的DS ADC,该ADC 在10ms 时间内可顺序对10 个输入通道采样。内置的线性相位数字滤波器对10kHz 开关噪声提供36dB 的抑制。要在10kHz 时获得相同的噪声抑制,每秒100 万次采样的SAR 转换器在每节电池上都需要一个转角频率为160Hz 的单极性RC 滤波器(参见图2)。RC 滤波器的12 位稳定时间为8.4ms,即使SAR ADC 能在10us 时间内顺序对10 个通道采样,由于滤波器的响应,每8.4 ms 超过 1 次的扫描也是没有意义的。 图2:增量累加转换器和采用RC 电路的SAR 转换器的比较增量累加转换器以更好的滤波性能提供同样的有效吞吐量。 在一长串电池监视IC 的情况下,串行接口也是一个重要的考虑因素,凌力尔特提供两种截然不同的选择。一种选择(也是大多数电池监视IC 所支持的) 是菊花链式接口。采用菊花链式接口时,无需光耦合器

锂电池、磷酸铁锂电池类-名词解析

电池名词解释 最近发现有许多人对电池的专有名词有一些误解,因此笔者在此 对这些名词做一些整理,希望能帮助大家正确的了解,而不要产生一些认知的误会。 一次电池 顾名思义为只可使用一次性的电池,当电池内以化学能转变为电 能来提供电力,也无法透过充电或其它方式将原有电能补充回来,因此完全放电后将不可再使用,这是电化学反应为不可逆转。一般市面上常见的干电池、碳锌电池、碱性电池、水银电池、锌空气电池等, 皆属此一次性电池。不同的一次性电池种类有不同的使用方式,但都局限于单次的使用。在制造上许多电池种类的原料使用及制程上所使用的材料具有污染性,对环境以及人体具有相当大的影响。 二次电池 二次电池是可以再重复使用的电池,可持续的充电、放电使用, 二次电池一样是经过化学能转换成电能,但可以藉由充电方式,将电能重新转化成化学能,便可让电池再次使用,而使用的次数随着材料与设计有其差异性。市面上常见的有铅酸电池、胶体电池、镍镉电池、镍氢电池、锂离子电池、锂离子聚合物电池、磷酸铁锂电池等。不同种类的二次电池因为其额定电压、额定容量、使用温度以及安全性, 有其不同的使用。在制造上许多电池种类的原料使用及制程上所使用的材料具有污染性,对环境以及人体具有相当大的影响。 碳锌电池 碳锌电池又称碳锌干电池、碳性电池、碳性电芯,外壳由锌构成。 既可以作为电池的容器,又可以作为电池的负极。碳锌电池是从液体Leelanche电池发展而来。传统或一般型以氯化铵为电解质;电池则

通常是使用氯化锌为电解质的碳锌电池,是一般使用的廉价电池的一种改良版。电池的正极主要是由粉末状的二氧化锰和碳构成。电解液 是把氯化锌和氯化铵溶于水中所形成的糊状溶液。碳锌电池是最便宜的原电池,因此成为很多厂商的首选,因为这些厂商所销售的设备中常常需要配送电池。锌碳电池可以用于遥控器、闪光灯、玩具或晶体管收音机等功率不大的设备。此电池正极的碳棒与二氧化锰中所混合的碳只负责引出电流,并不参与反应,正极实际参与还原反应并提供正电的是二氧化锰中的锰,因此,又称为锰锌电池、锌锰电池或锌一 氧化锰电池,也有简称锰干电池的。碳锌电池的电压为。 锌空气电池 锌空气电池(Zinc-air battery) 是一类结构特殊的品种。负极采用了锌合金。而正极材料,则是空气中的氧。在储存时一般保持密封, 所以基本上没有自放电。又称锌氧电池,有时也被称为锌空电池。由于锌空电池内部含有高浓度的电解质 (氢氧化钾具有强碱性、强腐蚀

磷酸铁锂电池及充电器原理结构

磷酸铁锂电池及充电器原理结构 ?随着科学技术的发展及电化学材料及工艺技术的进步,人们不断地研究、开发出新型电池材料及新型电池。继镍镉、镍氢可充电电池之后,在1991年开发出可充电的锂离子电池,1995年又推出性能更好的聚合物锂电池,到2002年后,新型磷酸铁锂电池又问世。 2),另外还有少数采用氧化锰锂(LiMn2O4)及氧化镍锂(LiNiO2)作正极材料。新型磷酸铁锂电池是一种用磷酸铁锂(LiFePO4)作电池正极,用石墨作负极的锂离子电池。它的工作原理与锂离子电池完全相同,是锂离子电池家族中的新成员。 4电池。 4电池应是最便宜的。另外它具有放电平台特别平坦、能用大放电率放电(5~10C)、特别安全(不会因过充电、过放电、甚至短路时发生燃烧或爆炸)、循环寿命长、对环境无污染等特点,作为大电流输出的动力电池,它的性能是最佳的。 4正极材料,有一些工厂已小批量生产各种不同容量的LiFePO4电池(容量从几百mAh到几百Ah)。由于生产时间不长、产量不大,还是初创阶段,因此目前在价格上比同样容量的锂离子电池还贵,但是还供不应求,经常发生缺货。这种现象将在1~2年内得到改进。到那时LiFePO4电池的价格更齐全、质量进一步提高,价格也更便宜,应用将更广泛。 1. LiFePO4电池主要特点 4电池可在2~10C放电率范围长期工作,甚至于在10秒短时间内可达20C的放电率。采用LiFePO4电池作为动力的汽车有极好的加速性能、用作电动工具手电钻电源时则有高的钻孔速度,并能对硬度较大的材料进行钻孔。 4电池在不同放电率时的放电特性如图1所示。 图1 图2 4电池的放电特性是极好的; 4电池作循环寿命试验,其结果是:锂离子动力电池做了300个循环后,其放电容量已降到85%;而LiFe PO4电池做了500个循环后,其放电容量还大于95%。 4电池做了300个循环放电容量还大于80%。

浅析磷酸铁锂电池的优点及缺点

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/9014376666.html,)浅析磷酸铁锂电池的优点及缺点 磷酸铁锂电池的全名是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池。 一、工作原理 磷酸铁锂电池,是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。 二、意义 金属交易市场,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)存储量较多。正极材料的价格也与这些金属的价格行情一致。因此,采用LiFePO4正极材料做成的锂离子电池应是挺便宜的。它的另一个特点是对环境环保无污染。 作为充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C 放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。 三、结构与工作原理

LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li可以通过而电子e-不能通过,右边是由碳(石墨)组成的电池负极,由铜箔与电池的负极连接。电池的上下端之间是电池的电解质,电池由金属外壳密闭封装。 LiFePO4电池在充电时,正极中的锂离子Li通过聚合物隔膜向负极迁移;在放电过程中,负极中的锂离子Li通过隔膜向正极迁移。锂离子电池就是因锂离子在充放电时来回迁移而命名的。 四、主要性能 LiFePO4电池的标称电压是3.2V、终止充电电压是3.6V、终止放电压是2.0V。由于各个生产厂家采用的正、负极材料、电解质材料的质量及工艺不同,其性能上会有些差异。例如同一种型号(同一种封装的标准电池),其电池的容量有较大差别(10%~20%)。 这里要说明的是,不同工厂生产的磷酸铁锂动力电池在各项性能参数上会有一些差别;另外,有一些电池性能未列入,如电池内阻、自放电率、充放电温度等。 磷酸铁锂动力电池的容量有较大差别,可以分成三类:小型的零点几到几毫安时、中型的几十毫安时、大型的几百毫安时。不同类型电池的同类参数也有一些差异。 五、过放电到零电压试验: 采用STL18650(1100mAh)的磷酸铁锂动力电池做过放电到零电压试验。试验条件:用0.5C充电率将1100mAh的STL18650电池充满,然后用1.0C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用0.5C充电率充满,然后用1.0C放电。最后比较两种零电压存放期不同的差别。

磷酸铁锂与锰酸锂的对比

10Ah磷酸铁锂电池与錳酸锂电池对照分析 1.电器特性 磷酸铁磷錳酸锂 电池最高电压(V) 3.9 电池最高电压(V) 4.2 电池最低电压(V) 2.5 电池最低电压(V) 2.75 额定电压(V) 3.2 额定电压(V) 3.7 电池容量(AH) 10 电池容量(AH) 10 最大充电电流(A) 5 最大充电电流(A) 5 最大放电电流(A) 18 最大放电电流(A) 18 过充保护电压(V) 3.95 过充保护电压(V) 4.25 过放保护电压(V) 2.2 过放保护电压(V) 2.45 放电保护电流(A) 20 放电保护电流(A) 20 2.曲线分析 10AH錳酸锂电池0.2C充电曲线 分析: 1.充电第一阶段(0—30 min),充电电流较大,充电快,电池内阻较小。充电平均速率 v=0.025V/min 2.充电第二阶段(30—250 min),电池进入充电稳定状态,内阻增大。充电平均速率 v=6.82*10-4V/min 3.充电第三阶段 (250—370 min ),充电幅度比第二阶段略快,内阻增大。v=0.0025V/min 4.充电过程中,电池容量减小。 5.电池电容C=△Q/△U=10*3600/1.2=30000F 10AH磷酸铁锂电池0.2C充电曲线 分析: 1. 充电第一阶段(0—30 min), 电池内阻有增大的趋势,充电平均速率 v=0.01166V/min 2. 充电第二阶段(30—260 min), 总体处于充电平稳状态,内阻增大, v=4.3478*10-4V/min 3. 充电第三阶段(260—310 min),充电电压上升幅度较大,内阻增大,v=0.01V/min 4. 充电过程中,电池容量减小。 5. 电池电容C=△Q/△U=10*3600/1=36000F 两种电池的比较分析: 1. 10AH磷酸铁锂电池比10AH錳酸锂电池容量小。 2. 充电的第一、二阶段,錳酸锂电池比磷酸铁锂电池要快,第三阶段相反。 两种电池的内阻在充电过程中都趋于增大,电池容量减小。

电极水分对磷酸铁锂电池性能的影响

电极水分对磷酸铁锂电池性能的影响 发表时间:2019-11-08T15:10:34.197Z 来源:《基层建设》2019年第22期作者:张斌林丹李世丰柳增富 [导读] 摘要:通过库仑法水分测试仪标定不同水分含量的磷酸铁锂正极片,将其制备成软包型锂离子电池。对其电化学循环性能?倍率性能?交流阻抗进行了测试。 力神(青岛)新能源有限公司 266000 摘要:通过库仑法水分测试仪标定不同水分含量的磷酸铁锂正极片,将其制备成软包型锂离子电池。对其电化学循环性能?倍率性能?交流阻抗进行了测试。结果表明不同水分含量极片制备的电池循环性能及倍率性能与电极水分含量有密切关系。 关键词:电极水分;磷酸亚铁锂;软包电池;循环性能 引言:锂离子电池具有工作电压高、容量高、自放电小、循环寿命长、无记忆效应以及无环境污染等显著优点。是目前最具实用价值的移动电子设备电源及电动汽车动力电池。对于应用于电动汽车及大型储能装置中的大容量型动力锂离子电池,限制其推广应用的主要因素是电池的循环性能安全性能和成本。电池制造过程中,电极水分控制对于电池的循环寿命和安全性有着重要影响。 1水分含量对磷酸铁锂材料性能的影响 磷酸铁锂材料颗粒,尺寸较小,比表面积较大,在制备过程中也会加入占比不等的碳,使得其本身对水分含量非常敏感。当暴露在水分含量较高的环境中时,磷酸铁锂材料会出现明显的析锂现象,而金属锂则会与空气中的水分以及二氧化碳发生化学反应,生成LiOH和Li2CO3,降低材料活性,影响电性能。如表1所示,参考一般电池工厂材料存储条件,通过实验的方法,对不同存储时长下的磷酸铁锂材料表面力度,比表面等进行分析后发现,随着存储时间的增加,材料表面碱性明显增强,水以及LiOH含量稳步增长。 表1不同存储时长下的物化指标 2水分对磷酸铁锂电池内阻的影响 根据一般工艺要求,磷酸铁锂电池内部水分必须控制在合理的范围内,过多和过少都会对电池性能造成负面影响,最突出的表现就是电池内阻的增加。 当水分含量过低时(比如:极片过度干燥),极片掉粉现象会更加明显,在组装过程中电池因短路造成的不合格率明显增加。同时,由于极片涂层表面导电剂、活性材料、粘结剂之前缺少足够的连接,在电池进行预充激活时,电池内阻会在短时间内呈现明显的上升趋势,直至超出允许范围。 由图1可知,电池内阻随着含水量的增加而明显增加。电池预充时,由于多余的水分与SEI发生反应,会在SEI膜表面生成POF3和LiF 沉淀,导致电池内阻增加。同时,电池内部水分含量的增加,会导致隔膜水分含量超标,严重影响隔膜的绝缘性和散热性,也会导致电池内阻增大,并且电池后期出现短路、胀气等热失控现象的概率大大增加。 图1水分含量与电池内阻关系 3水分对电池放电容量的影响 由上文结论可以看出,随着磷酸铁锂材料水分的增加,材料表面碱性增加,活性物质占比下降,由此带来的最接影响是使得电池初次放电容量随之而降低。磷酸铁林材料表面金属锂的析出会直接影响SEI膜的构成,而多余的水分则会促使电解液中的LiPF6分化成LiF和PFs。也就是说,水分的增加会导致构造SEI膜最关键的两个因素Li+和电解液有效含量的降低,会直接导致SEI的厚度、均匀性等无法满足要求。而水分不断的与SEI膜发生反应,而SEI膜不断的进行修复,消耗电解液,进而使得电池循环容量急速衰减。 4水分含量对电池厚度的影响 随着水分含量的增加,电池的厚度也在变大。在SEI膜形成过程中会产生CO2、CO等气体。并且当水分过量时,多余的水会继续与电解液中的LiPF6反应产生HF气体。由图2可知,当电池内水分含量达到一定程度后,电池厚度与水分含量几乎成正比。

铁锂低温性能影响因素

影响磷酸铁锂电池低温性能的因素有哪些? 导电性差、锂离子扩散速度慢。高倍率充放电时,实际比容量低,这个问题是制约磷酸铁锂产业发展的一个难点。磷酸铁锂之所以这么晚还没有大范围的应用,这是一个主要的问题。但是,导电性差目前已经得到比较完美的解决:就是添加C或其它导电剂。目前在实际生产过程中通过在前驱体添加有机碳源和高价金属离子联合掺杂的办法来改善材料的导电性(A123、烟台卓能正采用这种方法),研究表明,磷酸铁锂的电导率提高了7个数量级,使磷酸铁锂具备了和钴酸锂相近的电导特性。实验室报道当0.1C充放电时,可以达到165mAh/g以上的比容量,实际达到135-145mAh/g,基本接近钴酸锂的水平;但是锂离子扩散速度慢的问题到目前仍然没有得到较好的解决,目前采取的解决方案主要有纳米化LiFePO4晶粒,从而减少锂离子在晶粒中的扩散距离,再者就是掺杂改善锂离子的扩散通道,后一种方法看起来效果并不明显。纳米化已经有较多的研究,但是难以应用到实际的工业生产中,目前只有A123宣称掌握了LiFePO4的纳米化产业技术。 振实密度较低。一般只能达到0.8-1.3,低的振实密度可以说是磷酸铁锂的很大缺点。所有磷酸铁锂正极材料决定了它在小型电池如手机电池等没有优势,所以其使用范围受到一定程度的限制。即使它的成本低,安全性能好,稳定性好,循环次数高,但如果体积太大,也只能小量的取代钴酸锂。但这一缺点在动力电池方面不会突出。因此,磷酸铁锂主要是用来制作动力电池。 磷酸铁锂电池低温性能差。尽管人们通过各种方法(例如锂位、铁位、甚至磷酸位的掺杂改善离子和电子导电性能,通过改善一次或二次颗粒的粒径及形貌控制有效反应面积、通过加入额外的导电剂增加电子导电性等)改善磷酸铁锂的低温性能,但是磷酸铁锂材料的固有特点,决定其低温性能劣于锰酸锂等其他正极材料。一般情况下,对于单只电芯(注意是单只而非电池组,对于电池组而言,实测的低温性能可能会略高,这与散热条件有关)而言,其0℃时的容量保持率约60~70%,-10℃时为40~55%,-20℃时为20~40%。这样的低温性能显然不能满足动力电源的使用要求。当前一些厂家通过改进电解液体系、改进正极配方、改进材料性能和改善电芯结构设计等使磷酸铁锂的低温性能有所提升,但还未真正满足需求。 电池存在一致性问题。单体磷酸铁锂电池寿命目前超过2000次,但电池组的寿命会大打折扣,有可能是500次。因为电池组是由大量单体电池串并而成,其工作状态好比一群人用绳子绑在一起跑步,即使每个人都是短跑健将,如果大家的动作一致性不高,队伍就跑不快,整体速度甚至比跑得最慢的单个选手的速度还要慢。电池组同理,只有在电池性能高度一致时,寿命发挥才能接近单体电池的水平。而在现有的条件下,由于种种原因,制作出来的电池一致性不佳,进而影响到电池的使用性能和整体寿命,因此应用在动力汽车上存在一定障碍。 影响电池产品一致性的因素主要有三点: 1)原材料的品质:特别是磷酸铁锂材料系新生事物,其制造设备、合成工艺都不安全成熟、品质易出现波动,导致电池产品一致性受到影响。 2)生产环境:磷酸铁锂电池做诶一个化工原料众多、工艺繁杂的高科技产品,其生产环境对温度、湿度、粉尘等都有很高的要求,如果没有控制到位,电池品质将出现波动。 3)制造设备:生产过程中手工的成分越少、设备自动化程度越高,电池一致性越好。 因此,磷酸铁锂电池要做到一致性好,关键是:1)原材料的把握;2)精密的电池生产设备;3)对工艺制作及流程的关键位有精细的控制模式;还有重要一点的是,配料过程的控制,特别是浆料的均匀一致性特别重要,在每个步骤都要做到充分均匀。也就是说,只要生产工艺实现标准化,磷酸铁锂电池的一致性问题可以得到有效解决。

粒径对磷酸铁锂电池低温性能的影响

粒径对磷酸铁锂电池低温性能的影响 谢晓华*, 张建,李佳,刘浩涵,夏保佳 (中科院上海微系统与信息技术研究所,上海, 200050, E-mail:xiaohuaxie@https://www.wendangku.net/doc/9014376666.html,) 能源的日益枯竭和环保的要求, 使电动车市场成为热点。电动车成败的关键之一是电池,在现有的多种动力电池中,具有电压高、比能量大、循环寿命长、环保等优点的锂离子电池将成为主导。用作锂离子电池的正极活性材料主要有锂钴氧(LiCoO2)、锂锰氧(LiMn2O4)、锂镍氧(LiNiO2)、锂镍钴锰氧(LiNiCoMnO2)和磷酸铁锂(LiFePO4)。由于LiFePO4具有原料来源丰富、价格低廉以及优良的高温循环性能和安全性能等优点,以LiFePO4为正极活性材料的锂离子电池(LiFePO4电池)最具发展前景。但与其它正极活性材料相比,LiFePO4材料固有的导电能力差的缺点[1-2],极大地限制了其在低温下的动力学特性[3]。在一般情况下,对于单体LiFePO4电池而言,其0℃的容量保持率约为60~70%,-10℃时约为40~55%,-20℃时约为20~40%,显然其低温性能不能满足动力电源的使用要求。因此,提高LiFePO4电池的低温性能已成为锂离子电池研究者关注的重点问题[4]。本文将探讨LiFePO4活性材料的粒径对LiFePO4电池低温性能的影响。 LiFePO4活性材料的粒径分布如图1所示,两种活性材料的D50值分别为1.237μm和4.130μm。 图1 LiFePO4粒度分布 Fig.1 Particle size distribution of LiFePO4 将两种活性材料分别与一定比例的聚偏氟乙烯(PVdF)和N甲基吡咯烷酮(NMP)搅拌制成浆料,均匀涂敷于铝箔集流体上,经过烘干、辊压、剪裁等工艺制成正极极片;同样方法制作MCMB负极极片,集流体为铜箔。把正、负极极片及隔膜按IFR18650锂离子电池制造工艺卷绕制成18650圆柱电池,电解液为1M LiPF6 EC:DEC:EMC (1:1:1, vol%)。制作好的LiFePO4电池先在常温化成,化成后的电池以0.2C充电0.5C放电循环5次,待容量稳定后,进行低温放电性能测试。低温性能测试时,先将电池在常温下0.2C充满电,然后在-30℃下放置16小时,再进行不同倍率的放电实验。高低温试验箱℃提供低温测试环境,充放电仪为新威电池测试系统。 (WGD-7005,~-70) 在室温下,LiFePO4电池的首次及第6次充放电曲线如图2所示。从图中可以看出,LiFePO4粒径的大小对电池的首次充放电效率、充放电平台和可逆容量无影响,两种LiFePO4电池的首次充放电效率均为88%左右,可逆容量在1060mAh左右。 图3为LiFePO4电池在-30℃的倍率放电曲线。从图中可以看出,对于大粒径的LiFePO4电池,在0.2C、0.5C和1C的放电容量分别为681.0mAh、650.1mAh和572.0mAh,放电中点电压分别为2.72V、2.69V和2.55V;对于小粒径的LiFePO4电池,在0.2C、0.5C和1C的放电容量分别为689.1mAh、668.2mAh 和579.1mAh,放电中点电压分别为2.89V、2.74V和2.37V。由以上数据可知,两种LiFePO4电池在-30℃、不同倍率下的放电容量基本相当,且在放电倍率较小(0.2C和0.5C)的情况下,小粒径的LiFePO4电池的放电中点电压明显高于大粒径的LiFePO4电池,但是当放电倍率增加到1C时,反而是大粒径的LiFePO4电池的放电中点电压较高。 LiFePO4活性材料粒径的大小对电池的低温放电性能影响较大。粒径减小,一方面锂离子在

磷酸铁锂电池的安全性能研究.docx

磷酸铁锂电池的安全性能研究 电动车应用最基本的要求是保证安全。电池的安全性归根到底体现的是温度问题。任何安全性问题最终的结果就是温度升高直至失控,直至出现安全事故。电池的安全性检测通常包括过充电、过放电、穿刺、挤压、跌落、加热、短路等,在这些情况下,会引起电池温度上升或部分区域温度过高,达到某一底限温度值,大量的热产生由于不能及时被消散引发一系列放热副反应,从而出现热失控。热失控一旦被引发就完全不能停止,直到所有反应物被完全地消耗,在大多数情况下导致电池的破裂,随之伴有火焰和浓烟,有时甚至是电池的爆炸。在锂电池当中,公认的以LiFePO4为正极材料的锂电池具有最好的安全性能。主要是由于LiFePO4在高温条件下的氧保持能力好,即使在超过500℃的高温也不会失氧,比钴酸锂、锰酸锂及三元材料等药高得多。但在滥用条件下,即使LiFePO4为正极的锂电池,也会出现安全性问题。本文主要研究和分析不同的安全性检测条件对磷酸铁锂电池的安全性能检测结果的影响。 安全性问题最终的反映是热量累积或能量短时释放引起的温度迅速升高出现失控。在电池滥用过程中,产生热的原因有以下几个方面:(1)负极SEI膜的分解;(2)负极与电解质的反应;(3)电解液的热分解;(4)电解液在正极的氧化反应;(5)正极的热分解;(6)负极的热分解;(7)隔膜的溶解以及引起的内部短路。电池抵抗各种滥用的能力主要取决于产热和散热的相对速度。当电池的散热速度低于产热速度时,它可能会遭受热失控。 1. 测试对象与设备 2. 试验 3. 结果与分析 3.1过充电 锂离子电池在充电时发生式(1)所示的反应,Li 不完全脱出,生成物为 LiFePO4和 FePO4。LiFePO4—— LiFePO4+ FePO4+ Li +xe 电池过充时,Li+大量脱出,生成的 FePO4增多,引起较大的极化电阻和极化电势,使电池的电压快速升高;过多的锂脱出,极片上的粘结剂被破坏,使正极膏片从集流体上脱离,出现大面积掉膏,脱出的 Li 聚集在负极片上,形成点状白点;电池正极附近的高氧化氛围引起电解液氧化分解使过充电池剩余的电解液较少,电解液分解产生更多的热量和气体,使电池鼓胀加剧,爆炸的可能性加大;LiFePO4在过充时发生了不可逆分解,有氧气和含 Fe 的

磷酸铁锂电池知识大全

磷酸铁锂电池知识大全 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料有很多种,主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料,而其它正极材料由于多种原因,目前在市场上还没有大量生产。磷酸铁锂也是其中一种锂离子电池。从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。磷酸铁锂电池是用来做锂离子二次电池的,现在主要方向是动力电池,相对NI-H、Ni-Cd电池有很大优势。磷酸铁锂电池充放电效率,相对高一些。在88% - 90%之间。而铅酸电池约为80%。 磷酸铁锂电极材料主要用于各种锂离子电池,自1996年日本的NTT首次揭露AyMPO4(A为碱金属,M为CoFe两者之组合:LiFeCOPO4)的橄榄石结构的锂电池正极材料之后, 1997年美国德克萨斯州立大学研究群也接着报导了LiFePO4的可逆性地迁入脱出锂的特性,美国与日本不约而同地发表橄榄石结构(LiMPO4), 使得该材料受到了极大的重视,并引起广泛的研究和迅速的发展。与传统的锂离子二次电池正极材料,尖晶石结构的LiMn2O4和层状结构的LiCoO2相比,LiMPO4 的原物料来源更广泛、价格更低廉且无环境污染。 磷酸铁锂电池*构造 正极:正极物质在磷酸铁锂离子蓄电池中以磷酸铁锂(LiFePO4)为主要原料; 负极:负极活性物质是由碳材料与粘合剂的混合物再加上有机溶剂调和制成糊状,并涂覆在铜基体上,呈薄层状分布; 隔膜板:称为隔板或称隔离膜片,其功能起到关闭或阻断通道的作用,一般使用聚乙烯或聚丙烯材料的微多孔膜。所谓关闭或阻断功能是电池出现异常温度上升时阻塞或阻断作为离子通道的细孔,使蓄电池停止充放电反应。隔膜板可以有效防止因内、外部短路等引起的过大电流而使电池产生异常发热现象。 PTC 元件:在磷酸铁锂电池盖帽内部,当内部温度上升到一定温度时或电流增大到一定控制值时,PTC 就起到了温度保险丝和过流保险的作用,会自动拉断或断开,从而形成内部断路。这样电池内部停止了工作反应,温度降下来。保证了电池的安全使用(双重保险)。 安全阀:为了确保磷酸铁锂电池的使用安全性,一般通过对外部电路的控制或者在磷酸铁锂电池内部设有异常电流切断的安全装置。即使这样,在使用过程中也有可能其他原因引起磷酸铁锂电池内压异常上升,这样,安全阀释放气体,以防止蓄电池破裂或爆开。

动力型磷酸铁锂电池的温度特性_李哲

第47卷第18期2011年9月 机械工程学报 JOURNAL OF MECHANICAL ENGINEERING Vol.47 No.18 Sep. 2011 DOI:10.3901/JME.2011.18.115 动力型磷酸铁锂电池的温度特性* 李哲韩雪冰卢兰光欧阳明高 (清华大学汽车安全与节能国家重点实验室北京 100084) 摘要:动力型磷酸铁锂电池的特性与环境温度紧密相关。电池的容量特性、内阻数值和荷电状态—开路电压曲线是反映电池基本性能的重要特性指标,也是参与电池管理系统设计的重要参数。主要进行不同环境温度下电池的以上各性能试验,研究在不同的环境温度下电池的容量、内阻和开路电压的变化规律。动力型磷酸铁锂电池的容量在低温下迅速降低,在高温下迅速上升,高温下的容量变化速度小于低温;随温度上升,充电和放电过程的欧姆内阻、极化内阻均下降,温度不同时电池的欧姆内阻变化率高于极化内阻变化率,低温下欧姆内阻的变化率大于高温下的变化率;同时,低温下的荷电状态—开路电压曲线低于高温下的曲线,但总体上,曲线受温度的影响并不显著。 关键词:磷酸铁锂电池温度容量内阻开路电压 中图分类号:U464 Temperature Characteristics of Power LiFePO4 Batteries LI Zhe HAN Xuebing LU Languang OUYANG Minggao (State Key Laboratory of Automotive Energy and Safety, Tsinghua University, Beijing 100084) Abstract:The characteristics of power LiFePO4 batteries are closely connected to ambient temperature. The capacity characteristic, resistance and state of charge-open circuit voltage (SOC-OCV) curve are important parameters to represent the performance of power batteries and to determine battery management system (BMS) design. The experiments in different ambient temperatures are carried out and the laws between temperature and capacity, resistance and OCV are studied. The capacity drops sharply under low temperature, and increases with a relatively slower rate than under low temperature when the temperature goes up. Ohmic and polarization resistances during charge and discharge process decrease when the temperature rises, and the change rate of ohmic resistance is higher than the polarization resistance, moreover, the change of ohmic resistance under low temperature is more significant than under high temperature. With the decrease of temperature, the SOC-OCV curve moves down, but generally, the curve is affected only slightly by the change of temperature. Key words:Power LiFePO4battery Ambient temperature Capacity Resistance Open circuit voltage(OCV) 0 前言 电池所处的温度受到许多因素的影响,如环境温度、电池本身的热力学参数以及电池组的装配和热管理方法等[1-5]。同时,电池的容量特性、内阻数值和开路电压曲线是反映电池基本性能的重要指标,也是参与电池管理系统设计的重要参数:电池容量大小的变化规律[6]影响电池的寿命管理和荷电状态估算。电池内阻的数值影响动力电池的功率特 * 台达电力电子科教发展计划重点资助项目(20093000329)。20100901收到初稿,20110320收到修改稿 性,如式(1)、(2)所示,同时也影响电池热管理系统 对电池产热量的分析,如式(3)所示。 动力电池最大电流与功率分别为 min max t U U I R ? = (1) max min max P U I = (2) 式中,I max为电池的最大放电电流,U为电池的开 路电压,U min为电池的放电截止电压,R t为电池在 放电过程中的总内阻,P max为电池的最大放电功率。 电池的产热情况与电流和电池内阻有关,如式 (3)所示

相关文档
相关文档 最新文档