文档库 最新最全的文档下载
当前位置:文档库 › 场地卓越周期论文

场地卓越周期论文

场地卓越周期论文
场地卓越周期论文

卓越周期,规范

卓越周期,规范 篇一:卓越周期与特征周期 结构自振周期是结构自由振动的周期; 结构基本周期是结构自振周期中最长(数值最大)的那个;场地卓越周期是场地自振周期中最容易被(地震)激励起的周期; 场地特征周期(设计特征周期)是设计地震反应谱曲线上平台段结束(最右端)的同期值. 产生了疑问:场地卓越周期和场地特征周期有关系吗? 知道一个不相干的,地震动的卓越周期:再振幅谱幅值最大的频率分量所对应的周期,在地震波通过覆盖土层传向地表的过程中,由于土层的过滤性与选择放大作用,地表地震动的卓越周期在很大程度上取决于场地的固有周期。 各条地震波的特征周期很难确定,规范反应谱上的特征周期是根据若干条平均后再进行削平处理而得到的拐点。 对地震波进行傅立叶变换,得到其傅立叶谱,观察其地震波峰值对应的周期,此周期便是地震波的特征周期。可以在ansys,sap等程序中轻松实现。 傅立叶谱幅值最大点对应的周期为地震动的卓越周期,不

是特征周期!特征周期是抗震规范中用到的概念,目的是确定规范谱的形状。它描述了结构所处的地震环境。实际上,规范谱不应看作真实的地震反应谱,这一点在其他帖子中已有论述。我个人的观点,规范是结构抗震理论应用方法的体现,如果研究抗震理论,似乎不应以抗震规范为准绳。因为规范是为使用者提供的标准,它必须为了工程的安全性和经济性做出一些折中,并不是完全意义上的理论或技术方法。 1、卓越周期是老早以前的提法,原意指的是引起建筑场地振动最显著的某条或某类地震波的一个谐波分量的周期,该周期与场地覆土厚度及土的剪切波速有关。对同一个场地而言,不同类型的地震波会得出不同的卓越周期,因此概念上存在矛盾。现在地震工程界已彻底摒弃这种提法; 2、场地与场地土是两个完全不同的概念,你所说的应是场地; 3、现在确定地震影响系数用的是场地特征周期。即首先根据场地覆土厚度及土的剪切波速确定建筑物的场地类别,并据此查表得场地特征周期,最后有设计地震分组和场地特征周期确定抗震设计所用的地震影响系数。 在结构布置时应使结构结构的第一自振周期避开场地的卓越周期, 以免场地、地基与结构形成共振或类共振” 卓越周期是通过地震波频率分析得到的所占能量最大的周

卓越周期与特征周期

结构自振周期是结构自由振动的周期; 结构基本周期是结构自振周期中最长(数值最大)的那个; 场地卓越周期是场地自振周期中最容易被(地震)激励起的周期; 场地特征周期(设计特征周期)是设计地震反应谱曲线上平台段结束(最右端)的同期值. 产生了疑问:场地卓越周期和场地特征周期有关系吗? 知道一个不相干的,地震动的卓越周期:再振幅谱幅值最大的频率分量所对应的周期,在地震波通过覆盖土层传向地表的过程中,由于土层的过滤性与选择放大作用,地表地震动的卓越周期在很大程度上取决于场地的固有周期。 各条地震波的特征周期很难确定,规范反应谱上的特征周期是根据若干条平均后再进行削平处理而得到的拐点。 对地震波进行傅立叶变换,得到其傅立叶谱,观察其地震波峰值对应的周期,此周期便是地震波的特征周期。可以在ansys,sap等程序中轻松实现。 傅立叶谱幅值最大点对应的周期为地震动的卓越周期,不是特征周期!特征周期是抗震规范中用到的概念,目的是确定规范谱的形状。它描述了结构所处的地震环境。实际上,规范谱不应看作真实的地震反应谱,这一点在其他帖子中已有论述。我个人的观点,规范是结构抗震理论应用方法的体现,如果研究抗震理论,似乎不应以抗震规范为准绳。因为规范是为使用者提供的标准,它必须为了工程的安全性和经济性做出一些折中,并不是完全意义上的理论或技术方法。 1、卓越周期是老早以前的提法,原意指的是引起建筑场地振动最显著的某条或某类地震波的一个谐波分量的周期,该周期与场地覆土厚度及土的剪切波速有关。对同一个场地而言,不同类型的地震波会得出不同的卓越周期,因此概念上存在矛盾。现在地震工程界已彻底摒弃这种提法; 2、场地与场地土是两个完全不同的概念,你所说的应是场地; 3、现在确定地震影响系数用的是场地特征周期。即首先根据场地覆土厚度及土的剪切波速确定建筑物的场地类别,并据此查表得场地特征周期,最后有设计地震分组和场地特征周期确定抗震设计所用的地震影响系数。 在结构布置时应使结构结构的第一自振周期避开场地的卓越周期, 以免场地、地基与结构形成共振或类共振” 卓越周期是通过地震波频率分析得到的所占能量最大的周期成分. 特征周期另外又考虑了近震远震的影响(老抗规),新抗震规范用设计地震分组来考虑震级和震中距的影响. 特征周期的概念早已有之,同样卓越周期的概念依然存在;二者数值上很相近,从抗震角度当然结构自振周期避开特征周期和卓越周期为好,从地震影响系数曲线也可清楚看到其中的关系. 关于卓越周期的说法,我是以前听一个教授说的,他的原话是:“大家以后不要再提场地卓越周期这个说法,这个概念本身有问题......" 而他本人是建筑抗震规范编写组的成员。 可以肯定的是,现在新的的抗震规范及有关的背景材料都不再用”卓越周期“的概念,而且近几年公开发表的有关地震工程的论文都不再提“卓越周期”。我个人认为,现在的“场地特征周期”或许与原来的“卓越周期”有某种概念上的联系,但它们在意义上可能已经完全不同了。

结构自振周期

场地土类别、结构自振周期、设计特征周期的概念解读常有众智平台朋友来询问场地土类别与地震力是什么关系,结构自振周期折减对结构的地震力有什么影响,设计特征周期是什么概念,土的卓越周期又是怎么回事,本文结合规范对这些内容进行了整理,对这几个概念的相关关系也做了一些论述,期望与大家一起交流学习,具体综述如下: 一、场地土类别 《建筑抗震设计规范》第4.1.6对场地土类别是这样划分的:建筑的 场地类别,应根据土层等效剪切波速和场地覆盖层厚度按表4.1.6划分为四类,其中Ⅰ类分为Ⅰ0、Ⅰ1两个亚类。当有可靠的剪切波速和覆盖层厚度且其值处于表4.1.6所列场地类别的分界线附近时,应允许按插值方法确定地震作用计算所用的特征周期。 《抗规》第4.1.4条、4.1.5条对场地覆盖层的厚度及图层的等效剪切波束分别作了规定。 相关概念:

场地--工程群体所在地,具有相似的反应谱特征。其范围相当于厂区、居民小区和自然村或不小于1.0km2的平面面积。 与震害的关系:土质愈软覆盖层厚度愈厚,建筑震害愈严重,反之愈轻,软弱土层对地震力具有放大作用。历次大地震的经验表明,同样或相近的建筑,建造于Ⅰ类场地时震害较轻,建造于Ⅲ、Ⅳ类场地震害较重。 规范采取的相应措施:《抗规》第4.1.1条将场地划分为对建筑抗震有利、一般、不利和危险的地段。具体设计时,结构设计师对不利地段,应提出避开要求;当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 另外《抗规》第3.3.2、4.1.8,、4.1.9对相关措施提出了严格要求,设计人员不应忽视。 二、结构自振周期 概念: 结构自振周期是结构按某一振型完成一次自由振动所需的时间,是结构本身固有的动力特性,只与自身质量及刚度有关,结构有几个振型就有几个自振周期,一一对应。 应用:

场地卓越周期的讨论与场地建筑的共振现象

文章编号 100426410(2005)0320047204 场地卓越周期的讨论与场地建筑的共振现象 刘俊杰1,王家全2 (11柳州市宏基工程建设监理有限责任公司,广西柳州 545001;21广西大学土木工程学院,广西南宁 530004) 摘 要:阐述了场地卓越周期测定方法和理论计算方法,并论述了卓越周期在抗震工程中的作用,结合工程实例,分析了场地卓越周期与场地建筑物共振现象的内在联系。 关 键 词:场地;卓越周期;共振 中图分类号:TU 4 文献标识码:A 收稿日期:2005206212 基金资助:广西自然科学基金资助项目、批准号:桂科自0447001,200422007资助。 作者简介:刘俊杰(19712),男,广西柳州人,柳州市宏基工程建设监理有限公司助理工程师。 表1 根据卓越周期划分场地类别场地卓越周期(Tg s )场地类别<011 011~014 014~018 >018 0 引言 场地卓越周期是当地震波在土层中传播时,经过不同性质的界面多次反射,将出现很多不同周期的地震波。若某一周期的地震波与地表土层固有周期相近时,由于共振作用,这一周期的地震波振幅即得到放大。此周期称为场地的卓越周期[1,5]。换言之,由于共振效应,地表土层对不同周期的地震波具有选择放大作用,即对那种接近地表土层固有周期的地震波的能量和振幅都得到放大,而使得地震记录上的这一周期的波显得非常“卓越”,此称卓越周期。其值一般为0105s ~2s 左右。地震灾害调查 结果表明:如果场地卓越周期与建筑物自振周期接近或一致,在发生地震 时,地基土与构筑物将产生共振作用,使振动幅值变大,导致建筑物的严 重损坏。我国正处于地震活动最频繁的时期,如果发生地震,将给国家和 人民财产带来巨大损失,因此,建筑抗震设计是地震区必须考虑的问题。 为了准确估计和防止此类灾害的发生,在进行建筑物抗震结构设计时应 尽量使拟建建筑物的自振周期避开场地的卓越周期。同时应用卓越周期 也可进行场地类别的划分。表1为《地震区工程选址手册》中规定在做抗 震设计时,可应用卓越周期判别场地类别[2]。1 场地卓越周期 卓越周期的计算方法一般有: 111 通过频谱分析确定地震动卓越周期 通常采用功谱率分析法。设时间域函数为X (t ),则将它变换到频率域的傅立叶积分为: X (Ξ)=1 2Π∫T 2-T 2 X (t )e -i Ξt d t 式中,Ξ为角频率,Ξ=2Πf ,f 为频率。具体做法是:将记录时间分成若干段,对各个时间段分别进行傅氏积分。功率谱P (Ξ)用X (Ξ)和它的公轭复数X (Ξ3)表示,则P (Ξ)=X (Ξ)?X (Ξ3),平均功率谱用各个时间段波形的功率谱P n (Ξ)算术平均值表示,即: P θ(Ξ)=∑N n =1P n (Ξ)N 第16卷 第3期 广西工学院学报 V o l 116 N o 13 2005年9月 JOU RNAL O F GUAN GX IUN I V ER S IT Y O F T ECHNOLO GY Sep t 12005

场地卓越周期和特征周期

场地卓越周期和特征周期是两个不同的概念 它们的区别在于: 1)研究途径不同.卓越周期是通过场地地震动记录的分析得到,而特征周期是通过场地地面运动反应谱的分析得到. 2)研究意义或用途不尽相同.除了可用于土层动力反应分析的研究外,场地卓越周期还可以防止特殊的地震效应发生,避免拟建建筑物自振周期与场地脉动卓越周期一致或接近,在地震发生时,地基与建筑物产生共振或类共振;对某一特定场址,特征周期可以根据实测强震记录计算,并综合场地安全性评价的结果确定该场址的设计特征周期用于抗震设计. 3)两者在取值上的差异.从取值大小上考虑,场地特征周期一般大于卓越周期;从取值特点上考虑,某一特定场地可以存在2个或多个地震动卓越周期[ ,而其特征周期只有1个,是反应谱的下降段的起始周期;此外,两者的取值不具有可比性,前者研究的是地面运动的频度较大的 周期,后者研究的是在场地运动各频率激励的综合作用下结构的反应中满足某一特征关系的周期,因此,卓越周期大的场地,并不意味着其特征周期~定大,反之,也并不意味着特征周期就小. 4)场地卓越周期更多的是场地地震动特性的客观反映,即它是地震动记录上客观的存在1个或多个特别卓越的周期;而特征周期更多的体现了人们的主观性,即在考虑我国经济发展和人们对地震灾害的可接受程度的基础上,对其规定相应的计算公式,并根据此公式在反应谱上确定特征周期,供抗震设计使用. 卓越周期是指随机振动过程中出现概率最多的周期,常用以描述地震动或场地特性。地震波在土层中传播,由于土层的过滤特性与选择放大作用(过滤与放大通过不同性质界面的多次反射来实现),周期与场地土固有周期接近的地震波得到增强(通过共振作用放大),此周期称为场地(地震动)卓越周期。 设计特征周期也可称为设计反应谱特征周期,是指地震影响系数曲线下降段起始点对应的周期值,与地震震级、震中距和场地类别等因素有关,规范通过设计地震分组和场地类别反映,场地越软,震级、震中距越大,值越大。 地震动卓越周期反映的是场地土动力特性,与场地覆土厚度、土层剪切波速及岩土阻抗比(土地震效应的三要素)有关,前两者影响频谱,后者影响幅值。一般来讲震级、震中距越大,高频分量被长距离传播路径所过滤,低频(长周期)分量越显著;软土地基上卓越周期显著,而硬土地基上则包含多种频率成分,卓越周期不显著(可以包含若干个)。 设计特征周期针对的是设计反应谱,因此数落一下设计反应谱的来历很有必要。为了迎合结构设计,将不同的地震动记录的反应谱曲线加以统计平均(均值反应谱),再利用数学上的平滑拟合,基于安全或经济因素的修正,便得到设计反应谱。设计反应谱并不针对某个特定地震波,而是据大量地震动的综合认识预估结构地震作用的一种规定。即设计反应谱不是真正的反应谱,是经验物理领域的概念,设计特征周期的物理意义不很明确。从反应谱的分段区间来看,设计特征周期可以认为是速度与位移控制段的分界周期。

场地卓越周期

精品文档场地卓越周期,结构自振周期,基本振型,高阶振型基本概念 自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构固有的特性。 基本周期T1:结构按基本振型完成一次自由振动所需的时间。通常需要考虑两个主轴方向的和扭转方向的基本周期。 设计特征周期T g:抗震设计用的地震影响系数曲线的下降阶段起始点所对应的周期值,与地震震级、震中距和场地类别等因素有关。 场地卓越周期T s:根据场地覆盖层厚度H和土层平均剪切波速V s计算的周期,表示场地土最主要的振动特征。场地卓越周期只反映场地的固有特征,不等同于设计特征周期。 场地脉动周期T m:应用微震仪对场地的脉动、又称为”常时微动”进行观测所得到的振动周期。场地脉动周期反映了微震动情况下场地的动力特征,与强地震作用下场地的动力特性既有关系又有区别。 场地卓越周期:地震波在某场地土中传播时,由于不同性质界面多次反射的结果,某一周期的地震波强度得到增强,而其余周期的地震波则被削弱。这一被加强的地震波的周期称为该场地土的卓越周期。 结构自振周期:自振周期是结构的动力特性之一。单质点体系在谐波的作用下,都会按一定形状作同频率同相位的简谐运动,其相应的周期就称为自振周期。当建筑物的自振周期与场地土卓越周期接近时,其地震反应就大,反之则小。 设计特征周期Tg:抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值,应根据其所在地的设计地震分组和场地类别确定。当结构的自振周期超过设计特征周期时,地震作用就会随其自振周期的增大而减小。当结构的自振周期小于0.1s时,地震作用会随其自振周期的增大而急剧增大。实际的建筑结构的自振周期大都会大于设计特征周期,但一般不大于6.0s。 基本振型:单质点体系在谐波的作用下的振型称为基本振型。任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。 高阶振型:相对于低阶振型而言。一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。现在有些结构计算软件可以“帮”你判断,比如,在2001年后的SATWE中增加了参数Cmass-x、Cmass-y,就是用来判断取多少个振型数合适的。 .

时程分析法

时程分析法 定义:由结构基本运动方程沿时间历程进行积分求解结构振动响应的方法。 概述:时程分析法是世纪60年代逐步发展起来的抗震分析方法。用以进行超高层建筑的抗震分析和工程抗震研究等。至80年代,已成为多数国家抗震设计规范或规程的分析方法之一。 原理:时程分析法在数学上称步步积分法,抗震设计中也称为“动态设计”。由结构基本运动方程输入地面加速度记录进行积分求解,以求得整个时间历程的地震反应的方法。此法输入与结构所在场地相应的地震波作为地震作用,由初始状态开始, 一步一步地逐步积分,直至地震作用终了。 是对工程的基本运动方程,输入对应于工程场地的若干条地震加速度记录或人工加速度时程曲线,通过积分运算求得在地面加速度随时间变化期间结构的内力和变形状态随时间变化的全过程,并以此进行结构构件的界面抗震承载力验算和变形验算。 时程分析法是世纪60年代逐步发展起来的抗震分析方法。用以进行超高层建筑的抗震分析和工程抗震研究等。至80年代,已成为多数国家抗震设计规范或规程的分析方法之一。 “时程分析法”是由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程内结构地震作用效应的一种结构动力计算方法,也为国际通用的动力分析方法。 “时程分析法”常作为计算高层或超高层的一种(补充计算)方法,也就是说满足了规范要求的时候是可以不用它计算结构的。规范规定:对于特别不规则的建筑、甲类建筑及超过一定高度的高层建筑,宜采用时程分析法进行补充计算。所以有较多设计人员对应用时程分析法进行抗震设计感到生疏。近年来,随着高层建筑和复杂结构的发展,时程分析在工程中的应用也越来越广泛了。 地震动输入对结构的地震反应影响非常大。目前的现状是,输入地震动的选择大多选择为数不多的几条典型记录(如:1940年的El Centro(NS)记录或1952年的Taft记录),国内外进行结构时程分析时所经常采用的几条实际强震记录主要有适用于I类场地的滦河波、适用于II、III类场地的El-Centrol波(1940,N-S)和Taft波(1952,E-w)、适用于IV 类场地的宁河波等。

场地卓越周期

1.卓越周期的定义 地震发生时,由震源发出的地震波传至地表岩土体,迫使其振动,由于表层岩土体对不同周期的地震波有选择放大作用,某种岩土体总是以某种周期的波选择放大得尤为明显而突出,使地震记录图上的这种波记录得多而好。这种周期即为该岩土体的特征周期,也叫做卓越周期。由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。 2. 几种周期及相关概念 自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。 基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。 基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。 高阶振型:相对于低阶振型而言。一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。 特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。 在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。 图地震影响系数曲线

场地卓越周期

场地卓越周期 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

场地卓越周期,结构自振周期,基本振型,高阶振型基本概念 自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构固有的特性。 基本周期T 1 :结构按基本振型完成一次自由振动所需的时间。通常需要考虑两个主轴方向的和扭转方向的基本周期。 设计特征周期T g :抗震设计用的地震影响系数曲线的下降阶段起始点所对应的周期值,与地震震级、震中距和场地类别等因素有关。 场地卓越周期T s :根据场地覆盖层厚度H和土层平均剪切波速V s 计算的周期,表示场地土 最主要的振动特征。场地卓越周期只反映场地的固有特征,不等同于设计特征周期。 场地脉动周期T m :应用微震仪对场地的脉动、又称为”常时微动”进行观测所得到的振动周期。场地脉动周期反映了微震动情况下场地的动力特征,与强地震作用下场地的动力特性既有关系又有区别。 场地卓越周期:地震波在某场地土中传播时,由于不同性质界面多次反射的结果,某一周期的地震波强度得到增强,而其余周期的地震波则被削弱。这一被加强的地震波的周期称为该场地土的卓越周期。 结构自振周期:自振周期是结构的动力特性之一。单质点体系在谐波的作用下,都会按一定形状作同频率同相位的简谐运动,其相应的周期就称为自振周期。当建筑物的自振周期与场地土卓越周期接近时,其地震反应就大,反之则小。 设计特征周期Tg:抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值,应根据其所在地的设计地震分组和场地类别确定。

当结构的自振周期超过设计特征周期时,地震作用就会随其自振周期的增大而减小。当结构的自振周期小于0.1s时,地震作用会随其自振周期的增大而急剧增大。实际的建筑结构的自振周期大都会大于设计特征周期,但一般不大于6.0s。 基本振型:单质点体系在谐波的作用下的振型称为基本振型。任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。 高阶振型:相对于低阶振型而言。一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。现在有些结构计算软件可以“帮”你判断,比如,在2001年后的SATWE中增加了参数Cmass-x、Cmass-y,就是用来判断取多少个振型数合适的。

场地卓越周期

场地卓越周期,结构自振周期,基本振型,高阶振型基本概念 自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构固有的特性。 基本周期T1:结构按基本振型完成一次自由振动所需的时间。通常需要考虑两个主轴方向的和扭转方向的基本周期。 设计特征周期T g:抗震设计用的地震影响系数曲线的下降阶段起始点所对应的周期值,与地震震级、震中距和场地类别等因素有关。 场地卓越周期T s:根据场地覆盖层厚度H和土层平均剪切波速V s计算的周期,表示场地土最主要的振动特征。场地卓越周期只反映场地的固有特征,不等同于设计特征周期。 场地脉动周期T m:应用微震仪对场地的脉动、又称为”常时微动”进行观测所得到的振动周期。场地脉动周期反映了微震动情况下场地的动力特征,与强地震作用下场地的动力特性既有关系又有区别。 场地卓越周期:地震波在某场地土中传播时,由于不同性质界面多次反射的结果,某一周期的地震波强度得到增强,而其余周期的地震波则被削弱。这一被加强的地震波的周期称为该场地土的卓越周期。 结构自振周期:自振周期是结构的动力特性之一。单质点体系在谐波的作用下,都会按一定形状作同频率同相位的简谐运动,其相应的周期就称为自振周期。当建筑物的自振周期与场地土卓越周期接近时,其地震反应就大,反之则小。 设计特征周期Tg:抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值,应根据其所在地的设计地震分组和场地类别确定。当结构的自振周期超过设计特征周期时,地震作用就会随其自振周期的增大而减小。当结构的自振周期小于时,地震作用会随其自振周期的增大而急剧增大。实际的建筑结构的自振周期大都会大于设计特征周期,但一般不大于。 基本振型:单质点体系在谐波的作用下的振型称为基本振型。任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。 高阶振型:相对于低阶振型而言。一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。现在有些结构计算软件可以“帮”你判断,比如,在2001年后的SATWE中增加了参数Cmass-x、Cmass-y,就是用来判断取多少个振型数合适的。

时程分析法介绍

时程分析法 时程分析法又称直接动力法,在数学上又称步步积分法。顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。 当用此法进行计算时,系将地震波作为输入。一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。 时程分析法的主要功能有: 1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。 2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。 3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。 总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。 时程分析法有关的几个问题: 1、恢复力特性曲线; 恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。 2、结构计算模型及分析方法; 3、地震波的选用; 4、时程分析计算结果的处理。 时程分析要依靠计算机及软件,作为一般的工程设计人员,只需要了解1、2两个问题的内容,为软件的选用及前期数据准备做基础。问题3、4的内容,特别是问题3的内容,设设计人员能够把握的,也是能否得到良好分析结果的重要因素。 目前结构动力时程分析模型主要有三种:三维空间模型、二维平面模型和层模型。 从理论上讲,三维空间模型最接近结构的实际情况,是较理想的分析模型,计算精度也高,但由于这种模型计算工作量巨大,在目前的微机硬件资源条件下,大型结构设计中很少采用。二维平面模型和层模型对结构作了较多的简化处理,二维平面模型是将结构离散成一系列相互独立的“榀”,这种模型适用于刚度分布均匀、几何布置规则的结构。仅就独立的一榀而言,二维平面模型的弹塑性动力反应分析理论研究比较成熟,计算工作量有限,效率和精度都比较高,但由于建筑造型的多样化,结构不规则布置是经常的,将二维平面模型应用于不规则

剪切波卓越周期报告

检测报告 科测(2003)报告()号 深圳市住宅开发租赁中心住宅楼工程土层剪切波速度和卓越周期测试 及场地类别评定报告 委托单位:深圳市勘察研究院勘察公司 检测类别:土层剪切波速、卓越周期检测 检测单位: 报告发送日期: 2002 年 6月21日

工程负责人: 测试人员: 报告编写: 审核: 技术负责人(总工):邮编: 地址: 电话:

深圳市住宅开发租赁中心住宅楼工程 土层剪切波速度和卓越周期测试 及场地类别评定报告 一.前言 深圳市位于全国烈度区划图七度区内,是我国的重点抗震设防城市,按照国家抗震规范有关规定,各类工程建设都应考虑抗震设防和地震安全性评价及场地类别评价工作。 为此,受深圳市勘察研究院勘察公司的委托,我单位对深圳市住宅开发租赁中心住宅楼建设工程场地进行了土层剪切波速和卓越周期测试及地震场地类别评定工作。现场对6号和14号孔进行了测试,经室内资料整理和计算分析提交本测定报告。本次检测按以下规范进行。 土层剪切波速检测按〈〈建筑抗震设计规范〉〉GB50011—2001执行。 卓越周期检测按〈〈建筑抗震设计规范〉〉GB50011—2001执行。 二.检测原理及仪器 (一)土层剪切波速检测简介 测试方法采用单孔法,利用已经钻好的钻孔,将起振板置于井口1~3米处,并使其中点与井口的连线垂直于起振板,同时在其上加压整体性较好的重物(1吨以上),然后锤击起振板产生剪切波,并通过置于井内的三分量拾振妻将土的振动历程输入仪器,经电脑分析,获得各测点剪切波到时,经计算可得到各土层的剪切波速。图一为其测试方框图。 现场数据采集使用的仪器是中科院武汉岩土力学研究所智能仪器室生产的RSM —24FD浮点工程动测仪,采集的数据是由井中的三分量传感器,通过仪器记录三道

结构设计中的几种周期

自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,仅与结构的质量m、刚度系数k有关。 基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。 基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。 高阶振型:相对于低阶振型而言。一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。 特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。 在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。 场地卓越周期Ts:地震波在某场地土中传播时,由于不同性质界面多次反射的结果,某一周期的地震波强度得到增强,而其余周期的地震波则被削弱。这一被加强的地震波的周期称为该场地土的卓越周期。场地卓越周期只反映场地的固有特征,不等同于设计特征周期。其由场地的覆盖土层厚度和土层剪切波速计算求的。 场地脉动周期Tm:应用微震对场地的脉动、又称为“常时微动”进行观测所得到的振动周期。测试应在环境十分安静的情况下进行,场地的震动类似人体的脉搏,所以称为“脉动”。场地脉动周期反映了微震动情况下场地的动力特征,与强地震作用下场地的动力特性既有关联,又不完全相同。

自振周期与特征周期

自振周期与特征周期 默认分类2010-01-24 20:59:28 阅读848 评论1 字号:大中小订阅 自振周期:是结构本身的动力特性。与结构的高度H,宽度B有关。当自振周期与地震作用的周期接近时,共振发生,对建筑造成很大影响,加大震害。 特征周期:是建筑场地自身的周期,抗震规范中是通过地震分组和地震烈度查表确定的。 结构的自振周期顾名思义是反映结构的动力特性,与结构的质量及刚度有关,具体对单自由度就只有一个周期,而对于多自由度就有同模型中采用的自由度相同的周期个数,周期最大的为基本周期,设计用的主要参考数据! 而特征周期是,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别,所以我认为特征周期同时反映了地震动及场地的特性!它在确定地震影响曲线时用到! 1.特征周期:是建筑物场地的地震动参数——由场地的地质条件决定; 2.自振周期有结构子身的结构特点决定——用结构力学方法求解;(主要指第一振型的主振周期) 3.结构的自振周期主要是避免与场地的卓越周期重合产生共振; 4.卓越周期与特征周期有关;卓越周期由场地的覆盖土层厚度和土层剪切波速计算求解(见工程地质手册)。 设计特征周期:抗震设计用的地震影响系数曲线中,反映地震等级,震中距和场地类别等因素的下降段起始点对应的周期值.-----根据其所在地的设计地震分组和场地类别确定.详见抗震规范. 自振周期:是结构本身的动力特性.与结构的H,B有关.当自振周期与地震作用的1/f接近时,共振发生,对建筑造成很大影响. 另外: 目前就场地的有关周期,经常出现场地脉动(卓越)周期,地震动卓越周期和反应谱特征周期等名词。就以上3个周期概念来说,其确切的含义是清楚的,场地脉动周期是在微小震动下场地出现的周期,也可以说是微震时的卓越周期;地震动卓越周期是在受到地震作用下场地出现的周期,一般情况下它大于脉动周期(一般1.2~2.0)。场地卓越周期反应场地特征,地震动卓越周期不但反应场地特征,而且反应地震特征(如近、远震则明显不同)。由此可见二者震动干扰源有区别,另外反映的特征也是不同的。反应谱特征周期一般是指规范反应谱平台段与下降衰减段的拐点周期,它表示规范反应谱值随周期变化的突变特征,是平均意义上的参数,它综合反映场地和地震环境的影响。三者之间有一定关系,但概念不一样,在工程上不能等同。 --------------

结构周期

1. 结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系: 自振周期是结构按某一振型完成一次自由振动所需的时间;基本周期是指结构按基本振型完成一次自由振动所需的时间;设计特征周期是在抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值;场地卓越周期是根据覆盖层厚度H和土层剪切波速VS按公式T0=4H/VS计算的周期,表示场地土最主要的振动特性。 结构在地震作用下的反应与建筑物的动力特性密切相关,建筑物的自振周期是主要的动力特征,与结构的质量和刚度相关。经验表明,当建筑物的自振周期与场地的卓越周期相等或接近时,建 筑物的震害较为严重。 2.经验公式 一般情况下,高层钢筋混凝土结构的基本自振周期T1为 T1=(0.05~1.10)n(4.3-27) 其中:钢筋混凝土框架结构:T1=(0.06~0.09)n(4.3-28) 框架-剪力墙结构:T1=(0.06~0.08)n(4.3-29) 高层钢结构的基本自振周期T1为 T1=(0.10~0.15)n(4.3-30) 式中:n——建筑层数。 结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系: 结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系: 自振周期是结构按某一振型完成一次自由振动所需的时间;基本周期是指结构按基本振型完成一次自由振动所需的时间;设计特征周期是在抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值;场地卓越周期是根据覆盖层厚度H和土层剪切波速VS按公式 T0=4H/VS计算的周期,表示场地土最主要的振动特性。 结构在地震作用下的反应与建筑物的动力特性密切相关,建筑物的自振周期是主要的动力特征,与结构的质量和刚度相关。经验表明,当建筑物的自振周期与场地的卓越周期相等或接近时,建筑物的震害较为严重。 用顶点位移法求自振周期: T=1.7*周期折减系数*(层间侧移开方) 折减系数: 框架结构取0.6~0.7 框剪结构取0.7~0.8 抗剪墙取1.0 按照行业标准《工程抗震术语标准》(JGJ/97)的有关条文, 自振周期:结构按某一振型完成一次自由振动所需的时间。 基本周期:结构按基本振型(第一振型)完成一次自由振动所需的时间。

简述时程分析法

[转]时程分析法 来源:潘宇翔的日志 时程分析法又称直接动力法,在数学上又称步步积分法。顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。 当用此法进行计算时,系将地震波作为输入。一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。 时程分析法的主要功能有: 1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。 2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。 3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。 总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。 时程分析法有关的几个问题: 1、恢复力特性曲线; 恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。 2、结构计算模型及分析方法; 3、地震波的选用; 4、时程分析计算结果的处理。 时程分析要依靠计算机及软件,作为一般的工程设计人员,只需要了解1、2两个问题的内容,为软件的选用及前期数据准备做基础。问题3、4的内容,特别是问题3的内容,设设计人员能够把握的,也是能否得到良好分析结果的重要因素。 目前结构动力时程分析模型主要有三种:三维空间模型、二维平面模型和层模型。 从理论上讲,三维空间模型最接近结构的实际情况,是较理想的分析模型,计算精度也高,但由于这种模型计算工作量巨大,在目前的微机硬件资源条件下,大型结构设计中很少采用。二维平面模型和层模型对结构作了较多的简化处理,二维平面模型是将结构离散成一系列相互独立的“榀”,这种模型适用于刚度分布均匀、几何布置规则的结构。仅就独立的一榀而

关于周期和振型

1结构自振周期、基本周期、场地卓越周期以及场地特征周期 答:1】结构自振周期是结构按某一振型完成一次自由振动所需要的时间。 2】结构基本周期是结构按基本振型(第一振型)完成一次自由振动所需要的时间。(是结构自振周期中最长(数值最大)的那个。) 3】场地卓越周期是根据覆盖层厚度H和土层剪切波速Vs按公式To=4H/Vs计算的周期,表示场地土最主要的震动特性。从一般的概念设计上说,由于从震源(地心)传来的地震波是由许多频率不同的分量组成的,当由基岩传来的大小和周期不同的波群进入表土层时,土层会使得一些和其固有周期相一致的波群放大并通过,而另一些和其固有周期不一致的另一些频率的波群缩小或滤掉,这样,经过不同性质界面(土层)多次反射,使得某一周期的地震波强度得到增强,而其余周期的地震波则被削弱。这一被加强的地震波的周期称为该场地土的卓越周期。从以上我们可以看出,若建筑物的自振周期与场地上的卓越周期相等或相近时,建筑物会发生类似共振的现象,震害会加剧。就一般而言,在岩石等坚硬地基中,其卓越周期较短,在软土或冲积土很厚的地基中,其卓越周期较长,所以,在结构设计中,必须注意合理的调整上部结构的刚度,使其基本周期避开卓越周期。结构在地震作用下的反应与建筑物的动力特性密切相关,建筑物的自振周期是主要的动力特征,与结构的质量和刚度相关。国外的震害经验表明,当建筑物的自振周期与场地卓越周期相等或接近时,建筑物的震害较严重。 4】场地特征周期(即设计特征周期)是反映了设计地震分组(地震震级、震中距)和场地类别等因素。在抗震设计所用的地震影响系数曲线中,下降段起始点对应的周期值。 2.什么叫耦联? 答:我理解的耦联就是在X方向的水平力对Y方向产生影响。如果建筑物的形体规则,耦联作用不明显,但如果建筑物的形体不规则时,耦联会对结构产生较大影响,例如扭转。 3有关振型的概念 答:振型可顾名思义为结构构件震动的外型曲线。结构的振型与其自由度数量一致。 一个结构的反应,是其各个振型反应的组合,但各振型的参与系数(即贡献)是不同的,一般来说,低振型的贡献大,高振型贡献小。简单来理解,低振型的周期长,即对于同样质量的情况而言,周期长就相当于刚度小,刚度小自然最容易发生变形。这是从“静”的角度来简单分析。实际上,地震激励是具有丰富频谱特性的,结构的振型贡献就必然受到地震波的频谱特性的影响。简单讲,各振型均会有因“共振”而使振型反应加大的可能。但一般情况下,高振型的反应放大仍然比不上低振型的反应。情况实际上较复杂,因为沿建筑物不同高度处、不同的反应量(位移、速度或加速度),对不同振型的敏感程度是不同的。5关于主振型和基本振型的概念 答:每一自振频率(周期)对应的振型都称为主振型;结构的第一自振频率(周期),又称为基本频率(周期),其对应的振型为基本振型。根据地震影响系数曲线,在结构自振周期大于Tg的情况下,周期越小地震影响系数越大,地震力越大。因为基本振型对应的基本周期是结构自振周期中最长(数值最大)的那个,所以说基本振型地震作用力最小。

振动的各种周期

卓越周期 目录 定义 卓越周期分级 几种周期及相关概念 场地卓越周期、特征周期对建筑物的影响 定义 predominant period 地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。若某一周期的 地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得 到放大,此周期称为卓越周期。由多层土组成的厚度很大的沉积层,当深部 传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。卓越周期的实质是波的共振,即当地震波的振动周 期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。巨厚 冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主 要原因就是共振。 卓越周期分级 卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越 周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。三级为松软土层,卓越周期在二级和四级之间。四级——为异常松软的土层,卓越周期为 0.3-0.7s,平均为0.5s. 几种周期及相关概念 自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本 身的动力特性,仅与结构的质量m、刚度系数k有关。 基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。 基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震 波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。而对建筑结构而言, 有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。 高阶振型:相对于低阶振型而言。一般来说,低阶振型对结构振动的影 响要大于高阶振型的影响。对一般较规则的建筑物,选择的振型个数可以取 其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时, 根据计算结果可以只取前几个振型(即低阶振型)进行叠加。 特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震 源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场 地的特性;如软弱土层的厚度,类型等场地类别等。 在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。Tg越大,地

相关文档