文档库 最新最全的文档下载
当前位置:文档库 › 欧拉方程与纳维-斯托克斯方程

欧拉方程与纳维-斯托克斯方程

欧拉方程与纳维-斯托克斯方程
欧拉方程与纳维-斯托克斯方程

欧拉方程与纳维-斯托克斯方程

一发展历史

以克劳德-路易·纳维(Claude-Louis Navier)和乔治·加布里埃尔·斯托克斯命名,是一组描述象液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率(加速度)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及重力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。他们是最有用的一组方程之一,因为它们描述了大量对学术和经济有用的现象的物理过程。它们可以用于模拟天气、洋流、管道中的水流、星系中恒星的运动、翼型周围的气流;它们也可以用于飞行器和车辆的设计、血液循环的研究、电站的设计、污染效应的分析等等。

纳维-斯托克斯方程依赖微分方程来描述流体的运动。这些方程,和代数方程不同,不寻求建立所研究的变量(譬如速度和压力)的关系,而是建立这些量的变化率或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。这样,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明加速度(速度的导数,或者说变化率)是和内部压力的导数成正比的。这表示对于给定的物理问题的纳维-斯托克斯方程的解必须用微积分的帮助才能取得。

实际上,只有最简单的情况才能用上述方法解答,而它们的确切答案是已知的。这些情况通常涉及稳定态(流场不随时间变化)的非湍流,其中流体的粘滞系数很大或者其速度很小(小的雷诺数)。对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维-斯托克斯方程的解必须借助计算机。这本身是一个科学领域,称为计算流体力学。

虽然湍流是日常经验中就可以遇到的,但这类问题极难求解。一个$1,000,000的大奖由克雷数学学院于2000年5月设立,奖给对于能够帮助理解这一现象的数学理论作出实质性进展的任何人。

二表达式

1纳维-斯托克斯方程

???? ????+??+????+???? ????+??+??+??-=z u y u x u x z u y u x

u x p

X D Du z y x x x x x μμρθρ31222222 ????

????+??+????+???

? ????+??+??+??-=z u y u x u y z u y u x u y p

Y D Du z y x y y y y

μμρθρ31222222 ???? ????+??+????+???

? ?

???+??+??+??-=z u y u x u y z u y u x u z p Z D Du z y x y y y z μμρθρ31222222 2欧拉方程

欧拉方程就是纳维-斯托克斯方程的0=μ时的特殊形式。

)61(a x

p

X D Du x -??-=ρθρ

)61(b y

p

Y D Du y -??-

=ρθ

ρ

)61(c z

p

Z D Du z -??-=ρθρ

三 推倒、证明

由应力表示的黏性流体的运动方程

剪应力

法向应力

)31(322)31(322)

31(322c z u y u x u z u p b z u y u x u y u p a z u y u x u x u p z y x

z zz

z y x

y yy z y x

x xx -???

? ????+??+??-??+-=-???

? ????+??+??-??+-=-???? ????+??+??-??+-=μμτμμτμμτ 牛顿粘性运动方程

)41(a z

y x X D Du zx

yx xx x -??+??+??+=τττρθρ

)41(b z

y

x

Y D Du zy yy xy y -??+

??+

??+

=τττρθ

ρ

)41(c z

y x X D Du zz yz xz x -??+??+??+=τττρθρ

将剪应力和法向应力代入牛顿粘性运动方程得纳维-斯托克斯方程

x 分量

)51(31222222a z u y u x u x z u y u x u x p

X D Du z y x x x x x -???? ????+??+????+???? ????+??+??+??-=μμρθρ y 分量

)51(31222222b z u y u x u y z u y u x u y p

Y D Du z y x y y y y

-????

????+??+????+???

? ????+??+??+??-=μμρθρ z 分量

)51(31222222c z u y u x u y z u y u x u z p

Z D Du z y x y y y z -????

????+??+????+???

? ?

???+??+??+??-=μμρθρ 以上即是纳维-斯托克斯方程。 欧拉方程

欧拉方程就是纳维-斯托克斯方程的0=μ时的特殊形式。

x 分量

)61(a x

p

X D Du x -??-=ρθρ

y 分量

)61(b y

p

Y D Du y -??-

=ρθ

ρ

z 分量

)61(c z

p

Z D Du z -??-=ρθρ

以上即是欧拉方程。

欧拉方程的求解教材

欧拉方程的求解 1.引言 在数学研究领域,我们经常会看到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕.但是,迄今为止,哪位数学家的名字出现得最多呢?他就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉(Leonhard Euler,1707--1783). 几乎在每一个数学领域都可以看到他的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数” 欧拉还是许多数学符号的发明者,例如用π表示 圆周率、e 表示自然对数的底、()f x 表示函数、∑表示求和、i 表示虚数单位 以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”. 在文献[1]中,关于欧拉方程的求解通常采用的是变量变换的方法.变量变换法就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如K y x =的解,进而求得欧拉方程的解. 但有些欧拉方程在用变量变换法求解时比较困难.本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理.最后在每类欧拉方程后面给出了典型的例题加以说明. 2.几类欧拉方程的求解 定义1 形状为 ()1(1)110n n n n n n y a x y a xy a y x ---'++++= (1) 的方程称为欧拉方程. (其中1a ,2a , ,1n a -,n a 为常数)

2.1二阶齐次欧拉方程的求解(求形如K y x =的解) 二阶齐次欧拉方程: 2120x y a xy a y '''++=. (2) (其中1a ,2a 为已知常数) 我们注意到,方程(2)的左边y ''、y '和y 的系数都是幂函数(分别是2x 、1a x 和02a x ) ,且其次依次降低一次.所以根据幂函数求导的性质,我们用幂函数K y x =来尝试,看能否选取适当的常数K ,使得K y x =满足方程(2). 对K y x =求一、二阶导数,并带入方程(2),得 212()0K K K K K x a Kx a x -++= 或 212[(1)]0K K a K a x +-+=, 消去K x ,有 212(1)0K a K a +-+=. (3) 定义2 以K 为未知数的一元二次方程(3)称为二阶齐次欧拉方程(2)的特征方程. 由此可见,只要常数K 满足特征方程(3),则幂函数K y x =就是方程(2)的解. 于是,对于方程(2)的通解,我们有如下结论: 定理1 方程(2)的通解为 (i) 1112ln K K y c x c x x =+, (12K K =是方程(3)的相等的实根) (ii)1212K K x c x y c +=, (12K K ≠是方程(3)的不等的实根) (iii)12cos(ln )sin(ln )x x c x x y c ααββ+=.(1,2K i αβ=±是方程(3)的一对共轭复根) (其中1c 、2c 为任意常数)

初值问题

《计算机数学基础(2)》辅导六 第14章常微分方程的数值解法 一、重点内容 1.欧拉公式: (k=0,1,2,…,n-1) 局部截断误差是O(h2)。 2. 改进欧拉公式: 或表示成: 平均形式: 局部截断误差是O(h3)。 3. 四阶龙格――库塔法公式: 其中κ1=f(x k,y k);κ2=f(x k+ 0.5h,y k+ 0.5 hκ1);κ3=f(x k+ 0.5 h,y k+ 0.5 hκ2); κ4=f(x k+h,y k+hκ3) 局部截断误差是O(h5)。

二、实例 例1用欧拉法解初值问题 取步长h=0.2。计算过程保留4位小数。 解h=0.2,f(x,y)=-y-xy2。首先建立欧拉迭代格式 =0.2y k(4-x k y k) (k=0,1,2) 当k=0,x1=0.2时,已知x0=0,y0=1,有 y(0.2)≈y1=0.2×1(4-0×1)=0.8 当k=1,x2=0.4时,已知x1=0.2,y1=0.8,有 y(0.4)≈y2=0.2×0.8×(4-0.2×0.8)=0.6144 当k=2,x3=0.6时,已知x2=0.4,y2=0.6144,有 y(0.6)≈y3=0.2×0.6144×(4-0.4×0.6144)=0.4613 例2 用欧拉预报-校正公式求解初值问题 取步长h=0.2,计算y(1.2),y(1.4)的近似值,小数点后至少保留5位。 解步长h=0.2,此时f(x,y)=-y-y2sin x 欧拉预报-校正公式为: 有迭代格式:

当k=0,x0=1,y0=1时,x1=1.2,有 =y0(0.8-0.2y0sin x0)=1×(0.8-0.2×1sin1)=0.63171 y(1.2)≈y1 =1×(0.9-0.1×1×sin1)-0.1(0.63171+0.631712sin1.2)=0.71549 当k=1,x1=1.2,y1=0.71549时,x2=1.4,有 =y1(0.8-0.2y1sin x1)=0.71549×(0.8-0.2×0.71549sin1.2) =0.47697 y(1.4)≈y2 =0.71549×(0.9-0.1×0.71549×sin1.2) -0.1(0.47697+0.476972sin1.4) =0.52611 例3写出用四阶龙格――库塔法求解初值问题 的计算公式,取步长h=0.2计算y(0.4)的近似值。至少保留四位小数。 解此处f(x,y)=8-3y,四阶龙格――库塔法公式为 其中κ1=f(x k,y k);κ2=f(x k+ 0.5h,y k+ 0.5 hκ1);κ3=f(x k+ 0.5 h,y k+ 0.5 hκ2);

对于欧拉方程的理解

关于欧拉方程的理解 1755年,瑞士数学家L.欧拉在《流体运动的一般原理》一书中首先提出这个方程。 形如:)(1)1(11)(x f y x p y x p y x n n n n n ='+++--- (1) 的方程称为欧拉方程, 其中n p p p ,,,21 为常数。 欧拉方程的特点是: 方程中各项未知函数导数的阶数与其乘积因子自变量的幂次相同。 现阶段欧拉方程的应用领域很广,现只结合流体力学来探讨我对于欧拉方程的理解。 欧拉方程提出采用了连续介质的概念,把静力学中压力的概念推广到了运动流体中。 流体静力学着重研究流体在外力作用下处于平衡状态的规律及其在工程实际中的应用。 这里所指的静止包括绝对静止和相对静止两种。以地球作为惯性参考坐标系,当流体相对于惯性坐标系静止时,称流体处于绝对静止状态;当流体相对于非惯性参考坐标系静止时,称流体处于相对静止状态。 流体处于静止或相对静止状态,两者都表现不出黏性作用,即切向应力都等于零。所以,流体静力学中所得的结论,无论对实际流体还是理想流体都是适用的。 流体静压强的特性 1静压强的方向—沿作用面的内法线方向 2任一点的流体静压强的大小与作用面的方向无关,只与该点的位置有关

由上图可以推到出流体平衡微分方程式,即欧拉平衡方程 x y z p f x p f y p f z ρρρ??=?????=?????=??? 当流体处于平衡状态时,单位体积质量力在某一轴向上的分力,与压强沿该轴的递增率相平衡。 这里的fx 、fy 、fz 是流体质量力在x 、y 、z 轴上的投影,且质量力中包含以下两项:重力和惯性力。在这里如果假定fx 、fy 、fz 仅仅是重力在三个坐标轴上的投影,那么惯性力在x 、y 、z 轴上的投影分别为:-du/dt ,-dv/dt 和-dw/dt 。于是,上式便可写成 d d d d d d x y z u p f t x v p f t y w p f t z ρρρ????-= ???? ??????-=? ??? ??????-=? ??? ?? 上式整理后可得:

常微分方程作业欧拉法与改进欧拉法

P77 31.利用改进欧拉方法计算下列初值问题,并画出近似解的草图:dy + =t = t y y ≤ ≤ ,2 ;5.0 0,3 )0( )1(= ,1 ? dt 代码: %改进欧拉法 function Euler(t0,y0,inv,h) n=round(inv(2)-inv(1))/h; t(1)=t0; y(1)=y0; for i=1:n y1(i+1)=y(i)+h*fun(t(i),y(i)); t(i+1)=t(i)+h; y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1))) end plot(t,y,'*r') function y=fun(t,y); y=y+1; 调用:Euler(0,3,[0,2],0.5) 得到解析解:hold on; y=dsolve('Dy=y+1','(y(0)=3)','t'); ezplot(y,[0,2]) 图像:

dy y =t - t y ;2.0 t = ≤ )0( 0,5.0 ,4 )2(2= ≤ ? ,2 dt 代码: function Euler1(t0,y0,inv,h) n=round(inv(2)-inv(1))/h; t(1)=t0; y(1)=y0; for i=1:n y1(i+1)=y(i)+h*fun(t(i),y(i)); t(i+1)=t(i)+h; y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1))) end plot(t,y,'*r') function y=fun(t,y); y=y^2-4*t; 调用: Euler1(0,0.5,[0,2],0.2) 图像:

欧拉及改进的欧拉法求解常微分方程

生物信息技术0801 徐聪U200812594 #include #include void f1(double *y,double *x,double *yy) { y[0]=2.0; x[0]=0.0; yy[0]=2.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y[i]=y[i-1]+0.2*(y[i-1]-x[i-1]); yy[i]=x[i]+1+exp(x[i]); printf("若x=%f,计算值是%f,真实值是%f,截断误差是%f\n ",x[i],y[i],yy[i],y[i]-yy[i]); } }; void f2(double *y,double *x,double *yy) { y[0]=1.0; x[0]=0.0; yy[0]=1.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y[i]=y[i-1]+0.2*(2*y[i-1]+x[i-1]*x[i-1]); yy[i]=-0.5*(x[i]*x[i]+x[i]+0.5)+1.25*exp(2*x[i]); printf("若x=%f,计算值是%f,真实值是%f,截断误差是%f\n ",x[i],y[i],yy[i],y[i]-yy[i]); } }; void f3(double *y,double *x,double *yy,double *y0) { y[0]=2.0; x[0]=0.0; yy[0]=2.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y0[i]=y[i-1]+0.2*(y[i-1]-x[i-1]); y[i]=y[i-1]+0.1*(y[i-1]-x[i-1]+y0[i-1]-x[i-1]);

欧拉公式推导

欧拉公式推导: 图4.3所示的两端铰支杆件,受轴向压力N 作用而处于中性平衡微弯状态,杆件弯曲后截面中产生了弯矩M 和剪力V ,在轴线任意点上由弯矩产生的横向变形为1y ,由剪力产生的横向变形为2y ,总变形21y y y +=。 y 图4.3 两端铰支的轴心压杆临界状态 设杆件发生弯曲屈曲时截面的临界应力小于材料比例极限p f ,即p f ≤σ(对理想材料取y p f f =)。由材料力学可得: EI M dz y d -=2 12 由剪力V 产生的轴线转角为: dz dM GA V GA dz dy ?=?==ββγ2 式中 A 、I ——杆件截面面积、惯性矩; E 、G ——材料的弹性模量、剪切模量; β—— 与截面形状有关的系数。 因为 222 22dz M d GA dz y d ?=β 所以 2222122222d y d y d y M d M dz dz dz EI GA dz β=+=-+? 由 y N M ?=得: 2222dz y d GA N y EI N dz y d ?+?-=β

01=?+??? ??-''y EI N GA N y β 令 ??? ??-=GA N EI N k β12 得常系数线性二阶齐次方程 20y k y ''+= 其通解为:sin cos y A kz B kz =+ 由边界条件:;0,0==y z 0=B ,kz A y sin =。再由0,==y l z 得: 0sin =kl A 上式成立的条件是0=A 或0sin =kl ,其中0=A 表示杆件不出现任何变形,与杆件微弯的假设不符。由0sin =kl ,得πn kl =(=n 1,2,3…),取最小值=n 1,得π=kl ,即 2 221N k N l EI GA πβ==??- ??? 由此式解出N ,即为中性平衡的临界力cr N 12222222211Ι11γππβππ?+?=?+?=l ΕΙl ΕGA l ΕΙl ΕΙ N cr (4.6) 临界状态时杆件截面的平均应力称为临界应力cr σ 12 22211γλπλπσ?+?==ΕΑΕA N cr cr (4.7) 式中 1γ——单位剪力时杆件的轴线转角,)/(1GA βγ=; l ——两端铰支杆得长度; λ——杆件的长细比,i l /=λ; i ——杆件截面对应于屈曲轴的回转半径,A I i /=。 如果忽略杆件剪切变形的影响(此影响很小)则式(4.6)、(4.7)变为: 22cr E πσλ = (4.8)

数值计算方法复习题9

习题九 1. 取步长h = 0.1,分别用欧拉法与改进的欧拉法解下列初值问题 (1);(2) 准确解:(1);(2); 欧拉法:,,, 改进的欧拉法:,,, 2. 用四阶标准龙格—库塔法解第1题中的初值问题,比较各法解的精度。,,, 3. 用欧拉法计算下列积分在点处的近似值。 0.5000,1.1420,2.5011,7.2450 4. 求下列差分格式局部截断误差的首项,并指出其阶数。 (1),2 (2),3; (3),4 (4),4 5.用Euler法解初值问题取步长h=0.1,计算到x=0.3(保留到小数点后4位).

解: 直接将Eulerr法应用于本题,得到 由于,直接代入计算,得到 6.用改进Euler法和梯形法解初值问题取步长 h=0.1,计算到x=0.5,并与准确解相比较. 解:用改进Euler法求解公式,得 计算结果见下表 用梯形法求解公式,得 解得 精确解为 7.证明中点公式(7.3.9)是二阶的,并求其局部截断误差主项. 证明根据局部截断误差定义,得 将右端Taylor展开,得

故方法是二阶的,且局部截断误差主项是上式右端含h3的项。 8.用四阶R-K方法求解初值问题取步长 h=0.2. 解直接用四阶R-K方法 其中 计算结果如表所示: 9.对于初值问题 解因f'(y)=-100,故由绝对稳定区间要求(1)用Euler法解时, (2)用梯形法解时,绝对稳定区间为,由因f 对y是线性的,故不用迭代,对h仍无限制。(3)用四阶R-K方法时, 10. (1) 用Euler法求解,步长h应取在什么范围内计算才稳定?(2) 若用梯形法求解,对步长h有无限制? (3) 若用四阶R-K方法求解,步长h如何选取?

欧拉公式的证明(整理)Word版

欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有: a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2

欧拉方程

泛函的欧拉方程(by zhengpin1390) (二)、泛函的欧拉方程 欧拉方程是泛函极值条件的微分表达式,求解泛函的欧拉方程,即可得到使泛函取极值的驻函数,将变分问题转化为微分问题。 (1)最简单的欧拉方程: 设函数F(x,y,y') 是三个变量的连续函数,且点(x,y)位于有界闭区域B 内,则对形如 的变分,若其满足以下条件: c) 在有界闭区域B内存在某条特定曲线y。(x) ,使泛函取极值,且此曲线具有二阶连续导数。 则函数y。(x) 满足微分方程: 上式即为泛函Q[y]的欧拉方程。 (2)含有自变函数高阶倒数的泛函的欧拉方程 一般来说,对于下述泛函: 在类似条件下,可以得到对应的欧拉方程为: (3)含有多个自变函数的泛函的欧拉方程

对于下述泛函: 其欧拉方程组为: (4)多元函数的泛函及其欧拉方程 此处仅考虑二元函数的情况,对如下所示多元函数的泛函: 其欧拉方程为: 泛函分析 泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和 代数条件的映射的分支学科。它是20世纪30年代形成的。从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。 泛函分析的产生 十九世纪以来,数学的发展进入了一个新的阶段。这就是,由于对欧几里得第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件。

本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽。随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。 由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似。这种相似在积分方程论中表现得就更为突出了。泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方。因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西。 非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响。这样,就显示出了分析和几何之间的相似的地方,同时存在着把分析几何化的一种可能性。这种可能性要求把几何概念进一步推广,以至最后把欧氏空间扩充成无穷维数的空间。 这时候,函数概念被赋予了更为一般的意义,古典分析中的函数概念是指两个数集之间所建立的一种对应关系。现代数学的发展却是要求建立两个任意集合之间的某种对应关系。 这里我们先介绍一下算子的概念。算子也叫算符,在数学上,把无限维空间到无限维空间的变换叫做算子。

欧拉方程的求解

欧拉方程的求解 1、引言 在数学研究领域,我们经常会瞧到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕、但就是,迄今为止,哪位数学家的名字出现得最多呢?她就就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉(Leonhard Euler,1707--1783)、 几乎在每一个数学领域都可以瞧到她的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数”L L 欧拉还就是许多数学符号的发明者,例如用π表示圆周率、e 表示自然对数的底、()f x 表示函数、∑表示求与、i 表示虚数单位L L 以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”、 在文献[1]中,关于欧拉方程的求解通常采用的就是变量变换的方法、变量变换法就就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如K y x =的解,进而求得欧拉方程的解、 但有些欧拉方程在用变量变换法求解时比较困难、本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理、最后在每类欧拉方程后面给出了典型的例题加以说明、 2、几类欧拉方程的求解 定义1 形状为 ()1(1)110n n n n n n y a x y a xy a y x ---'++++=L (1) 的方程称为欧拉方程、 (其中1a ,2a ,L ,1n a -,n a 为常数)

2、1二阶齐次欧拉方程的求解(求形如K y x =的解) 二阶齐次欧拉方程: 2120x y a xy a y '''++=、 (2) (其中1a ,2a 为已知常数) 我们注意到,方程(2)的左边y ''、y '与y 的系数都就是幂函数(分别就是 2x 、1a x 与02a x ),且其次依次降低一次、 所以根据幂函数求导的性质,我们用幂函数K y x =来尝试,瞧能否选取适当的常数K ,使得K y x =满足方程(2)、 对K y x =求一、二阶导数,并带入方程(2),得 212()0K K K K K x a Kx a x -++= 或 212[(1)]0K K a K a x +-+=, 消去K x ,有 212(1)0K a K a +-+=、 (3) 定义 2 以K 为未知数的一元二次方程(3)称为二阶齐次欧拉方程(2)的特征方程、 由此可见,只要常数K 满足特征方程(3),则幂函数K y x =就就是方程(2)的解、 于就是,对于方程(2)的通解,我们有如下结论: 定理1 方程(2)的通解为 (i) 1112ln K K y c x c x x =+, (12K K =就是方程(3)的相等的实根) (ii)1212K K x c x y c +=, (12K K ≠就是方程(3)的不等的实根) (iii)12cos(ln )sin(ln )x x c x x y c ααββ+=、(1,2K i αβ=±就是方程(3)的一对

计算方法及答案汇总

《计算方法》练习题一 一、填空题 1. 14159.3=π的近似值3.1428,准确数位是( )。 2.满足d b f c a f ==)(,)(的插值余项=)(x R ( )。 3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P ( )。 4.乘幂法是求实方阵( )特征值与特征向量的迭代法。 5.欧拉法的绝对稳定实区间是( )。 6. 71828.2=e 具有3位有效数字的近似值是( )。 7.用辛卜生公式计算积分 ?≈+1 01x dx ( ) 。 8.设)()1()1(--=k ij k a A 第k 列主元为) 1(-k pk a ,则=-)1(k pk a ( )。 9.已知?? ? ? ??=2415A ,则=1A ( )。 10.已知迭代法:),1,0(),(1 ==+n x x n n ? 收敛,则)(x ?'满足条件( )。 二、单选题 1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε( )。 A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2 )(,则=]3,2,1[f ( )。 A.1 B.2 C.3 D.4 3.设A=?? ? ? ??3113,则化A为对角阵的平面旋转=θ( ). A. 2π B.3π C.4π D.6 π 4.若双点弦法收敛,则双点弦法具有( )敛速. A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( ). A .)(h o B.)(2h o C.)(3h o D.)(4 h o 6.近似数2 1047820.0?=a 的误差限是( )。 A. 51021-? B.41021-? C.31021-? D.2102 1 -? 7.矩阵A满足( ),则存在三角分解A=LR 。 A .0det ≠A B. )1(0det n k A k <≤≠ C.0det >A D.0det

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法、改进欧拉法. 2.龙格-库塔法。 3.单步法的收敛性与稳定性。 重点、难点 一、微分方程的数值解法 在工程技术或自然科学中,我们会遇到的许多微分方程的问题,而我们只能对其中具有较简单形式的微分方程才能够求出它们的精确解。对于大量的微分方程问题我们需要考虑求它们的满足一定精度要求的近似解的方法,称为微分方程的数值解法。本章我们主要 讨论常微分方程初值问题?????==00 )() ,(y x y y x f dx dy 的数值解法。 数值解法的基本思想是:在常微分方程初值问题解的存在区间[a,b]内,取n+1个节点a=x 0<x 1<…<x N =b (其中差h n = x n –x n-1称为步长,一般取h 为常数,即等步长),在这些节点上把常微分方程的初值问题离散化为差分方程的相应问题,再求出这些点的上的差分方程值作为相应的微分方程的近似值(满足精度要求)。 二、欧拉法与改进欧拉法 欧拉法与改进欧拉法是用数值积分方法对微分方程进行离散化的一种方法。 将常微分方程),(y x f y ='变为() *+=?++1 1))(,()()(n x n x n n dt t y t f x y x y 1.欧拉法(欧拉折线法) 欧拉法是求解常微分方程初值问题的一种最简单的数值解法。 欧拉法的基本思想:用左矩阵公式计算(*)式右端积分,则得欧拉法的计算公式为:N a b h N n y x hf y y n n n n -= -=+=+)1,...,1,0(),(1 欧拉法局部截断误差 11121 )(2 ++++≤≤''=n n n n n x x y h R ξξ或简记为O (h 2)。

欧拉公式的证明和应用

数学文化课程报告 欧拉公式的证明与应用 一.序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 极限法 --------------------------------------3 指数函数定义法-------------------------------4 分离变量积分法-------------------------------4 复数幂级数展开法-----------------------------4 变上限积分法---------------------------------5 类比求导法-----------------------------------7 三.欧拉公式的应用 求高阶导数-----------------------------------7 积分计算------------------------------------8 高阶线性齐次微分方程的通解------------------9 求函数级数展开式----------------------------9 三角级数求和函数----------------------------10 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言

欧拉方程的求解

欧拉方程的求解 1. 引言 在数学研究领域,我们经常会看到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕. 但是,迄今为止,哪位数学家的名字出现得最多呢?他就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉( Leonhard Euler,1707--1783 ) . 几乎在每一个数学领域都可以看到他的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数” L L 欧拉还是许多数学符号的发明者,例如用表示圆周率、e表示自然对数的底、f(x)表示函数、表示求和、i表示虚数单位L L 以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”. 在文献[1] 中,关于欧拉方程的求解通常采用的是变量变换的方法. 变量变换法就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如y x K的解,进而求得欧拉方程的解. 但有些欧拉方程在用变量变换法求解时比较困难. 本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理. 最后在每类欧拉方程后面给出了典型的例题加以说明. 2. 几类欧拉方程的求解 定义 1 形状为 n (n) n 1 ( n 1) n y(n)a1x n 1y(n 1)L a n 1xy a n y 0 (1) x 的方程称为欧拉方程. (其中a i, a2, L , a ni, a.为常数)

2.1 二阶齐次欧拉方程的求解(求形如 y x K 的解) 二阶齐次欧拉方程: x 2y a i xy a 2y 0. ( 其中 a 1, a 2 为已知常数) 我们注意到,方程(2)的左边y 、y 和y 的系数都是幕函数(分别是x 2 a i x 和a 2X °),且其次依次降低一次.所以根据幕函数求导的性质,我们用幕 函数y x K 来尝试,看能否选取适当的常数 K ,使得y x K 满足方程(2). x K 求一、二阶导数,并带入方程(2),得 由此可见,只要常数K 满足特征方程(3),则幕函数y x K 就是方程(2) 共轭复根) (其中C i 、c 为任意常数) 证明(i )若特征方程(3)有两个相等的实根:? K 2,贝U 2) 消去 x K ,有 (K 2 [K 2 K 2 定义 2 以 K 为未知数的 的特征方程. K)X K (a 1 (a 1 KK a i Kx a 2 x 0 K i)K a 2]x K 0, 1)K a 2 0. 3) 元二次方程( 3)称为二阶齐次欧拉方程( 2) 的解. 于是,对于方程( 2)的通解, 定理 i 方程( 2)的通解为 y c i x Ki 我们有如下结论: (i) c 2X K1 ln X , (K i K 2是方程(3)的相等的实根) (ii) K 1 y c 1X 1 c2X K2 K i K 2是方程(3)的不等的实根) (iii) y c 1 X cos( ln X) c 2X sin( ln X). (K 1,2 i 是方程( 3)的一对

MATLAB求解常微分方程数值解

利用MATLAB求解常微分方程数值解

目录 1. 内容简介 (1) 2. Euler Method(欧拉法)求解 (1) 2.1. 显式Euler法和隐式Euler法 (2) 2.2. 梯形公式和改进Euler法 (3) 2.3. Euler法实用性 (4) 3. Runge-Kutta Method(龙格库塔法)求解 (5) 3.1. Runge-Kutta基本原理 (5) 3.2. MATLAB中使用Runge-Kutta法的函数 (7) 4. 使用MATLAB求解常微分方程 (7) 4.1. 使用ode45函数求解非刚性常微分方程 (8) 4.2. 刚性常微分方程 (9) 5. 总结 (9) 参考文献 (11) 附录 (12) 1. 显式Euler法数值求解 (12) 2. 改进Euler法数值求解 (12) 3. 四阶四级Runge-Kutta法数值求解 (13) 4.使用ode45求解 (14)

1.内容简介 把《高等工程数学》看了一遍,增加对数学内容的了解,对其中数值解法比较感兴趣,这大概是因为在其它各方面的学习和研究中经常会遇到数值解法的问题。理解模型然后列出微分方程,却对着方程无从下手,无法得出精确结果实在是让人难受的一件事情。 实际问题中更多遇到的是利用数值法求解偏微分方程问题,但考虑到先从常微分方程下手更为简单有效率,所以本文只研究常微分方程的数值解法。把一个工程实际问题弄出精确结果远比弄清楚各种细枝末节更有意思,因此文章中不追求非常严格地证明,而是偏向如何利用工具实际求解出常微分方程的数值解,力求将课程上所学的知识真正地运用到实际方程的求解中去,在以后遇到微分方程的时候能够熟练运用MATLAB得到能够在工程上运用的结果。 文中求解过程中用到MATLAB进行数值求解,主要目的是弄清楚各个函数本质上是如何对常微分方程进行求解的,对各种方法进行MATLAB编程求解,并将求得的数值解与精确解对比,其中源程序在附录中。最后考察MATLAB中各个函数的适用范围,当遇到实际工程问题时能够正确地得到问题的数值解。 2.Euler Method(欧拉法)求解 Euler法求解常微分方程主要包括3种形式,即显式Euler法、隐式Euler法、梯形公式法,本节内容分别介绍这3种方法的具体内容,并在最后对3种方法精度进行对比,讨论Euler法的实用性。 本节考虑实际初值问题 使用解析法,对方程两边同乘以得到下式

欧拉公式的证明

欧拉公式的证明 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

欧拉公式的证明 着名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:??? 设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是 e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,

siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有:

证明隐式Euler方法稳定性

第六章数值积分 6.1数值积分基本概念 6.1.1引言 在区间上求定积分 (6.1.1) 是一个具有广泛应用的古典问题,从理论上讲,计算定积分可用Newton-Leibniz公式 (6.1.2) 其中F(x)是被积函数f(x)的原函数.但实际上有很多被积函数找不到用解析式子表达的原函数,例如等等,表面看它们并不复杂, 但却无法求得F(x).此外,有的积分即使能找到F(x)表达式,但式子非常复杂,计算也很困难.还有的被积函数是列表函数,也无法用(6.1.2)的公式计算.而数值积分则只需计算f(x) 在节点xi(i=0,1,…,n)上的值,计算方便且适合于在计算机上机械地实现. 本章将介绍常用的数值积分公式及其误差估计、求积公式的代数精确度、收敛性和稳定性以及Romberg求积法与外推原理等. 6.1.2插值求积公式 根据定积分定义,对及都有 (极限存在)若不取极限,则积分I(f)可近似表示为 (6.1.3) 这里称为求积节点,与f无关,称为求积系数,(6.1.3)称为机械求积公式. 为了得到形如(6.1.3)的求积公式,可在上用Lagrange插值多项式 ,则得

其中 (6.1.4) 这里求积系数由插值基函数积分得到,它与f(x)无关.如果求积公式(6.1.3)中的系数由(6.1.4)给出,则称(6.1.3)为插值求积公式.此时可由插值余项得到 (6.1.5) 这里ξ∈,(6.1.5)称为插值求积公式余项. 当n=1时,,此时 由(6.1.4)可得 于是 (6.1.6) 称为梯形公式.从几何上看它是梯形A bB(见图6-1)的面积近似曲线y=f(x)下的曲边梯形面积,公式(6.1.6)的余项为 (6.1.7)

fortran下欧拉法求解常微分方程(实例)

1. Euler 公式 100(,)() i i i i y y hf x y y y x +=+??=? 实例: ,00(,),0,1,01f x y x y x y x =-==≤≤ 精确解为:1x y x e -=+- 程序代码: DIMENSION x(0:20),y(0:20),z(0:20),k(0:21) DOUBLE PRECISION x,y,z,k,h,x0,y0,z0,k0,n f(x,y)=x-y n=20 h=1/n x(0)=0 y(0)=0 DO i=0,n-1 y(i+1)=y(i)+f(x(i),y(i))*h x(i+1)=x(i)+h ENDDO k(0)=0 DO i=0,n z(i)=k(i)+exp(-k(i))-1 k(i+1)=k(i)+h END DO open(10,file='1.txt') WRITE(10,10) (x(i),y(i),z(i),i=0,20) WRITE(*,10) (x(i),y(i),z(i),i=0,20) 10 FORMAT(1x,f10.8,2x,f10.8,2x,f10.8/) END 输出结果: 0.00000000 0.00000000 0.00000000 0.05000000 0.00000000 0.00122942 0.10000000 0.00250000 0.00483742 0.15000000 0.00737500 0.01070798 0.20000000 0.01450625 0.01873075 0.25000000 0.02378094 0.02880078 ???=='00)(),(y x y y x f y ???=='0 0)(),(y x y y x f y

欧拉方程的求解

精心整理 欧拉方程的求解 1.引言 在数学研究领域,我们经常会看到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕.但是,迄今为止,哪位数学家的名字出现得最多呢?他就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉(LeonhardEuler,1707--1783). 式”、i 表示形如2.2.1二阶齐次欧拉方程:2120x y a xy a y '''++=.(2) (其中1a ,2a 为已知常数) 我们注意到,方程(2)的左边y ''、y '和y 的系数都是幂函数(分别是2x 、1a x 和02a x ),且其次依次降低一次.所以根据幂函数求导的性质,我们用幂函数K y x =来尝试,看能否选取适当的常数K ,使得K y x =满足方程(2).

对K y x =求一、二阶导数,并带入方程(2),得 或 212[(1)]0K K a K a x +-+=, 消去K x ,有212(1)0K a K a +-+=.(3) 定义2以K 为未知数的一元二次方程(3)称为二阶齐次欧拉方程(2)的特征方程. 由此可见,只要常数K 满足特征方程(3),则幂函数K y x =就是方程(2)的解. (i)y (ii)(iii)证明1x y =且设,2y 线约去由于1K 是特征方程(3)的二重根, 因此 或 112(1)0K a +-=, 于是,得 或 0xu u '''+=,

即()0xu ''=, 故12()ln u x c x c =+. 不妨取()ln u x x =,可得方程(2)的另一个特解 12ln K y x x =, 所以,方程(2)的通解为 1112ln K K y c x c x x =+. (ii 1x y =又21y y (iii 1x y =和 是方程(2)的两个线性无关的实函数解. 所以,方程(2)的通解为 12cos(ln )sin(ln )x x x x y c c ααββ=+. (其中1c ,2c 为任意常数) 例1求方程20x y xy y '''-+=的通解.

相关文档