文档库 最新最全的文档下载
当前位置:文档库 › ZL101铸造铝合金硅的光谱分析方法研究解析

ZL101铸造铝合金硅的光谱分析方法研究解析

ZL101铸造铝合金硅的光谱分析方法研究解析
ZL101铸造铝合金硅的光谱分析方法研究解析

ZL101铸造铝合金硅的光谱分析方法研究

摘要本文针对影响铸造铝合金光谱分析质量的关键问题:Si元素的分析结果不稳定、准确度不高,通过分析优化,利用自制的随炉控样,在贝尔德DV5型光谱仪上成功地完成了该合金的光谱分析方法试验工作;并完善了该合金的光电直读分析方法,使分析结果更加准确可靠及稳定。

关键词分析优化;随炉控样;稳定

中图分类号TG2 文献标识码A 文章编号 1674-6708(2012)58-0089-02 Spectrometery Method Study of ZL101 Molten Aluminium Alloy

ZHOU Li

Engineering Department,Hongdu Aviation Industrial Group,Nanchang 330024

Abstract This paper was directed against on the key problem of

ZL101 molten aluminium alloy’s spectrometery quality , the resul t s of Si element was unstable and unaccurated. Based on analyzing optimization , applied in self-made control sample paid off quite well on the baird DV5 spectrometery , analysing results of the method was more accurate and stability.

Keyword Analyzing optimization;Self-made control sample;

stability

0 引言

ZL101是亚共晶铸造铝合金,属于高合金化的Al-Si-Mg系合金,具有密度小、强度高、耐腐蚀及铸造性能好等特点,广泛的应用于制造行业中。中航工业洪都制造工程部为适应生产,加大了该合金的铸造量,但现有的分析方法在分析过程中存在分析结果准确度不高,而且分析结果不稳定。为了配合生产,准确快速的分析出结果,我们在美国贝尔德DV5型直读光谱仪上进行了方法试验,发现了影响该合金分析质量的关键性问题是:Si元素的分析结果不稳定,

分析准确度不高;而硅元素可以改善合金的流动性,降低热裂倾向,减少疏松,提高气密性,对材料的性能起着重要作用。针对上述问题,根据以往的分析经验,制定措施,通过一系列优化试验,有效的解决了该关键性问题,大大提高了分析准确度和稳定性,证明该方法准确可靠,重现性好,分析速度快,完全满足生产实际需要。

1 试验仪器及试验条件

1.1 仪器及辅助设备

光谱仪:DV5型光电直读光谱仪(美国贝尔德公司)。

氩气净化器:CZA-4型气体催化再生式净化机。

车床:6140普通型车床。

1.2 试验条件

1.2.1 分析试验前的准备工作

试验工作在DV5型光谱仪上进行,为确保试验数据的准确无误,光谱仪的准备工作必须充分,保证光谱仪的工作温度维持在23±2℃,清理激发室内的金

属粉尘、废氩过滤器和防护透镜,保证气路和光路畅通,检查钨电极锥形头和测量极距,保证钨电极头锥度为90°,极距为3mm。试样用车床切割,使用酒精冷却,使用专用锉刀,磨成一个均匀、无气孔、无裂纹的光滑平面。

1.2.2 光谱仪正常工作的主要参数

光源参数:高能预燃火花型;

时间参数:冲氩3S,预燃5S,曝光12S;

氩气流量:15L/min;

氩气纯度:≥99.996%。

2 试验结果讨论

2.1 现有西南铝厂的铸铝标样,含量范围如表1

2.2 选择Si元素分析线对,制定校准曲线

Si元素通道有两条分析线:Si*2/390.5nm和Si*1/288.1nm。按标样KH500光源分析经验,Al基有两条参考线Al*R/256.7nm和Al*1/394.4,一般采用较稳定的Si#1线作为Si元素的分析线,Al*R做内标线[1]。基于实际结果的不稳定,使用正交实验设计法,做出4条Si分析线对的校准曲线,得到最好的校准曲线。由表3,可知Si的分析线对:390.5/394.4,曲线校准最好,检出限最低。

2.3 精密度实验

选择E513标样及ZL101铸造铝合金试样一块各分析11 次, 计算其平均值、标准偏差、相对标准偏差, 均在允许的偏差范围内[2],如表4所示。

2.4 准确度实验

2.4.1 随炉控制试样

在实际分析中,由于生产过程中浇铸的试样和做校准曲线的标准试样的冶金过程和某些物理状态的差异,常使分析结果存在一定的偏差,这就需要用随炉控制试样来校正。分析中制定的硅线线性范围达到3.5~14.0,随炉控制试样是一个与分析试样的冶金过程和物理状态基本一致的标准样品,Si元素含量应可能与分析样品的含量接近,所以位于ZL101的Si含量范围中间,即7.0%。

2.4.2 自制随炉控制试样

按照实际生产工艺,分别按6.0%,6.5%,7.0%,7.5%的硅量,浇铸4个试样。使用国标方法[3]进行定值,见表5。

2.4.3 分析试样

表6 ZL101的硅准确度实验 %

选择7.12%的试样作为ZL101的随炉控样,随机选择两块同类性浇铸试样(1#和2#),进行日常两点标准化光谱分析,随炉控样校准光谱分析,国标重量法分析。日常两点标准光谱法,在该Si线上的定值与国标重量法定值出现较大偏差,但是使用ZL101的随炉试样,在该硅线上定值与国标重量法定值一致。结果见表6。

3 结论

实验保证:

1)分析室需控制温湿度,分析前应进行汞灯校准;

2)氩气流量保持稳定,冲洗时间完全,保证完全激发;

3)钨电极锥度保持90度,在实验过程中及时清理电极头上的烧结物,确保分析极距5mm不变,保证分析条件稳定。

试验结论:

通过上述试验,确定了ZL101合金中Si元素的最佳分析线对

390.5/394.4nm,自制了ZL101的随炉控制试样,从而解决了在DV5光谱仪上存在的硅分析质量问题,使该合金分析方法更完善,更稳定和准确,完全满足了生产实际需要。

参考文献

[1]Baird Spark.Baird Spectrocomp Software Operating Procedures.内部资料.

[2]徐秋心.实用发射光谱分析[M].成都:四川科学出版社,1993.

[3]中华人民共和国国家标准.钢铁合金化学分析方法高氯酸脱水重量法测定硅含量[M].GB/T223.60-1997.北京:中国标准出版社.

A356铸造铝合金生产工艺流程

A356铸造铝合金生产工艺流程 目录 第一章概述 第一节铝合金的定义、性质和用途 第二节铝合金的分类及表示方法 第三节 A356合金的成分、组织和性能 第四节 A356合金的生产设备 第二章 A356合金的生产工艺 第一节 A356合金的生产工艺流程第二节熔炼 (1)铝熔体的特点 (2)铝熔体的精炼与净化 (3)熔炼工艺参数对铸锭质量的影响 第三节铸造 (1)铸造方法的分类 (2)铸造原理 (3)铸造工艺参数对铸锭质量的影响 第四节熔铸工艺 (1)配料工艺 (2)熔炼工艺 (3)铸造工艺 (4)取样工艺

第三章 A356合金常见缺陷及预防措施 第一节化学成分 第二节外观质量 第三节低倍针孔度 (1)针孔的定义与分类 (2)针孔形成的原因 (3)形成气孔的H2来源 (4)预防针孔形成的工艺措施 第一章概述 第一节铝合金的定义、性质和用途 所谓铝合金就是在工业纯铝中加入适量的其他元素,使铝的本质得到该善,以满足工业上和人们生活中的各种需要。由于其比重小,比强度高,具有良好的综合性能,因此,被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器皿制造等方面。 第二节铝合金的分类及表示方法 铝合金可分为两大类:变形铝合金和铸造铝合金,变形铝合金要先铸成锭,用于压延或拉伸,如:管、棒和板等;铸造铝合金,用于铸造固定铸件,如:活塞、汽缸和支架等。 变形铝合金牌号的表示方法大致有两种: 1、国家标准

用第一个字母L表示工业纯铝或铝合金,(取铝的汉语拼音第一个字母)。 第二个字母表示铝合金类别,下面几个字母分别表示: G——工业高纯铝 F——防锈铝合金 Y——硬铝合金 C——超硬铝合金 D——锻造铝合金 T——特殊铝合金 字母后面的数字表示该类合金的序号。如LF3表示3号防锈铝合金;LD2表示2号锻造铝合金;LY12表示12号硬铝合金;LC4表示4号超硬铝合金;LT21表示21号特殊铝合金。 2、引用美国四位数铝合金牌号表示方法,作为国家标准第一位数字表示铝合金系列,如: 1XXX 表示纯铝 2XXX 表示AL-Cu系合金 3XXX 表示AL-Mn系合金 4XXX 表示AL-Si系合金 5XXX 表示AL-Mg系合金 6XXX 表示AL-Mg-Si系合金 7XXX 表示AL-Zn系合金 8XXX 表示AL和其它元素的合金 9XXX 表示尚未使用的系列 最后两位数字表示某种具体的铝合金或铝的纯度,第二位数字表示对原来的合金或杂质范围的修改。 铸造铝合金牌号的表示方法:

铝合金压铸件所有缺陷及对策大全

铝合金压铸件所有缺陷及对策大全 一、化学成份不合格 主要合金元素或杂质含量与技术要求不符,在对试样作化学分析或光谱分析时发现。 1、配料计算不正确,元素烧损量考虑太少,配料计算有误等; 2、原材料、回炉料的成分不准确或未作分析就投入使用; 3、配料时称量不准; 4、加料中出现问题,少加或多加及遗漏料等; 5、材料保管混乱,产生混料; 6、熔炼操作未按工艺操作,温度过高或熔炼时间过长,幸免于难烧损严重; 7、化学分析不准确。 对策: 1)、对氧化烧损严重的金属,在配料中应按技术标准的上限或经验烧损值上限配料计算;配料后并经过较核; 2)、检查称重和化学分析、光谱分析是否正确; 3)、定期校准衡器,不准确的禁用; 4)、配料所需原料分开标注存放,按顺序排列使用; 5)、加强原材料保管,标识清晰,存放有序; 6)、合金液禁止过热或熔炼时间过长; 7)、使用前经炉前分析,分析不合格应立即调整成分,补加炉料或冲淡; 8)、熔炼沉渣及二级以上废料经重新精炼后掺加使用,比例不宜过高; 9)、注意废料或使用过程中,有砂粒、石灰、油漆混入。 二、气孔 铸件表面或内部出现的大或小的孔洞,形状比较规则;有分散的和比较集中的两类;在对铸件作X光透视或机械加工后可发现。 1、炉料带水气,使熔炉内水蒸气浓度增加; 2、熔炉大、中修后未烘干或烘干不透; 3、合金液过热,氧化吸气严重; 4、熔炉、浇包工具氧等未烘干; 5、脱模剂中喷涂过重或含发气量大; 6、模具排气能力差; 7、煤、煤气及油中的含水量超标。 对策: 1)、严禁把带有水气的炉料装入炉中,装炉前要在炉边烘干; 2)、炉子、坩埚及工具未烘干禁止使用; 3)、注意铝液过热问题,停机时间要把炉调至保温状态;

铝合金铸造常见缺陷与对策

铝铸件常见缺陷及整改办法 铝铸件常见缺陷及整改办法 1、欠铸(浇不足、轮廓不清、边角残缺): 形成原因: (1)铝液流动性不强,液中含气量高,氧化皮较多。 (2)浇铸系统不良原因。内浇口截面太小。 (3)排气条件不良原因。排气不畅,涂料过多,模温过高导致型腔内气压高使气体不易排出。 防止办法: (1)提高铝液流动性,尤其是精炼和扒渣。适当提高浇温和模温。提高浇铸速度。改进铸件结构,调整厚度余量,设辅助筋通道等。 (2)增大内浇口截面积。 (3)改善排气条件,增设液流槽和排气线,深凹型腔处开设排气塞。使涂料薄而均匀,并待干燥后再合模。 2、裂纹: 特征:毛坯被破坏或断开,形成细长裂缝,呈不规则线状,有穿透和不穿透二种,在外力作用下呈发展趋势。冷、热裂的区别:冷裂缝处金属未被氧化,热裂缝处被氧化。 形成原因: (1)铸件结构欠合理,收缩受阻铸造圆角太小。 (2)顶出装置发生偏斜,受力不匀。

(3)模温过低或过高,严重拉伤而开裂。 (4)合金中有害元素超标,伸长率下降。 防止方法: (1)改进铸件结构,减小壁厚差,增大圆角和圆弧R,设置工艺筋使截面变化平缓。 (2)修正模具。 (3)调整模温到工作温度,去除倒斜度和不平整现象,避免拉裂。 (4)控制好铝涂成份,成其是有害元素成份。 3、冷隔: 特征:液流对接或搭接处有痕迹,其交接边缘圆滑,在外力作用下有继续发展趋势。 形成原因: (1)液流流动性差。 (2)液流分股填充融合不良或流程太长。 (3)填充温充太低或排气不良。 (4)充型压力不足。 防止方法: (1)适当提高铝液温度和模具温度,检查调整合金成份。(2)使充填充分,合理布置溢流槽。 (3)提高浇铸速度,改善排气。 (4)增大充型压力。

铝合金铸造工艺简介

铝合金铸造工艺简介 一、铸造概论 在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下: 由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可围减少铸造缺陷的产生,从而优化铸件。 1、铝合金铸造工艺性能 铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1) 流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。 (2) 收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起

铝合金铸造技术篇

国兴金属制品有限公司教育训练教材 铝合金铸造技术篇 一、前言: 铝合金为目前使用极为广泛的一种金属。在铸造上而言,不论重力铸造,砂模铸造、压铸精密铸造┄等各种铸造方法均可见到大量的铝合金铸件,由于这些方法铸造,其原因乃在于铝合金具有质量轻、机械质优良、耐腐蚀、美观以及机械加工容易等优点。因而不仅大量使用于一般生活用品,例如:运输工具、通信器材、运动器材料、家庭五金┄等商业用途上,亦大量使用于航空太空载具及武器系统等军事装备。 铝合金铸造技术的发展时间,已有数十年历史,由于机械设计及加工观念的改变与要求以及机械设计的日趋复杂,加上新的合金不断的被发展出来,部份的铸造用铝合金机械强度甚至超过一些锻造用铝合金,如A201、A206等,因而铸造的重要性再度被肯定,在铸造一般生活用品时,铝合金的铸造并非一困难工作,但要铸造高品质的铸件时,则铝合金的铸造就非想象中的容易。 影响铸件品质的要素有八点,例如:铸造方案的设计,材料的选择以及铝水的品 质等,其中铝水的品质,则系熔炼的工作。 二、熔炼设备 熔炉: 铝合金熔炼用的炉子,以热源区分,可分为两个主要的种类:燃料及电力。 在使用燃料的熔炉中,则又分为油炉及瓦斯两种。 而电力炉则可区分为反应炉及电阻炉。 在选择炉子时,值得考虑的因素甚多,例如:熔解量的多寡;能源的价格;原始设备的成本,安装的价格,设备维护的难易,厂房设施配合;以及产品的种类。就一般铝合金铸造的:由于铝件的重量有限,为求操作上的方便,以及成本的考虑,绝大部份均系采用坩锅炉(目前已大量改用连续炉)。 以不同加热方式的炉子而言,使用油炉或气炉,或可降低成本。但是,不论油炉或电炉,均有机会增加铝水中的氢气量。一般而言,在使用油炉时,所使用的燃油中带含有10-20%的水气,对气炉而言,例如瓦斯不包含空气之中,因温度而含的水分,而仅计算燃烧所产生水蒸气,至少在消耗气体量的两倍以上。而不论使用燃油或瓦斯气体为热源时,燃烧后产生的水气,必然是包围着熔解炉。因此,可想而知的是氢气 的来源必然可观。 三、铝汤处理之目的: 在铝汤有由原材料在熔解过程中发生的氢气或氧化物等非金属介在物之外,尚含钠碱

光谱分析法导论

第二章光谱分析法导论 一.教学内容 1.电磁辐射及电磁波谱的概念、特性及相关物理量 2.物质与电磁辐射相互作用及相关的光谱学 3.光学分析法的分类及特点 4.光学分析法的基本仪器 二.重点与难点 1.电磁辐射与电磁波谱的特殊 2.各物理量的相互换算 3.物质与电磁辐射相互作用的机制 4.各种能级跃迁的概念及相应的光谱 三.教学要求 1.牢固掌握电磁辐射和电磁波谱的概念及性质 2.熟练掌握电磁辐射各种物理量之间的换算 3.清楚理解物质与电磁辐射相互作用所产生的各种光谱 4.清晰光学分析法分类的线索 5.了解光谱法的基本仪器部件 四.学时安排2学时 第一节光学分析法及其分类 光学分析法是根据物质发射的电磁辐射或电磁辐射与物质相互作用而建立起来的一类分析化学方法。 这些电磁辐射包括从 射线到无线电波的所有电磁波谱范围

(不只局限于光学光谱区)。电磁辐射与物质相互作用的方式有发射、吸收、反射、折射、散射、干涉、衍射、偏振等。 光学分析法可分为光谱法和非光谱法两大类。 光谱法是基于物质与辐射能作用时,测量由物质内部发生量 子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法。 光谱法可分为原子光谱法和分子光谱法。 原子光谱法是由原子外层或内层电子能级的变化产生的,它的表现形式为线光谱。属于这类分析方法的有原子发射光谱法(AES)、原子吸收光谱法(A AS),原子荧光光谱法(A FS)以及X射线荧光光谱法(X FS)等。 分子光谱法是由分子中电子能级、振动和转动能级的变化产生的,表现形式为带光谱。属于这类分析方法的有紫外-可见分 光光度法(U V-Vi s),红外光谱法(IR),分子荧光光谱法(M F S)和分子磷光光谱法(M P S)等。 非光谱法是基于物质与辐射相互作用时,测量辐射的某些性质,如折射、散射、干涉、衍射、偏振等变化的分析方法。 本章主要介绍光谱法。 一、发射光谱法 物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子M* ,当从激发态过渡到低能态或基态时产生发射光谱。 M* ?→M +hv 通过测量物质的发射光谱的波长和强度进行定性和定量分 析的方法叫做发射光谱分析法。 根据发射光谱所在的光谱区和激发方法不同,发射光谱法分为: 1.γ射线光谱法

第九章 光学分析法概论

. 第九章光学分析法概论 1、光学分析法有哪些类型。 基于辐射的发射建立的发射光谱分析法、火焰光度分析法、分子发光分析法、放射分析法等;基于辐射的吸收建立的UV-V is光度法、原子吸收光度法、红外光谱法、核磁共振波谱法等;基于辐射的散射建立的比浊法、拉曼光谱法;基睛辐射的折射建立的折射法、干涉法;基于辐射的衍射建立的X-射线衍射法、电子衍射法等;基于辐射的旋转建立的偏振法、旋光法、圆二色光谱法等。 2、吸收光谱法和发射光谱法有何异同? 吸收光谱法为当物质所吸收的电磁辐射能由低能态或基态跃迁至较高的能态(激发态),得到的光谱发射光谱法为物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子,当从激发态过渡到低能态或基态时产生的光谱。 3、什么是分子光谱法?什么是原子光谱法? 原子光谱法:是由原子外层或内层电子能级的变化产生的光谱,它的表现形式为线光谱。属于这类分析方法的有原子发射光谱法、原子吸收光谱法,原子荧光光谱法以及X射线荧光光谱法等。 分子光谱法:是由分子中电子能级、振动和转动能级的变化产生的光谱,表现形式为带光谱。属于这类分析方法的有紫外-可见分光光度法,红外光谱法,分子荧光光谱法和分子磷光光谱法等。 4、简述光学仪器三个最基本的组成部分及其作用。 辐射源(光源):提供电磁辐射。 波长选择器:将复合光分解成单色光或有一定宽度的谱带。 检测器:将光信号转换成电信号。 5、简述常用的分光系统的组成以及各自作用特点。 分光系统的作用是将复合光分解成单色光或有一定宽度的谱带。分光系统又分为单色器和滤光片。单色器由入射狭缝和出射狭缝、准直镜以及色散元件,如棱镜或光栅等组成。 棱镜:色散作用是基于构成棱镜的光学材料对不同波长的光具有不同的折射率。 光栅:利用多狭缝干涉和单狭缝衍射两者联合作用产生光栅光谱。 干涉仪:通过干涉现象,得到明暗相间的干涉图。 滤光器是最简单的分光系统,只能分离出一个波长带或只能保证消除给定消长以上或以下的所有辐射。 6、简述常用辐射源的种类典型的光源及其应用范围。 1 / 1'.

铝合金铸造工艺

铝合金铸造工艺 一、铸造概论 铝合金铸造的种类如下: 由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。 1、铝合金铸造工艺性能 铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1)流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 (2)收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷 到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性 对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。

铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。 缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。生产中发现,铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是缩孔和疏松集中在铸件外部冒口中。对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。 ②线收缩 线收缩大小将直接影响铸件的质量。线收缩越大,铝铸件产生裂纹与应力的趋向也越大;冷却后铸件尺寸及形状变化也越大。 对于不同的铸造铝合金有不同的铸造收缩率,即使同一合金,铸件不同,收缩率也不同,在同一铸件上,其长、宽、高的收缩率也不同。应根据具体情况而定。 (3)热裂性 铝铸件热裂纹的产生,主要是由于铸件收缩应力超过了金属晶粒间的结合力,大多沿晶界产生从裂纹断口观察可见裂纹处金属往往被氧化,失去金属光泽。裂纹沿晶界延伸,形状呈锯齿形,表面较宽,内部较窄,有的则穿透整个铸件的端面。

光谱分析法导论题库

光谱分析法导论 1.在下列激发光源中,何种光源要求试样制成溶液?( 1 ) (1)火焰(2)交流电弧(3)激光微探针(4)辉光放电 2.发射光谱法用的摄谱仪与原子荧光分光光度计相同的部件是( 3 ) (1)光源(2)原子化器(3)单色器(4)检测器 3.在光学分析法中, 采用钨灯作光源的是( 3 ) (1)原子光谱(2)分子光谱(3)可见分子光谱(4)红外光谱 可见光源通常使用钨灯 5. 原子光谱(发射、吸收与荧光)三种分析方法中均很严重的干扰因素是( 2 ) (1)谱线干扰(2)背景干扰(3)杂散干扰(4)化学干扰 6. 三种原子光谱(发射、吸收与荧光)分析法在应用方面的主要共同点为( 2 ) (1)精密度高,检出限低(2)用于测定无机元素(3)线性范围宽(4)多元素同时测定7. __紫外__和__可见_辐射可使原子外层电子发生跃迁. 原子发射光谱法 1. 几种常用光源中,产生自吸现象最小的是( 2 ) (1) 交流电弧(2) 等离子体光源(即为ICP)(3) 直流电弧(4) 火花光源 2. 闪耀光栅的特点之一是要使入射角α、衍射角β和闪耀角θ之间满足下列条件( 4 ) (1) α=β(2) α=θ(3) β=θ(4) α=β=θ 3. 当不考虑光源的影响时,下列元素中发射光谱谱线最为复杂的是( 4 ) (1) K (2) Ca (3) Zn (4) Fe 所以选择铁谱作为标准 4. 矿物中微量Ag、Cu的发射光谱定性分析应采用的光源是 (1) I CP光源(2) 直流电弧光源(3) 低压交流电弧光源(4) 高压火花光源直流电弧光源用于矿石难溶物中低含量组分的定量测定 5. 下列哪种仪器可用于合金的定性、半定量全分析测定 (1)极谱仪(2)折光仪(3)原子发射光谱仪(4)红外光谱仪(5)电子显微镜6. 发射光谱摄谱仪的检测器是( ) (1) 暗箱(2) 感光板(3) 硒光电池(4) 光电倍增管 7. 对原子发射光谱法比对原子荧光光谱法影响更严重的因素是( ) (1) 粒子的浓度(2) 杂散光(3) 化学干扰(4) 光谱线干扰 8. 原子发射光谱激发源的作用是提供足够的能量使试样____蒸发________ 和__激发__。 9. 影响谱线强度的内因是______各元素的激发电位统计权重____________ ,外因是__被测元素浓度和弧焰温度________________ 。 10. 自吸:原子在高温下被激发而发射某一波长的辐射, 但周围温度较低的同种原子(包括低能级原子或基态原子)会吸收这一波长的辐射 11. (1)海水中的重金属元素定量分析___高频电感耦合等离子体____________ (2)矿物中微量Ag、Cu的直接定性分析_____直流电弧_________ (3)金属锑中Sn、Bi的直接定性分析______电火花________

光学分析法概论

第九章光学分析法概论 1、光学分析法有哪些类型。 基于辐射的发射建立的发射光谱分析法、火焰光度分析法、分子发光分析法、放射分析法等;基于辐射的吸收建立的UV-V is光度法、原子吸收光度法、红外光谱法、核磁共振波谱法等;基于辐射的散射建立的比浊法、拉曼光谱法;基睛辐射的折射建立的折射法、干涉法;基于辐射的衍射建立的X-射线衍射法、电子衍射法等;基于辐射的旋转建立的偏振法、旋光法、圆二色光谱法等。 2、吸收光谱法和发射光谱法有何异同 ; 吸收光谱法为当物质所吸收的电磁辐射能由低能态或基态跃迁至较高的能态(激发态),得到的光谱发射光谱法为物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子,当从激发态过渡到低能态或基态时产生的光谱。 3、什么是分子光谱法什么是原子光谱法 原子光谱法:是由原子外层或内层电子能级的变化产生的光谱,它的表现形式为线光谱。属于这类分析方法的有原子发射光谱法、原子吸收光谱法,原子荧光光谱法以及X射线荧光光谱法等。 — 分子光谱法:是由分子中电子能级、振动和转动能级的变化产生的光谱,表现形式为带光谱。属于这类分析方法的有紫外-可见分光光度法,红外光谱法,分子荧光光谱法和分子磷光光谱法等。 4、简述光学仪器三个最基本的组成部分及其作用。 辐射源(光源):提供电磁辐射。 波长选择器:将复合光分解成单色光或有一定宽度的谱带。 & 检测器:将光信号转换成电信号。 5、简述常用的分光系统的组成以及各自作用特点。 分光系统的作用是将复合光分解成单色光或有一定宽度的谱带。分光系统又分为单色器和滤光片。单色器由入射狭缝和出射狭缝、准直镜以及色散元件,如棱镜或光栅等组成。 棱镜:色散作用是基于构成棱镜的光学材料对不同波长的光具有不同的折射率。 光栅:利用多狭缝干涉和单狭缝衍射两者联合作用产生光栅光谱。 干涉仪:通过干涉现象,得到明暗相间的干涉图。 滤光器是最简单的分光系统,只能分离出一个波长带或只能保证消除给定消长以上或以下的所有辐射。 6、简述常用辐射源的种类典型的光源及其应用范围。

铝合金挤压型材几种常见缺陷解析

挤压铝型材表面颗粒状毛刺的形成原因与对策 在铝型材的挤压生产中,型材表面不同程度的存在一些小颗粒吸附在型材表面上,这种的缺陷,仅有轻微手感,不仔细观察或手摸较难发现。但它严重影响氧化、电泳涂漆及喷涂型材的表面美观,降低了生产效率和成品率,更是高档装饰型材的致命缺陷。因此,对其形成机理进行分析,同时在挤压生产实践中不断地观察分析,总结其成因,及时采取措施,是减少或杜绝这种缺陷的出现的有效手段。 一、颗粒吸附成因分析 1、挤压型材表面出现的颗粒状毛刺分为四种: 1)空气尘埃吸附,燃煤铝棒加热炉产生的灰尘、铝屑、油污及水份凝结成颗粒附着在热的型材表面。 2)铝棒中的杂质,如:精炼不充分遗留的金属夹杂物和非金属夹杂物。 3)时效炉内的灰尘附着。 4)铝棒中的缺陷及成分中的β相AlFeSi在高温下析出,使金属塑性降低,抗拉强度降低,产生颗粒状毛刺。 “吸附颗粒”的形成 2、原因 1)铝棒质量的影响 由于高温铸造,铸造速度快,冷却强度大,造成合金中的β相AlFeSi不能及时转变为球状α相AlFeSi,由于β相AlFeSi在合金中呈现针状组织,硬度高、塑性差,抗拉强度很低,在高温挤压时不仅会诱发挤压裂纹,而且会产生颗粒状毛刺,这种毛刺不易清理,手感强烈,颗粒附近常伴随有蝌蚪状拖尾,在金相显微镜下观察,呈现灰褐色,成分中富含铁元素。 铝棒中的杂质影响,铝棒在熔铸过程中,精炼不充分,泥土、精炼剂、覆盖剂以及粉末涂料和氧化膜夹杂等混入棒中,这些物质在挤压过程中,使金属的塑性和抗拉强度显著降低,极易产生颗粒状毛刺。 棒的组织缺陷常见的有疏松、晶粒粗大、偏析、光亮晶粒等,所有这些铸棒缺陷有一个共同点,就是与铸棒基体焊合不好,造成了基体流动的不连续性,在挤压过程中,夹渣极易从基体中分离出来,通过模具的工作带时,粘附在入口端,形成粘铝,并不断被流动的金属拉出,极易产生颗粒状毛刺。 2)模具的影响 在挤压生产中,模具是在高温高压的状态下工作的,受压力和温度的影响,模具产生弹性变形。模具工作带由开始平行于挤压方向,受到压力后,工作带变形成为喇叭状,只有工作带的刃口部分接触型材形成的粘铝,类似于车刀的刀屑瘤。在粘铝的形成过程中,不断有颗粒被型材带出,粘附在型材表面上,造成了"吸附颗粒"。随着粘铝的不断增大,模具产生瞬间回弹,就会形成咬痕缺陷。若粘铝堆积较多,不能被型材拉出,模具瞬间回弹时粘铝不脱落,就会形成型材的表面粗糙、亮条、型材撕裂、堵模等问题。模具的粘铝现象见图1。我们现在使用的挤压模具基本是平面模,在铸棒不剥皮的情况下,铸棒表面及内在的杂质堆积在模具内金属流动的死区,随着挤压铸棒的推进及挤压根数的增多,死区的杂质也在不断的变化,有一部分被正常流动的金属带出,堆积在工作带变形后的空间内。 有的被型材拉脱,形成了颗粒状毛刺。因此,模具是造成颗粒状毛刺的关键因素。

光谱分析法概述

光谱分析法概论 ~ 第一节 电磁辐射及其与物质的相互作用 (一)电磁辐射和电磁波谱 光是一种电磁辐射(又称电磁波),是一种以强大速度通过空间而不需要任何物质作为传播媒介的光量子流,它具有波粒二象性 1 光的波动性:用波长、波数、频率作为表征 波长是在波的传播路线上具有相同振动相位的相邻两点之间的线性距离,常用nm作为单位 波数是每厘米长度中波的数目,单位cm-1 频率是每秒内的波动次数,单位Hz 在真空中波长、波数和频率的关系 C是光在真空中的传播速度,C=2.997925*10 10cm*s 所有电磁辐射在真空中的传播速度均相同 在其他透明介质中,由于电磁辐射与介质分子的相互作用,传播速度比在真空中稍小一些 2 光的微粒性:用每个光子具有的能量E作为表征 光子的能量与频率成正比,与波长成反比 H是普朗克常数,其值等于6.6262*10-34 J*s 能量E的单位常用电子伏特(eV)和焦耳(J)表示 电磁辐射与物质的相互作用包括以下两种: 1 涉及物质内能变化的:吸收、产生荧光、磷光、拉曼散射 2 不涉及物质内能变化的:透射、折射、非拉曼散射、衍射、旋光 当辐射通过固体、液体或气体等透明介质时,电磁辐射的交变电场导致分子(或原子)外层电子相对其核的震荡,造成这些分子(或原子)周期性的变化 1如果入射的电磁辐射能量正好与介质分子(或原子)基态与激发态之间的能量差相等,介质分子(或原子)就会选择性地吸收这部分辐射能,从基态跃迁到激发态(激发态的寿命很短) 处于激发态的分子(或原子)通常以(1)热的形式(2)发生化学变化(光化学变化)(3)以荧光及磷光的形式发射出所吸收的能量并回到基态 2 如果入射的电磁辐射能量与介质分子(或原子)基态与激发态之间的能量差不相等,则电磁辐射不被吸收,分子(或 原子)极化所需的能量仅被介质分子(或原子)瞬间保留,然后被再发射,从而产生光的透射、非拉曼发射、反射、折射等物理现象 第二节 光学分析法的分类 一、常用的光学分析方法

铝合金压铸件主要缺陷特征(内容清晰)

铝合金压铸件主要缺陷特征、形成原因及防止、补救方法 缺陷名称缺陷特 征及发 现方法 形成原因防止办法及补救措施 1、化学成份不合格主要合 金元素 或杂质 含量与 技术要 求不符, 在对试 样作化 学分析 或光谱 分析时 发现。 1、配料计算不正确,元素烧损量考虑太少, 配料计算有误等;2、原材料、回炉料的成 分不准确或未作分析就投入使用; 3、配料时称量不准; 4、加料中出现问题,少加或多加及遗漏料 等; 5、材料保管混乱,产生混料; 6、熔炼操作未按工艺操作,温度过高或熔 炼时间过长,幸免于难烧损严重; 7、化学分析不准 确。 1、对氧化烧损严重的金 属,在配料中应按技术标 准的上限或经验烧损值上 限配料计算;配料后并经 过较核; 2、检查称重和化学分析、 光谱分析是否正确; 3、定期校准衡器,不准确 的禁用; 4、配料所需原料分开标注 存放,按顺序排列使用; 5、加强原材料保管,标识 清晰,存放有序; 6、合金液禁止过热或熔炼 时间过长; 7、使用前经炉前分析,分 析不合格应立即调整成 分,补加炉料或冲淡; 8、熔炼沉渣及二级以上废 料经重新精炼后掺加使 用,比例不宜过高; 9、注意废料或使用过程 中,有砂粒、石灰、油漆 混入。 2、气孔铸件表 面或内 部出现 的大或 小的孔1、炉料带水气,使熔炉内水蒸气浓度增加; 2、熔炉大、中修后未烘干或烘干不透; 3、合金液过热,氧化吸气严重; 4、熔炉、浇包工具氧等未烘干; 5、脱模剂中喷涂过重或含发气量大; 1、严禁把带有水气的炉料 装入炉中,装炉前要在炉 边烘干; 2、炉子、坩埚及工具未烘 干禁止使用;

比较规则;有分散的和比较集中的两类;在对铸件作X 光透视或机械加工后可发现。7、煤、煤气及油中的含水量超标。机时间要把炉调至保温状 态; 4、精炼剂、除渣剂等未烘 干禁止使用,使用时禁止 对合金液激烈搅拌; 5、严格控制钙的含量; 6、选用挥发性气体量小的 脱模剂,并注意配比和喷 涂量要低; 7、未经干燥的氯气等气体 和未经烘干的氯盐等固体 不得使用。 3、涡流孔铸件内 部的细 小孔洞 或合金 液流汇 处的大 孔洞。在 机械加 工或X光 透视时 可现。 1、合金液导入型腔的方向不正确,冲刷型 腔壁或型芯,产生涡流,包住了空气; 2、压射速度太快,由浇料口卷入了气体; 3、内浇口过薄,合金液运动速度太大,产 生喷射、飞溅现象,过早的堵住了排气槽; 4、模具的排气槽位置不对,或出口截面太 小,使模具的排气能力差,型腔的气垫反 压大; 5、模具内型腔位置太深,而排气槽位置不 当或太少; 6、冲头与压室间的间隙太小,冲头返回太 快时形成真空,回抽尚未冷凝的合金液形 成气孔;或冲头返回太快; 7、压室容量大而浇注的合金液量太少。 1、改变合金液注入型腔的 方向或位置,使合金液先 进入型腔的深高部位或底 层宽大部位,将其部位的 型腔空气压入排气槽中, 在合金液充满型腔之前, 不能堵住排气槽; 2、调试压射速度和快压位 置,在能充实的前提下, 尽可能缩短二速距离; 3、在保证不产生飞溅、喷 射并能充满型腔的情况 下,加大内浇口的进口厚 度; 4、加强型腔的排气能力: (1)安放排气槽的位置应 考虑不会被先进入的合金 液所堵死;(2)增设溢流 槽,注意溢流槽与工件件 衔接处不宜过厚,否则过 早堵住而周边产生气孔; (3)采用镶拼块结构,把

铝合金铸造方式

离心铸造 一、概述 离心铸造是将液体金属浇入旋转的铸型中,使液体金属在离心力的作用下充填铸型和凝 固形成的一种铸造方法。 为实现上述工艺过程,必须采用离心铸造机创造使铸旋转的条件。根据铸型旋转轴在空间位置的不同,常用的有立式离心铸造机和卧式离心铸造机两种类型。 立式离心铸造机上的铸型是绕垂直轴旋转的(图1),它主要用来生产高度小于直径的圆环类铸件,有时也可用此种离心铸造机浇注异形铸件。 卧式离心铸造机的铸型是绕水平轴旋转的(图2),它主要用来生产长度大于直径的套 类和管类铸件。 图1 立式离心铸造示意图 图1 立式离心铸造示意图 1-浇包 2-铸型 3-液体金属 4-皮带轮和皮带 5-旋转轴 6-铸件 7-电动机 图2 卧式离心铸造示意图 1-浇包 2-浇注槽 3-铸型 4-液体金属 5-端差 6-铸件 由于离心铸造时,液体金属是在旋转情况下充填铸型并进行凝固的,因而离心铸造便具有下 述的一些特点:

1)液体金属能在铸型中形成中空的圆柱形自由表面,这样便可不用型芯就能铸出中空的 铸件,大大简化了套筒,管类铸件的生产过程; 2)由于旋转时液体金属所产生的离心力作用,离心铸造工艺可提高金属充镇铸型的能力,因此一些流动性较差的合金和薄壁铸件都可用离心铸造法生产; 3)由于离心力的作用,改善了补缩条件,气体和非金属夹杂也易于自液体金属中排出,因此离心铸件的组织较致密,缩孔(缩松)、气孔、夹杂等缺陷较少; 4)消除或大大节省浇注系统和冒口方面的金属消耗; 5)铸件易产生偏析,铸件内表面较粗糙。内表面尺寸不易控制。 离心铸造的第一个专利是在1809年由英国人爱尔恰尔特(Erchardt)提出的,直到二十世纪初期这一方法在生产方面才逐步地被采用。我国在三十年代也开始利用离心管、筒类铸件如铁管、铜套、缸套、双金属钢背铜套等方面,离心铸造几乎是一种主要的方法;此外在耐热钢辊道、一些特殊钢无缝纲管的毛坯,造纸机干燥滚筒等生产方面,离心铸造法也用得很有成效。目前已制出高度机械化、自动化的离心铸造机,已建起大量生产的机械化离心铸管车间。 几乎一切铸造合金都可用于离心铸造法生产,离心铸件的最小内径可达8毫米,最大直径可达3m,铸件的最大长度可达8m,离心铸件的重量范围为几牛至几万牛(零点几公斤至十多 吨)。 二、离心铸造工艺 1)离心铸型转速的选择 选择离心铸型的转速时,主要应考虑两个问题:(1)离心铸型的转速起码应保证液体金属在进入铸型后立刻能形成圆筒彩,绕轴线旋转;(2)充分利用离心力的作用,保证得到良好的铸件内部质量,避免铸件内产生缩孔、缩松、夹杂和气孔。 采用砂型离心铸造时,也要注意忽使液体金属对型壁具有太大的离心压力而引起铸件粘 砂胀砂等的缺陷。 2)离心铸造用铸型 离心铸造时使用的铸型有两大类,即金属型和非金属型。非金属型可为砂型、壳型、熔模壳型等。由于金属型在大量生产、成批生产时具有一系列的优点,所以在离心铸造时广泛地采 用金属型。 卧式悬臂离心铸造机上的金属型按其主体的结构特点可分为单层金属型和双层金属型两种。在单层金属型中,型壁由一层组成,单层金属型结构简单,操作方便,但它损坏后需要制作新的铸型才能开始生产,在此铸型中只能浇注单一外径尺寸的铸件。而在双层金属型中,型壁由两层组成,铸件在内型表面成形。双层金属型结构虽复杂性,但只要改变内型的工作表面尺寸就可浇注多种外径尺寸的离心铸件。长期工作后,只需更换结构较简单的内型就可把旧铸型当作新 的铸型使用。

铸造铝合金缺陷及分析

铸造铝合金缺陷及分析 一氧化夹渣 缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。断口多呈灰白色或黄色,经x光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现 产生原因: 1.炉料不清洁,回炉料使用量过多 2.浇注系统设计不良 3.合金液中的熔渣未清除干净 4.浇注操作不当,带入夹渣 5.精炼变质处理后静置时间不够 防止方法: 1.炉料应经过吹砂,回炉料的使用量适当降低 2.改进浇注系统设计,提高其挡渣能力 3.采用适当的熔剂去渣 4.浇注时应当平稳并应注意挡渣 5.精炼后浇注前合金液应静置一定时间 二气孔气泡 缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有时呈油黄色。表面气孔、气泡可通过喷砂发现,内部气孔气泡可通过X光透视或机械加工发现气孔气泡在X光底片上呈黑色 产生原因: 1.浇注合金不平稳,卷入气体 2.型(芯)砂中混入有机杂质(如煤屑、草根马粪等) 3.铸型和砂芯通气不良 4.冷铁表面有缩孔 5.浇注系统设计不良 防止方法: 1.正确掌握浇注速度,避免卷入气体。 2.型(芯)砂中不得混入有机杂质以减少造型材料的发气量 3.改善(芯)砂的排气能力 4.正确选用及处理冷铁 5.改进浇注系统设计 三缩松 缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具有大平面的薄壁处。在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在x光底片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍断口等检查方法发现
产生原因: 1.冒口补缩作用差 2.炉料含气量太多 3.内浇道附近过热 4.砂型水分过多,砂芯未烘干 5.合金晶粒粗大

铝铸件常见缺陷及分析

. 铝铸件常见缺陷及分析 -------------------------------------------------------------------------------- 氧化夹渣一 缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。断口多呈灰白色 光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现或黄色,经x 产生原因:.炉料不清洁,回炉料使用量过多1 浇注系统设计不良2. 3.合金液中的熔渣未清除干净4.浇注操作不当,带入夹渣5.精炼变质处理后静置时间不够防止方法:1.炉料应经过吹砂,回炉料的使用量适当降低2.改进浇注系统设计,提高其挡渣能力3.采用适当的熔剂去渣4.浇注时应当平稳并应注意挡渣.精炼后浇注前合金液应静置一定时间5 气泡二气孔一般是发亮的氧化皮,具有光滑的表面,缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,光透视或机械加X有时呈油黄色。表面气孔、气泡可通过喷砂发现,内部气孔气泡可通过光底片上呈黑色气泡在X工发现气孔产生原因:.浇注合金不平稳,卷入气体1) 马粪等如煤屑、草根芯)砂中混入有机杂质(.型2( 3.铸型和砂芯通气不良4.冷铁表面有缩孔5.浇注系统设计不良:防止方法1.正确掌握浇注速度,避免卷入气体。砂中不得混入有机杂质以减少造型材料的发气量(芯)2.型砂的排气能力芯)3.改善( 4.正确选用及处理冷铁5.改进浇注系统设计缩松三缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具 光底x在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在有大平面的薄壁处。断口等检查方法发现片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍产生原因:1.冒口补缩作用差2.炉料含气量太多. . .内浇道附近过热3 .砂型水分过多,砂芯未烘干4 5.合金晶粒粗大6.铸件在铸型中的位置不当7.浇注温度过高,浇注速度太快 防止方法: 1.从冒口补浇金属液,改进冒口设计 2.炉料应清洁无腐蚀 3.铸件缩松处设置冒口,安放冷铁或冷铁与冒口联用 4.控制型砂水分,和砂芯干燥 5.采取细化品粒的措施 6.改进铸件在铸型中的位置降低浇注温度和浇注速度 四裂纹 缺陷特征: 1.铸造裂纹。沿晶界发展,常伴有偏析,是一种在较高温度下形成的裂纹在体积收缩较大的合金和形状较复杂的铸件容易出现 2.热处理裂纹:由于热处理过烧或过热引起,常呈穿晶裂纹。常在产生应力和热膨张系数较大的合金冷却过剧。或存在其他冶金缺陷时产生 产生原因:1.铸件结构设计不合理,有尖角,壁的厚薄变化过于悬殊 2.砂型(芯)退让性不良 3.铸型局部过热

第2章 光谱分析法概论

第2章 光谱分析法概论 根据物质发射的电磁辐射或物质与辐射的相互作用建立起来的一类仪器分析方法,统称 为光学分析法。 光是电磁辐射(又称电磁波),是一种不需要任何物质作为传播媒介就可以以巨大速度通 过空间的光子流(量子流),具有波粒二象性(波动性与微粒性)。 光的波动性体现在反射、折射、干涉、衍射以及偏振等现象。波长λ 、波数σ 和频率υ 相互关系为:λν/c = 和c //1νλσ==,c =2.997925×1010cm/s 。 光的微粒性体现在吸收、发射、热辐射、光电效应、光压现象以及光化学作用等方面, 用每个光子具有的能量E 作为表征。光子的能量与频率成正比,与波长成反比,关系为: σλνhc hc h E ===/ 从γ 射线一直至无线电波都是电磁辐射,光是电磁辐射的一部分,若把电磁辐射按照波 长或频率的顺序排列起来,就可得到电磁波谱(electromagnetic spectrum )。 波长在360~800nm 范围的光称为可见光,具有同一波长、同一能量的光称为单色光,由 不同波长的光组合成的称为复合光。 复合光在与物质相互作用时,表现为其中某些波长的光被物质所吸收,另一些波长的光 透过物质或被物质所反射,透过物质的光(或反射光)能被人眼观察到的即为物质所呈现的颜色。不同波长的光具有不同的颜色,物质的颜色由透射光(或发射光)的波长所决定。 当物质与辐射能相互作用时,其内部的电子、质子等粒子发生能级跃迁,对所产生的辐 射能强度随波长(或相应单位)变化作图,所得到的谱图称为光谱(也称波谱)。 利用物质的光谱进行定性、定量和结构分析的方法称为光谱分析法或光谱法。 以测量气态原子或离子外层或内层电子能级跃迁所产生的原子光谱为基础的成分分析方 法为原子光谱法, 由分子中电子能级(n )、振动能级(v )和转动能级(J )的变化而产生的光谱为基础的 定性、定量和物质结构分析方法为分子光谱法。有紫外-可见分光光度法(UV-Vis ),红外吸收光谱法(IR ),分子荧光光谱法(MFS )和分子磷光光谱法(MPS )等。 物质吸收相应的辐射能而产生的光谱为吸收光谱。利用物质的吸收光谱进行定性、定量 及结构分析的方法称为吸收光谱法。 物质受激,跃迁到激发态M*后,由激发态回到基态时以辐射的方式释放能量,而产生 的光谱为发射光谱。物质发射的光谱有三种:线状光谱、带状光谱和连续光谱。 利用测量物质的发射光谱的波长和强度进行定性、定量的方法称为发射光谱法。 用于研究吸收、发射或荧光的电磁辐射强度和波长关系的仪器叫做光谱仪或分光光度计, 一般包括五个基本单元:光源、单色器、样品池、检测器和读出器。 单色器的主要作用是将来自光源的连续光谱(复合光)分解并分离出所需要的单色光(即 仅含特定波长的光)或有一定宽度的谱带,由入射狭缝和出射狭缝、准直镜、聚焦镜以及色散元件(如棱镜或光栅)等组成,分色散型和干涉型。 当一束波长为λ 的平行单色光(强度为I 0)通过任何均匀、非散射的固体、液体或气体 介质时,光的强度由I 0减弱为I t ,定义I t 与I 0的比值为透光率(transmittance ,0t I I T = ),其

关于光谱分析法导论.doc

第二章光谱分析法导论 一 .教学内容 1 .电磁辐射及电磁波谱的概念、特性及相关物理量 2 .物质与电磁辐射相互作用及相关的光谱学 3 .光学分析法的分类及特点 4 .光学分析法的基本仪器 二.重点与难点 1 .电磁辐射与电磁波谱的特殊 2 .各物理量的相互换算 3 .物质与电磁辐射相互作用的机制 4 .各种能级跃迁的概念及相应的光谱 三 .教学要求 1 .牢固掌握电磁辐射和电磁波谱的概念及性质 2 .熟练掌握电磁辐射各种物理量之间的换算 3 .清楚理解物质与电磁辐射相互作用所产生的各种光谱 4 .清晰光学分析法分类的线索 5 .了解光谱法的基本仪器部件 四.学时安排2学时 第一节光学分析法及其分类 光学分析法是根据物质发射的电磁辐射或电磁辐射与物质相互作用而建立起来的一类分析化学方法。 这些电磁辐射包括从射线到无线电波的所有电磁波谱范

( 不只局限于光学光谱区 ) 。电磁辐射与物质相互作用的方式有发射、吸收、反射、折射、散射、干涉、衍射、偏振等。 光学分析法可分为光谱法和非光谱法两大类。 光谱法是基于物质与辐射能作用时,测量由物质内部 发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐 射的波长和强度进行分析的方法。 光谱法可分为原子光谱法和分子光谱法。 原子光谱法是由原子外层或内层电子能级的变化产生的,它的表现形式为线光谱。属于这类分析方法的有原子发射光谱法 (AES )、原子吸收光谱法( A AS ),原子荧光光谱法( A FS )以及 X 射线荧光光谱法(X FS)等。 分子光谱法是由分子中电子能级、振动和转动能级的 变化产生的,表现形式为带光谱。属于这类分析方法的有紫 外 - 可见分光光度法( U V - Vi s),红外光谱法( IR ),分子荧光光谱法( M FS)和分子磷光光谱法( M PS)等。 非光谱法是基于物质与辐射相互作用时,测量辐射的某些 性质,如折射、散射、干涉、衍射、偏振等变化的分析方法。 本章主要介绍光谱法。 一、发射光谱法 物质通过电致激发、热致激发或光致激发等激发过程 获得能量,变为激发态原子或分子 M * ,当从激发态过渡到低能态或基态时产生发射光谱。 M *M + hv 通过测量物质的发射光谱的波长和强度进行定性和 定量分析的方法叫做发射光谱分析法。 根据发射光谱所在的光谱区和激发方法不同,发射光谱法分为: 1.射线光谱法

相关文档
相关文档 最新文档