文档库 最新最全的文档下载
当前位置:文档库 › 1-3机械能守恒定律

1-3机械能守恒定律

1-3机械能守恒定律
1-3机械能守恒定律

(时间:60分钟满分:100分)

命题报告(教师用书独具)

考点题号

机械能守恒定律的应用1、4、6、8

功能关系的理解及应用2、7

能量守恒定律及传送带问题9、10

功和能的综合问题3、5

一、选择题(

正确,把正确选项前的字母填在题后的括号内)

1.如图是被誉为“豪小子”的华裔球员林书豪在NBA赛场上投球的照片.现假设林书豪准备投球前先曲腿下蹲再竖直向上跃起,已知林书豪的质量为m,双脚离开地面时的速度为v,从开始下蹲到跃起过程中重心上升的高度为h,则下列说法正确的是()

A.从地面跃起过程中,地面对他所做的功为0

B.从地面跃起过程中,地面对他所做的功为1

2m v

2+mgh

C.从下蹲到离开地面上升过程中,他的机械能守恒

D.离开地面后,他在上升过程中处于超重状态;在下落过程中处于失重状态

解析:从地面跃起过程中,地面对人的支持力没有向上的位移,所以这个力

不做功,故A对B错.从下蹲到上升过程中,人的机械能增加,故C错误.离开地面后,无论上升过程还是下降过程,人总处于失重状态,故D错误.答案:A

2.如图所示,置于足够长斜面上的盒子A内放有光滑球B,B恰与盒子前、后壁接触,斜面光滑且固定于水平地面上.一轻质弹簧的一端与固定在斜面上的木板P拴接,另一端与A相连.今用外力推A使弹簧处于压缩状态,然后由静止释放,则从释放盒子直至其获得最大速度的过程中()

A.弹簧的弹性势能一直减小直至为零

B.A对B做的功等于B机械能的增加量

C.弹簧弹性势能的减少量等于A和B机械能的增加量

D.A所受重力和弹簧弹力做功的代数和小于A动能的增加量

解析:对于盒子A,由静止释放直至其获得最大速度的过程中,弹簧弹力总大于重力沿斜面向下的分力且做正功,达到最大速度时,弹簧弹力等于重力沿斜面向下的分力.因此,达到最大速度时,弹簧仍被压缩,弹性势能不等于零,选项A错误.对于B,除了重力做功外,盒子A对B的弹力也做了功,由功能关系可得,B的机械能的增加量等于A对B做的功,选项B正确.对于弹簧、盒子和光滑球B组成的系统,机械能守恒,弹簧减少的弹性势能等于A和B机械能的增加量,选项C正确.对于A,根据动能定理,A所受重力、弹簧弹力及B 对A的弹力做的总功等于A的动能的增加量,而B对A的弹力做了负功,因此,A所受重力和弹簧弹力做功的代数和大于A动能的增加量,选项D错误.答案:BC

3.(2013年深圳二模)如图所示,匀强电场方向水平向右,将一个带正电的小球以一定的初速度竖直向上抛出,从抛出到小球上升至最高点的过程中(不计空气阻力),下列说法正确的是()

A.小球机械能在逐渐减少

B.小球机械能的增加量等于其电势能的减少量

C.小球动能的减少量等于其重力势能的增加量

D.小球动能的改变量等于其受到的重力和静电力所做功的代数和

解析:此过程静电力对小球做正功,机械能增加,A错;小球机械能的增加量等于静电力所做的功,即电势能的减少量,B对;动能的减少量应等于重力势能增加量和电势能减少量之和,即静电力和重力做功的代数和,C错、D对.答案:BD

4.(2013年浙江省五校联盟联考)如图所示,重10 N的滑块在倾角为30°的斜面上,从a点由静止开始下滑,到b点开始压缩轻弹簧,到c点时达到最大速度,到d点(图中未画出)开始弹回,返回b点离开弹簧,恰能再回到a点.若bc=0.1 m,弹簧弹性势能的最大值为8 J,(g取10 m/s2)则()

A.轻弹簧的劲度系数是50 N/m

B.从d到a滑块克服重力做功8 J

C.滑块动能的最大值为8 J

D.从d到c弹簧的弹力做功8 J

解析:滑块从a点由静止开始下滑,最后又恰好回到a点,滑块的机械能守恒,说明斜面是光滑的,滑块到达c点时达到最大速度,此时滑块受力平衡,即mg sin 30°=k·x bc,解得k=50 N/m,选项A正确;对于滑块从a到d的过程中,据动能定理得W G+W弹=0,根据功能关系可知,弹簧的弹性势能等于滑块克服弹簧弹力做的功,W弹=-8 J,因此从a到d滑块重力做了8 J的功,那么从d

到a 滑块克服重力做功8 J ,则选项B 正确;滑块从d 至b ,弹簧弹力做功8 J ,

很显然选项D 错误;对滑块由机械能守恒定律E p a =E p c +E p 弹+12m v 2c ,滑块动能

的最大值小于8 J ,选项C 错误.

答案:AB

5.引力做功与引力势能的变化同重力做功和重力势能的变化关系类似.物

体在引力场中具有的能叫做引力势能(定义为E p =-GMm r ),G 为引力常量,M

为地球的质量,m 为物体的质量,r 为物体到地球中心的距离,物理学中经常把无穷远处定为引力势能的零势能点.若一颗质量为m 的人造地球卫星以圆形轨道环绕地球飞行,由于受空气阻力的作用,当卫星的轨道半径从r 1减小到r 2,空气阻力做的功为W Ff .在下面给出W Ff 的四个表达式中正确的是( )

A .W Ff =-GMm (1r 1-1r 2

) B .W Ff =-

2GMm 3(1r 2-1r 1) C .W Ff =-GMm 3(1r 1-1r 2

) D .W Ff =-GMm 2(1r 2-1r 1

) 解析:根据能量守恒,空气阻力做的功W Ff 的绝对值应该等于卫星机械能的变化,不应只是引力势能的变化,选项A 错误;空气阻力做的功W Ff 应该是负值,

选项C 错误;卫星在轨道上做匀速圆周运动,根据万有引力提供向心力GMm r 2=

m v 2r ,动能为E k =12m v 2=12GMm r ,机械能为E =E k +E p =12GMm r -GMm r =-12GMm r ,

由功能关系W 其他=ΔE 机,得W Ff =GMm 2r 1-GMm 2r 2=-GMm 2(1r 2-1r 1

),故B 错误、D 正确.

答案:D

6.(2013年东北三校一模)如图所示,两根等长的细线拴着两个小球在竖直平面内各自做圆周运动.某一时刻小球1运动到自身轨道的最低点,小球2恰好运

动到自身轨道的最高点,这两点高度相同,此时两小球速度大小相同.若两小球质量均为m ,忽略空气阻力的影响,则下列说法正确的是( )

A .此刻两根线拉力大小相同

B .运动过程中,两根线上拉力的差值最大为2mg

C .运动过程中,两根线上拉力的差值最大为10mg

D .若相对同一零势能面,小球1在最高点的机械能等于小球2在最低点的机械能

解析:已知小球质量为m ,当两小球运动到题中图示位置时,设两球速度大

小为v ,此时两根细线的拉力分别为F 1和F 2,F 1-mg =m v 2L ,F 2+mg =m v 2L ,故

选项A 错误.易知小球1在最高点时细线的拉力F 1′最小,设此时速度大小为

v 1,则有F 1′+mg =m v 21L ,再由机械能守恒定律有:12m v 2=12

m v 21+2mgL ;小球2在最低点时细线的拉力F 2′最大,设此时速度大小为v 2,则有F 2′-mg =m v 22L ,

再由机械能守恒定律有:12m v 22=12m v 2+2mgL ,联立解得,运动过程中两根线上

拉力的差值最大为F 2′-F 1′=2mg +m v 22-v 21L =2mg +8mg =10mg ,故选项C

正确,B 错误.取题中图示位置为零势能面,由机械能守恒定律知选项D 正确.

答案:CD

7.(2013年高考江苏单科)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O 点(图中未标出).物块的质量为m ,AB =a ,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O 点拉至A 点,拉力做的功为W .撤去拉力后物块由静止向左运动,经O 点到达B 点时速度为零.重力加速度为g .则上述过程中( )

A.物块在A点时,弹簧的弹性势能等于W-1

2μmga

B.物块在B点时,弹簧的弹性势能小于W-3

2μmga

C.经O点时,物块的动能小于W-μmga

D.物块动能最大时弹簧的弹性势能小于物块在B点时弹簧的弹性势能

解析:由于有摩擦,O点不在AB的中点,而是在AB中点的左侧(如图所示).由

题知AB=a,OA>a

2,OB<a

2.根据功能关系,物块在A点时,弹簧的弹性势能

E p=W-μmgOA<W-1

2μmga,选项A错误;物块在B点时,弹簧的弹性势能E p′

=E p-μmga=W-μmgOA-μmga<W-3

2μmga,选项B正确;物块在O点的动能E k=E p-μmgOA=W-2μmgOA<W-μmga,选项C正确;物块动能最大时,弹簧的弹力kx=μmg,此时物块处于M点(如图所示),若M′左侧光滑,则物块能运动至M点速度为零,则OM′=OM,由于存在摩擦,OB<OM,故物块动能最大时弹簧的弹性势能大于物块在B点时弹簧的弹性势能,选项D错误.

答案:BC

二、非选择题(本题共3小题,共51分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)

8.(15分)(2013年高考浙江理综)山谷中有三块石头和一根不可伸长的轻质青藤,其示意图如下.图中A、B、C、D均为石头的边缘点,O为青藤的固定点,h1=1.8 m,h2=4.0 m,x1=4.8 m,x2=8.0 m.开始时,质量分别为M=10 kg和m=2 kg的大、小两只滇金丝猴分别位于左边和中间的石头上,当大猴发现小猴将受到伤害时,迅速从左边石头的A点水平跳至中间石头.大猴抱起小猴跑到C 点,抓住青藤下端,荡到右边石头上的D点,此时速度恰好为零.运动过程中猴子均可看成质点,空气阻力不计,重力加速度g=10 m/s2.求:

(1)大猴从A 点水平跳离时速度的最小值;

(2)猴子抓住青藤荡起时的速度大小;

(3)猴子荡起时,青藤对猴子的拉力大小.

解析:(1)设猴子从A 点水平跳离时速度的最小值为v min ,根据平抛运动规律,有

h 1=12gt 2①

x 1=v min t ②

联立①、②式,得

v min =8 m/s ③

(2)猴子抓住青藤后的运动过程中机械能守恒,设荡起时速度为v C ,有

(M +m )gh 2=12(M +m )v 2C ④

v C =2gh 2=80 m/s ≈9 m/s ⑤

(3)设拉力为F T ,青藤的长度为L .对最低点,由牛顿第二定律得

F T -(M +m )g =(M +m )v 2C L ⑥

由几何关系

(L -h 2)2+x 22=L 2⑦

得:L =10m ⑧

综合⑤、⑥、⑧式并代入数据解得:F T =(M +m )g +(M +m )v 2C L =216 N.

答案:(1)8 m/s (2)约9 m/s (3)216 N

9.(2013年龙岩质检)(15分)如图a 所示,绷紧的水平传送带始终以恒定速率运行,质量为1 kg 的物体在传送带上滑动,物体经过A 点时开始计时,在传送带上运动的v t 图象如图b 所示(以地面为参考系),规定水平向右为正方向,取g =10 m/s 2,求:

(1)物体与传送带之间的动摩擦因数;

(2)0~8 s 内传送带对物体做的功W ;

(3)0~8 s 内因传送物体而使电动机多消耗的电能ΔE .

解析:(1)由图象可知,物体在传送带上滑动的加速度大小a =1 m/s 2,对物体受力分析,由牛顿第二定律得:μmg =ma

解得:μ=0.1.

(2)设0 s 和8 s 时刻物体的速度分别为v 1、v 2,由动能定理得:

W =12m v 22-12

m v 21=6 J. (3)在0~8 s 内因传送物体电动机多消耗的电能ΔE 转化为两部分,一部分转化为物体增加的动能ΔE k ,另一部分转化为物体与传送带之间的摩擦生热Q ,在0~8 s 内只有前6 s 发生相对滑动.0~6 s 内,传送带运动位移s 1=4×6=24 m

由图象可知物体在0~6 s 的运动位移

s 2=12×(2+4)×2 m =6 m

则在0~6 s 内传送带与物体的相对位移

Δs =s 1-s 2=18 m

所以Q=μmgΔs=18 J

动能的增量ΔE k=1

2m v 2

2

1

2m v

2

1

=6 J

所以因传送物体电动机多消耗的电能ΔE=Q+ΔE k=24 J.

答案:(1)0.1(2)6 J(3)24 J

10.(2013年河北省八市联考)(21分)如图所示,粗糙弧形轨道和两个光滑半圆轨道组成翘尾巴的S形轨道.光滑半圆轨道半径为R,两个光滑半圆轨道连接处CD之间留有很小空隙,刚好能够使小球通过,CD之间距离可忽略.粗糙弧形轨道最高点A与水平面上B点之间的高度为h.从A点静止释放一个可视为质点的小球,小球沿翘尾巴的S形轨道运动后从E点水平飞出,落到水平地面上,落点到与E点在同一竖直线上的B点的距离为s.已知小球质量m,不计空气阻力,求:

(1)小球从E点水平飞出时的速度大小;

(2)小球运动到半圆轨道的B点时对轨道的压力;

(3)小球沿翘尾巴S形轨道运动时克服摩擦力做的功.

解析:(1)小球从E点水平飞出做平抛运动,设小球从E点水平飞出时的速度大小为v E,由平抛运动规律,

s=v E t,4R=1

2gt

2

联立解得v E=s

42g R

(2)小球从B点运动到E点的过程,由机械能守恒

1

2m v 2

B =mg4R+

1

2m v

2

E

解得v2B=8gR+s2g

8R

在B点F-mg=m v2B

R

得F=9mg+mgs2

8R2

由牛顿第三定律可知小球运动到B点时对轨道的压力为

F′=9mg+mgs2

8R2

,方向竖直向下.

(3)设小球沿翘尾巴的S形轨道运动时克服摩擦力做的功为W,由动能定理

mg(h-4R)-W=1

2m v

2

E

得W=mg(h-4R)-mgs2

16R

答案:(1)s

4

2g

R(2)9mg+

mgs2

8R2,方向竖直向下(3)mg(h-4R)-

mgs2

16R

验证机械能守恒定律实验(吐血整理经典题)

实验:验证机械能守恒定律 1.下列关于“验证机械能守恒定律”实验的实验误差的说法中,正确的是 ( ) A .重物质量的称量不准会造成较大误差 B .重物质量选用得大些,有利于减小误差 C .重物质量选用得较小些,有利于减小误差 D .纸带下落和打点不同步不会影响实验 2.用如图所示装置验证机械能守恒定律,由于电火花计时器两限位孔不在同一竖直线上,使纸带通过时受到较大的阻力,这样实验造成的结果是( ) A .重力势能的减少量明显大于动能的增加量 B .重力势能的减少量明显小于动能的增加量 C .重力势能的减少量等于动能的增加量 D .以上几种情况都有可能 3.有4条用打点计时器(所用交流电频率为50 Hz)打出的纸带A 、B 、C 、D ,其中一条是做“验证机械能守恒定律”实验时打出的。为找出该纸带,某同学在每条纸带上取了点迹清晰的、连续的4个点,用刻度尺测出相邻两个点间距离依次为s 1、s 2、s 3。请你根据下列s 1、s 2、s 3的测量结果确定该纸带为(已知当地的重力加速度为9.791 m/s 2) ( ) A .61.0 mm 65.8 mm 70.7 mm B .41.2 mm 45.1 mm 53. 0mm C .49.6 mm 53.5 mm 57.3 mm D .60.5 mm 61.0 mm 60.6 mm

4.如图是用自由落体法验证机械能守恒定律时得到的一条纸带.有关尺寸在图中已注明.我们选中n 点来验证机械能守恒定律.下面举一些计算n 点速度的方法,其中正确的是( ) A .n 点是第n 个点,则v n =gnT B .n 点是第n 个点,则v n =g (n -1)T C .v n =s n +s n +1 2T D .v n =h n +1-h n -1 2T 5.某研究性学习小组在做“验证机械能守恒定律”的实验中,已知打点计时器所用电源的频率为50 Hz ,查得当地的重力加速度g =9.80 m/s 2。测得所用重物的质量为1.00 kg 。 (1)下面叙述中正确的是________。 A .应该用天平称出重物的质量 B .可选用点迹清晰,第一、二两点间的距离接近2 mm 的纸带来处理数据 C .操作时应先松开纸带再通电 D .打点计时器应接在电压为4~6 V 的交流电源上 (2)实验中甲、乙、丙三学生分别用同一装置得到三条点迹清晰的纸带,量出各纸带上第一、二两点间的距离分别为0.18 cm 、0.19 cm 、0.25 cm ,则可肯定________同学在操作上有错误,错误是________。若按实验要求正确地选出纸带进行测量,量得连续三点A 、B 、C 到第一个点O 间的距离分别为15.55 cm 、19.20 cm 和23.23 cm 。则当打点计时器打点B 时重物的瞬时速度v =________ m/s ;重物由O 到B 过程中,重力势能减少了________J ,动能增加了________J(保留3位有效数字), 6.在“验证机械能守恒定律”的实验中,图(甲)是打点计时器打出的一条纸带,选取

从不同角度理解机械能守恒定律解析

从不同角度理解机械能守恒定律 何卫国 前言:在只有重力或弹力做功的情形下,物体的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总量保持不变,这个结论叫做机械能守恒定律。它是力学中的一条重要定律,是更普遍的能量守恒定律的一种特殊情况。解决某些力学问题时,从能量的观点来分析,应用机械能守恒定律求解,往往比较简便,应用机械能守恒定律解题,首先要对它的本质有深入、全面的理解,下面将从三个不同的角度理解机械能守恒定律。 一、从守恒的角度理解 在所研究的过程中,任选两个不同的状态,研究对象的机械能必定相等,即E E 21=。通常我们关心的是一个过程的首、末两状态,此式也可理解成首、末两状态机械能相等,但应注意的是,首、末两状态机械能相等,不能保证研究对象在所研究过程中机械能一定守恒,只有在过程中任选一个状态,其机械能都保持恒定值时,研究对象的机械能才是守恒的。 例1. 质量为m 的物体沿光滑的轨道滑下,轨道的形状如图1所示,与斜轨道相接的半圆轨道半径为R ,要使物体沿半圆光滑轨道恰能通过最高点,物体应从离轨道最低处多高的地方由静止开始滑下? 图1 解析:物体在沿光滑的轨道滑动的整个过程中,只有重力做功,故物体机械能守恒,设物体应从离轨道最低点h 高的地方开始由静止滑下,取轨道的最低点处水平面为零势能面,物体在运动到半圆形轨道的最高点时速度为v ,根据机械能守恒定律得 mgh mv mgR = +1 2 22 要使物体恰好能通过半圆轨道的最高点,条件是 mg m v R =2 由以上两式得h R v g R =+=225 2 2 二、从转化的角度理解 在所研究的过程中,研究对象(或系统)动能的增加量等于势能(包括重力势能和弹性势能)的减少量;反之,研究对象(或系统)动能的减少量等于势能的增加量,即??E E k p =-。 例2. 如图2所示,跨过定滑轮的轻绳两端各系一个物体,B 物体的质量是A 物体质量的一半,在不计摩擦阻力的情况下,A 物体自H 高度处由静止开始下落,且B 物体始终在

机械能守恒定律练习题含答案

机械能守恒定律练习题 一、选择题(每题6分,共36分) 1、下列说法正确的是:(选CD ) A 、物体机械能守恒时,一定只受重力和弹力的作用。(是只有重力和弹力做功) B 、物体处于平衡状态时机械能一定守恒。(吊车匀速提高物体) C 、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒。(受到一对平衡力) D 、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。 2、两个质量不同而动能相同的物体从地面开始竖直上抛(不计空气阻力),当上升到同一高度时,它们(选C) A.所具有的重力势能相等(质量不等) B.所具有的动能相等 C.所具有的机械能相等(初始时刻机械能相等) D.所具有的机械能不等 3、一个原长为L 的轻质弹簧竖直悬挂着。今将一质量为m 的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是(选A ) A 、减少的重力势能大于增加的弹性势能(手对物体的支持力也有做功,根据合外力做功为0) B 、减少的重力势能等于增加的弹性势能 C 、减少的重力势能小于增加的弹性势能 D 、系统的机械能增加(动能不变,势能减小) 4、如图所示,桌面高度为h ,质量为m 的小球,从离桌面高H 处 自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到 地面前的瞬间的机械能应为(选B ) A 、mgh B 、mgH C 、mg (H +h ) D 、mg (H -h ) 6、质量为m 的子弹,以水平速度v 射入静止在光滑水平面上质量为M 的木块, 并留在其中,下列说法正确的是(选BD ) A.子弹克服阻力做的功与木块获得的动能相等(与木块和子弹的动能,还有热能) B.阻力对子弹做的功与子弹动能的减少相等(子弹的合外力是阻力) C.子弹克服阻力做的功与子弹对木块做的功相等 D.子弹克服阻力做的功大于子弹对木块做的功(一部分转化成热能) 二、填空题(每题8分,共24分) 7、从离地面H 高处落下一只小球,小球在运动过程中所受到的空气阻力是它重 力的k 倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为 H/k 。 8、如图所示,在光滑水平桌面上有一质量为M 的小车,小车跟 绳一端相连,绳子另一端通过滑轮吊一个质量为m 的砖码, 则当砝码着地的瞬间(小车未离开桌子)小车的速度大小为 在这过程中,绳的拉力对小车所做的功为________。 9、物体以100 k E J 的初动能从斜面底端沿斜面向上运动,当该物体经过斜面上某一点时,动能减少了80J ,机械能减少了32J ,则物体滑到斜面顶端时的机

机械能守恒定律公式汇总

机械能守恒定律单元公式汇总 做功: W=FS ·COS θ θ为力与位移的夹角 重力做功: G W =mg Δh Δh 为物体初末位置的高度差 重力势能:p E =mgh h 为物体的重心相对于零势面的高度 重力做功和重力势能变化的关系: G W =-Δp E 即重力做功与重力势能的变化量相反 弹性势能: p E =21k 2L L 为弹簧的形变量 弹力做功与弹性势能的关系: F W =-Δp E 即弹力做功与弹性势能的变化量相反 动能定理: 合W =Δk E =21m 22V -2 1m 21V 即合外力做功等于动能的变化量 合外力做功两种求解方式:1)先求合外力合F ,再求合F ·S ·COS θ 2)先求各个分力做功再求和,+++321W W W ....... 机械能守恒定律:条件:只有重力弹力做功 公式:末初E E =即初总机械能等于末机械能 变形公式:Δk E =-ΔP E 即动能的变化量与势能的变化量相反 如果是A 与B 的系统机械能守恒: 1)2211P K P K E E E E +=+即初的总机械能等于末的总机械能 2)Δk E =-ΔP E 即 Δ1k E +Δ2k E =-(Δ1P E +Δ2P E )即总的动能的变化量与总的势能的变化量相反 3)ΔA E =-ΔB E 即 Δ1k E +Δ1P E =-(Δ2k E +Δ2P E )即A 的总机械能变化量与B 的总机械能的变化量相反 能量守恒定律:末初E E =即初总能量等于末的总能量 机械能变化的情况:1)W=Δ机E 即除重力、系统内弹力外其他力做功的多少为机 械能变化量(即其他力给原有系统能量或消耗原有系统能量) 2)摩擦力做功对机械能影响: Q X F =相对f 即摩擦力乘以相对位移等于产生的热量(内能)即机械能的损失

高一物理机械能守恒定律练习试题及答案解析

机械能守恒定律计算题(基础练习) 班别:姓名: 1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F开始提升原来静止的质量为m=10kg的物体,以大小为a=2m/s2的加速度匀加速上升,求头3s内力F做的功.(取g=10m/s2) 图5-1-8 2.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?

图5-3-1 3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求: ①5s 内拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s 2) 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. 图5-2-5

图5-4-4 5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平 地面上,两桶内装有密度为ρ的同种液体, 阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功? 图5-3-2

机械能守恒定律计算题(基础)

机械能守恒定律计算题(基础练习) 1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F开始提升原来静止的质量为m=10kg的物体,以大小为a=2m/s2的加速度匀加速上升,求头3s内力F做的功.(取g=10m/s2) 图5-1-8 2.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?

图5-3-1 3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求: ①5s 内拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s 2) 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. F mg 图5-2-5

h 1 h 2 图5-4-4 5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀 门关闭时两桶液面的高度分别为h 1和h 2,现将 连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功? 图5-3-2

高中物理动能定理机械能守恒定律公式

高中物理动能定理机械能守恒定律公式高中物理动能定理机械能守恒定律公式 1、功的计算: 力和位移同(反)方向:W=Fl,功的单位:焦尔(J) 2、功率: 3、重力的功: 重力做功:为重力和竖直方向位移乘积W=mglcosα=mgh 重力势能:为重力和高度的乘积. Ep=mgh 位置高低与重力势能的变化: W=mglcosθ=mgh=mg(h2-h1) 4、动能定理: 物理意义:力在一个过程中对物体做功,等于物体在这个过程中动能的变化。注意:a、如果物体受多个力的作用,则W为合力做功。 b、适用于变力做功、曲线运动等,广泛应用于实际问题。 =EK2-EK1 5、机械能守恒定律:只有重力或弹力做功的系统内,动能和势能可以相互转化,而总的机械能保持不变。 EP1+EK1=EK2+EP2 6、能量守恒定律: 能量既不会消灭,也不会创生,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

高中物理动能定理知识点 做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W2+W3+……=½m vt2-½mv02 1.反映了物体动能的变化与引起变化的原因——力对物体所做 功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。 2.“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK<0表示动能减小. 3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等. 4.各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和. 5.力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理一些问题时,可在某一方向应用动能定理. 6.动能定理的表达式是在物体受恒力作用且做直线运动的情况 下得出的.但它也适用于变为及物体作曲线运动的情况.即动能定理对

机械能守恒定律计算题及答案(家教版)经典

图5-3-1 图5-4-4 机械能守恒定律计算题(期末复习) 1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F 开始提升原来静止的质量为m =10kg 的物体,以大小为a =2m /s 2 的加速度匀加速上升,求头3s 内力F 做的功.(取g =10m /s 2 ) 2.汽车质量5t ,额定功率为60kW ,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s 2 的加速度作匀加速直线运动,这一过程能维持多长时间? 3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求: ①5s 内拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s 2 ) 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. 5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功? 7.如图5-4-2使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ? 图5-2-5 图5-3-2 图5-1-8

高一物理下册 机械能守恒定律(篇)(Word版 含解析)

一、第八章 机械能守恒定律易错题培优(难) 1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针 转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为 210m/s 。下列说法正确的是( ) A .物块在传送带上运动的时间为2s B .物块在传送带上运动的时间为4s C .整个运动过程中由于摩擦产生的热量为16J D .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】 AB .滑块先向右匀减速,根据牛顿第二定律有 mg ma μ= 解得 22m/s a g μ== 根据运动学公式有 010v at =- 解得 13s t = 匀减速运动的位移 0106 3m 9m 8m 22 v x t L += =?==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移 2212m 1m 222 v x a ===? 用时 22 s 1s 2 v t a = == 向左运动时最后3m 做匀速直线运动,有

233 = s 1s 3 x t v == 即滑块在传送带上运动的总时间为 1234s t t t t =++= 物块滑离传送带时的速率为2m/s 。 选项A 错误,B 正确; C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为 110.211041J 6J f W f x x mg x x μ=--=--=-???-=-()()() 选项C 错误; D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为 114m l vt == 物体向左加速过程,传送带运动距离为 222m l vt == 即 121[]Q fS mg l x l x μ==++-()() 代入数据解得 28J Q = 选项D 正确。 故选BD 。 2.如图所示,竖直平面内固定两根足够长的细杆L 1、L 2,两杆分离不接触,且两杆间的距离忽略不计.两个小球a 、b (视为质点)质量均为m ,a 球套在竖直杆L 1上,b 杆套在水平杆L 2上,a 、b 通过铰链用长度为L 的刚性轻杆连接,将a 球从图示位置由静止释放(轻杆与L 2杆夹角为45°),不计一切摩擦,已知重力加速度为g .在此后的运动过程中,下列说法中正确的是 A .a 球和b 球所组成的系统机械能守恒 B .b 球的速度为零时,a 球的加速度大小一定等于g C .b 22gL +() D .a 2gL

知识讲解机械能守恒定律基础

机械能守恒定律 编稿:周军审稿:吴楠楠 【学习目标】 1.明确机械能守恒定律的含义和适用条件. 2.能准确判断具体的运动过程中机械能是否守恒. 3.熟练应用机械能守恒定律解题. 4.知道验证机械能守恒定律实验的原理方法和过程. 5.掌握验证机械能守恒定律实验对实验结果的讨论及误差分析. 【要点梳理】 要点一、机械能 要点诠释: (1)物体的动能和势能之和称为物体的机械能.机械能包括动能、重力势能、弹性势能。 (2)重力势能是属于物体和地球组成的重力系统的,弹性势能是属于弹簧的弹力系统的,所以,机械能守恒定律的适用对象是系统. (3)机械能是标量,但有正、负(因重力势能有正、负). (4)机械能具有相对性,因为势能具有相对性(须确定零势能参考平面),同时,与动能相关的速度也具有相对性(应该相对于同一惯性参考系,一般是以地面为参考系),所以机械能也具有相对性. 只有在确定了参考系和零势能参考平面的情况下,机械能才有确定的物理意义. (5)重力势能是物体和地球共有的,重力势能的值与零势能面的选择有关,物体在零势能面之上的势能是正值,在其下的势能是负值.但是重力势能差值与零势能面的选择无关. (6)重力做功的特点: ①重力做功与路径无关,只与物体的始、未位置高度筹有关. ②重力做功的大小:W=mgh.. ③重力做功与重力势能的关系:PG WE??△. 要点二、机械能守恒定律 要点诠释: (1)内容:在只有重力或弹力做功的物体系统内动能和势能可以相互转化,但机械能的总量保持不变,这个结论叫做机械能守恒定律. (2)守恒定律的多种表达方式. 当系统满足机械能守恒的条件以后,常见的守恒表达式有以下几种: ①1122kPkP EEEE???,即初状态的动能与势能之和等于末状态的动能与势能之和. ②Pk EE??△△或Pk EE??△△,即动能(或势能)的增加量等于势能(或动能)的减少量. ③△E A=-△E B,即A物体机械能的增加量等于B物体机械能的减少量. 后两种表达式因无需选取重力势能零参考平面,往往能给列式、计算带来方便. (3)机械能守恒条件的理解. ①从能量转化的角度看,只有系统内动能和势能相互转化,无其他形式能量之间(如内能)的转化 ②从系统做功的角度看,只有重力和系统内的弹力做功,具体表现在:

机械能守恒定律3种表达式_机械能量守恒定律公式汇总

机械能守恒定律3种表达式_机械能量守恒定律公式汇总 机械能守恒定律的概念在只有重力或弹力做功的物体系统内(或者不受其他外力的作用下),物体系统的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总能量保持不变。这个规律叫做机械能守恒定律。 机械能守恒定律(lawofconservationofmechanicalenergy)是动力学中的基本定律,即任何物体系统。如无外力做功,系统内又只有保守力(见势能)做功时,则系统的机械能(动能与势能之和)保持不变。外力做功为零,表明没有从外界输入机械功;只有保守力做功,即只有动能和势能的转化,而无机械能转化为其他能,符合这两条件的机械能守恒对一切惯性参考系都成立。这个定律的简化说法为:质点(或质点系)在势场中运动时,其动能和势能的和保持不变;或称物体在重力场中运动时动能和势能之和不变。这一说法隐含可以忽略不计产生势力场的物体(如地球)的动能的变化。这只能在一些特殊的惯性参考系如地球参考系中才成立。如图所示,若不考虑一切阻力与能量损失,滚摆只受重力作用,在此理想情况下,重力势能与动能相互转化,而机械能不变,滚摆将不断上下运动。 机械能守恒定律守恒条件机械能守恒条件是:只有系统内的弹力或重力所做的功。【即忽略摩擦力造成的能量损失,所以机械能守恒也是一种理想化的物理模型】,而且是系统内机械能守恒。一般做题的时候好多是机械能不守恒的,但是可以用能量守恒,比如说把丢失的能量给补回来。 从功能关系式中的WF外=△E机可知:更广义的机械能守恒条件应是系统外的力所做的功为零。 当系统不受外力或所受外力做功之和为零,这个系统的总动量保持不变,叫动量守恒定律。当只有动能和势能(包括重力势能和弹性势能)相互转换时,机械能才守恒。 机械能守恒定律的三种表达式1.从能量守恒的角度选取某一平面为零势能面,系统末状态的机械能和初状态的机械能相等。 2.从能量转化的角度系统的动能和势能发生相互转化时,若系统势能的减少量等于系统

7基础练习题(机械能守恒定律)

基础练习题(机械能守恒定律) 1.课外活动时,王磊同学在40 s的时间内做了25个引体向上,王磊同学的体重大约为50 kg,每次引体向上大约升高0.5 m,试估算王磊同学克服重力做功的功率大约为(g取10 N/kg)() A.100 W B.150 W C.200 W D.250 W 解析:每次引体向上克服重力做的功约为W1=mgh=50×10×0.5 J=250 J 40 s内的总功W=nW1=25×250 J=6 250 J 40 s内的功率P=W≈156 W。 答案:B 2.如图所示,质量为m的物体P放在光滑的倾角为θ的斜面体上,同时用力F向右推斜面体,使P与斜面体保持相对静止。在前进水平位移为l的过程中,斜面体对P做功为() A.Fl B.mg sin θ·l C.mg cos θ·l D.mg tan θ·l 解析:斜面对P的作用力垂直于斜面,其竖直分量为mg,所以水平分量为mg tan θ,做功为水平分量的力乘以水平位移。 答案:D 3.把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车辆叫作动车,把几节自带动力的车辆(动车)加几节不带动力的车辆(也叫拖车)编成一组,就是动车组,如图所示。假设动车组运行过程中受到的阻力与其所受重力成正比,每节动车与拖车的质量都相等,每节动车的额定功率都相等。若1节动车加3节拖车编成的动车组的最大速度为160 km/h;现在我国往返北京和上海的动车组的最大速度为480 km/h,则此动车组可能是() A.由3节动车加3节拖车编成的 B.由3节动车加9节拖车编成的 C.由6节动车加2节拖车编成的 D.由3节动车加4节拖车编成的 解析:设每节车的质量为m,所受阻力为kmg,每节动车的功率为P,已知1节动车加3节拖车编成的动车组的最大速度为v1=160 km/h,设最大速度为v2=480 km/h的动车组是由x节动车加y节拖车编成的,则有xP=(x+y)kmgv2,联立解得x=3y,对照各个选项,只有选项C正确。 答案:C 4. 如图所示,某段滑雪雪道倾角为30°,总质量为m(包括雪具在内)的滑雪运动员从距底端高为h 处的雪道上由静止开始匀加速下滑,加速度为g。在他从上向下滑到底端的过程中,下列说法

机械能守恒定律计算题与答案

机械能守恒定律计算题(期末复习) 1 ?如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力 F 开始提升原来 静止的质量为vm= 10kg 的物体,以大小为a = 2m )/s2的加速度匀加速上升, 求 头3s 力F 做的功.(取g = 10m /s2) 2. 汽车质量5t ,额定功率为60kW 当汽车在水平路面上行驶时,受到的阻力是车重的 0.1 倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?( 2)若汽车从静止开始, 保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间? 3. 质量是2kg 的物体,受到 24N 竖直向上的拉力,由静止开始运动,经 过5s ;求: ① 5s 拉力的平均功率 ② 5s 末拉力的瞬时功率(g 取10m/s2) mg 图 5-2-5 L F * 1 t

4. 一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行 段距离后停止,测得停止处对开始运动处的水平距离为S,如图5-3-1, 不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦 因数相同?求动摩擦因数卩. 图5-3- 1 5.如图5-3-2所示,AB为1/4圆弧轨道,半径为R=0.8m, BC是水平轨道,长S=3m BC处的摩擦系数为卩=1/15,今有质 量m=1kg的物体,自A点从静止起下滑到C点刚好停止.求物体 在轨道AB段所受的阻力对物体做的功? 图5-3-2

4. 一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行 6.如图5-4-4所示,两个底面积都是S的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上, 两桶装有密度为P的同种液体,阀门关闭时两桶液面的高度分别为 h1和h2,现将连接两桶的阀门打开,在两桶液面变为 相同高度的过程中重力做了多少功? 图5-4-4

实验:验证机械能守恒定律的例题解析

1.下列关于“验证机械能守恒定律”实验的实验误差的说法中,正确的是( ) A .重物质量的称量不准会造成较大误差 B .重物质量选用得大些,有利于减小误差 C .重物质量选用得较小些,有利于减小误差 D .纸带下落和打点不同步不会影响实验 解析:验证机械能守恒,即验证减少的重力势能是否等于增加的动能即mgh =12 m v 2,其中质量可以约去,没必要测量重物质量,A 不正确。当重物质量大一些时,空气阻力可以忽略,B 正确,C 错误。纸带先下落而后打点,此时,纸带上最初两点的点迹间隔较正常时略大,用此纸带进行数据处理,其结果是重物在打第一个点时就有了初动能,因此重物动能的增加量比重物重力势能的减少量大,D 错误。 答案:B 2.有4条用打点计时器(所用交流电频率为50 Hz)打出的纸带A 、B 、C 、D ,其中一条是做“验证机械能守恒定律”实验时打出的。为找出该纸带,某同学在每条纸带上取了点迹清晰的、连续的4个点,用刻度尺测出相邻两个点间距离依次为s 1、s 2、s 3。请你根据下列s 1、s 2、s 3的测量结果确定该纸带为(已知当地的重力加速度为9.791 m/s 2)( ) A .61.0 mm 65.8 mm 70.7 mm B .41.2 mm 45.1 mm 53. 0mm C .49.6 mm 53.5 mm 57.3 mm D .60.5 mm 61.0 mm 60.6 mm 解析:验证机械能守恒定律采用重锤的自由落体运动实现,所以相邻的0.02 s 内的位移增加量为Δs =gT 2=9.791×0.022 mm ≈3.9 mm ,只有C 符合要求。故选C 。 答案:C 3.某同学利用竖直上抛小球的频闪照片验证机械能守恒定律。频闪仪每隔 0.05 s 闪光一次,图实-7-11中所标数据为实际距离,该同学通过计算得到 不同时刻的速度如下表(当地重力加速度取10 m/s 2,小球质量m =0.2 kg ,结果 保留三位有效数字): (1)55。 (2)从t 2到t 5时间内,重力势能增加量ΔE p =________J ,动能减小量ΔE k =________J 。 图实-7-11 (3)在误差允许的范围内,若ΔE p 与ΔE k 近似相等,从而验证了机械能守恒定律。由上

高中物理电学公式 高中物理动能定理机械能守恒定律公式

高中物理电学公式高中物理动能定理机械能守恒定律公式 动能定理和机械能守恒定律公式是高中物理的重点内容和难点知识,同时在高考中占有很大的比重。下面小编给高中同学带来物理动能定理以及机械能守恒定律公式,希望对你有帮助。高中物理动能定理机械能守恒定律公式 1、功的计算: 力和位移同方向:W=Fl,功的单位:焦尔 2、功率: 3、重力的功: 重力做功:为重力和竖直方向位移乘积W=mglcosα=mgh 重力势能:为重力和高度的乘积. Ep=mgh 位置高低与重力势能的变化: W=mglcosθ=mgh=mg 4、动能定理: 物理意义:力在一个过程中对物体做功,等于物体在这个过程中动能的变化。注意:a、如果物体受多个力的作用,则W为合力做功。 b、适用于变力做功、曲线运动等,广泛应用于实际问题。=EK2-EK1 5、机械能守恒定律:只有重力或弹力做功的系统内,动能和势能可以相互转化,而总的机械能保持不变。 EP1+EK1=EK2+EP2 6、能量守恒定律: 能量既不会消灭,也不会创生,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。高中物理动能定理知识点 做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W2+W3+……=?mvt2-?mv02 1.反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。 2.“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK学好高中物理的方法 三个基本基本概念要清楚,基本规律要熟悉,基本方法要熟练。在学习物理的过程中,总结出一些简练易记实用的推论或论断,对帮助解题和学好物理是非常有用的。 独立做题要独立地,保质保量地做一些题。独立解题,可能有时慢一些,有时要走弯路,但这是走向成功必由之路。 物理过程要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图。画图能够变抽象思维为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。 上课上课要认真听讲,不走神。 笔记本上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识结构,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。 学习资料学习资料要保存好,作好分类工作,还要作好记号。学习资料的分类包括练习题、试卷、实验报告等等。 时间时间是宝贵的,没有了时间就什么也来不及做了,所以要注意充分利用时间,而利用时间是一门非常高超的艺术。

机械能守恒定律计算题与答案

机械能守恒定律计算题(期末复习) 1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F 开始提升原来静止的质量为m =10kg 的物体,以大小为a =2m /s2的加速度匀加速上升,求头3s 力F 做的功.(取g =10m /s2) 2.汽车质量5t ,额定功率为60kW ,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间? 3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求: ①5s 拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s2) 图 5-2-5 图5-1-8

图5-3-1 图5-4-4 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. 5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R=0.8m ,BC 是水平轨道,长S=3m ,BC 处的摩擦系数为μ=1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h1和h2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功? 图5-3-2

高中物理机械能守恒定律知识点总结

高中物理机械能守恒定律知识点总结(一) 一、功 1.公式和单位:,其中是F和l的夹角.功的单位是焦耳,符号是J. 2.功是标量,但有正负.由,可以看出: (1)当0°≤<90°时,0<≤1,则力对物体做正功,即外界给物体输送能量,力是动力; (2)当=90°时,=0,W=0,则力对物体不做功,即外界和物体间无能量交换. (3)当90°<≤180°时,-1≤<0,则力对物体做负功,即物体向外界输送能量,力是阻力.3、判断一个力是否做功的几种方法 (1)根据力和位移的方向的夹角判断,此法常用于恒力功的判断,由于恒力功W=Flcosα,当α=90°,即力和作用点位移方向垂直时,力做的功为零. (2)根据力和瞬时速度方向的夹角判断,此法常用于判断质点做曲线运动时变力的功.当力的方向和瞬时速度方向垂直时,作用点在力的方向上位移是零,力做的功为零. (3)根据质点或系统能量是否变化,彼此是否有能量的转移或转化进行判断.若有能量的变化,或系统内各质点间彼此有能量的转移或转化,则必定有力做功. 4、各种力做功的特点 (1)重力做功的特点:只跟初末位置的高度差有关,而跟运动的路径无关. (2)弹力做功的特点:对接触面间的弹力,由于弹力的方向与运动方向垂直,弹力对物体不做功;对弹簧的弹力做的功,高中阶段没有给出相关的公式,对它的求解要借助其他途径如动能定理、机械能守恒、功能关系等. (3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关,它可以做负功,也可以做正功,做正功时起动力作用.如用传送带把货物由低处运送到高处,摩擦力就充当动力.摩擦力

的大小不变、方向变化(摩擦力的方向始终和速度方向相反)时,摩擦力做功可以用摩擦力乘以路程来计算,即W=F·l. (1)W总=F合lcosα,α是F合与位移l的夹角; (2)W总=W1+W2+W3+?为各个分力功的代数和; (3)根据动能定理由物体动能变化量求解:W总=ΔEk. 5、变力做功的求解方法 (1)用动能定理或功能关系求解. (2)将变力的功转化为恒力的功. ①当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程的乘积,如滑动摩擦力、空气阻力做功等; ②当力的方向不变,大小随位移做线性变化时,可先求出力对位移的平均值=2F1+F2,再由W=lcosα计算,如弹簧弹力做功; ③作出变力F随位移变化的图象,图线与横轴所夹的?°面积?±即为变力所做的功; ④当变力的功率P一定时,可用W=Pt求功,如机车牵引力做的功. 二、功率 1.计算式 (1)P=tW,P为时间t内的平均功率. (2)P=Fvcosα 5.额定功率:机械正常工作时输出的最大功率.一般在机械的铭牌上标明. 6.实际功率:机械实际工作时输出的功率.要小于等于额定功率. 方恒定功率启动恒定加速度启动

机械能守恒定律 典型例题的解题技巧

一、单个物体的机械能守恒 判断一个物体的机械能是否守恒有两种方法: (1)物体在运动过程中只有重力做功,物体的机械能守恒。 (2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。 所涉及到的题型有四类: (1)阻力不计的抛体类。(2)固定的光滑斜面类。 (3)固定的光滑圆弧类。(4)悬点固定的摆动类。 (1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。 例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时 的速度大小? 分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等 2202 121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类 在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。 例,以初速度v 0 冲上倾角为光滑斜面,求物体在斜面上运动的距离是多少? 分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等

θsin 2120?==mgs mgh mv 得:θ sin 220g v s = (3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力 始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。 例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低 点至少具有多大的速度才能作一个完整的圆周运动? 分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等 2202 1221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度 为: Rg v t = 所以 gR v 50= (4)悬点固定的摆动类 和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。 例:如图,小球的质量为m ,悬线的长为L ,把小球拉开使悬线和竖直方向的 夹角为,然后从静止释放,求小球运动到最低点小球对悬线的拉力 分析:物体在运动过程中受到重力和悬线拉力的作用,悬线的拉力对物体不做功,所以只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体开始运动时和到达最低点时的机械能相等

人教版高一下册物理 机械能守恒定律(篇)(Word版 含解析)

一、第八章机械能守恒定律易错题培优(难) 1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为 0.2 μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到 v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。下列说法正确的是() A.小物块0 到4s内做匀加速直线运动,后做匀减速直线运动直至静止 B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止 C.物块在传送带上留下划痕长度为12m D.整个过程中小物块和传送带间因摩擦产生的热量为80J 【答案】ACD 【解析】 【分析】 【详解】 物块和传送带的运动过程如图所示。 AB.由于物块的加速度 a1=μg=2m/s2 小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间1 2 v t a ==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s 物块的位移 x1= 1 2 a1t12=9m 传送带的位移 x2= 1 2 a2t12=18m 两者相对位移为 121 x x x ?=-=9m 此后传送带减速,但物块仍加速,B错误; 当物块与传送带共速时,由匀变速直线运动规律得 12- a2t2=6+ a1t2

解得t 2=1s 因此物块匀加速所用的时间为 t 1+ t 2=4s 两者相对位移为2x ?= 3m ,所以A 正确。 C .物块开始减速的速度为 v 3=6+ a 1t 2=8 m/s 物块减速至静止所用时间为 3 31 v t a = =4s 传送带减速至静止所用时间为 3 42 v t a = =2s 该过程物块的位移为 x 3= 1 2 a 1t 32=16m 传送带的位移为 x 2= 1 2 a 2t 42=8m 两者相对位移为 3x ?=8m 回滑不会增加划痕长度,所以划痕长为 12x x x ?=?+?=9m+3m=12m C 正确; D .全程相对路程为 L =123x x x ?+?+?=9m+3m+8m=20m Q =μmgL =80J D 正确; 故选ACD 。 2.如图所示,ABC 为一弹性轻绳,一端固定于A 点,一端连接质量为m 的小球,小球穿在竖直的杆上。轻杆OB 一端固定在墙上,一端为定滑轮。若绳自然长度等于AB ,初始时ABC 在一条水平线上,小球从C 点由静止释放滑到E 点时速度恰好为零。已知C 、E 两点间距离为h ,D 为CE 的中点,小球在C 点时弹性绳的拉力为 2 mg ,小球与杆之间的动摩擦因数为0.5,弹性绳始终处在弹性限度内。下列说法正确的是( )

相关文档
相关文档 最新文档