文档库 最新最全的文档下载
当前位置:文档库 › 线性代数7

线性代数7

线性代数7
线性代数7

第七次课 线性方程组的解法 (2学时)

一 授课内容

消元法求齐次线性方程组的通解。 非齐次线性方程组的解的存在定理。 非齐次线性方程组通解的解法。

二 授课过程及说明

1 消元求齐次线性方程组的通解。

例4(1)求下面齐次线性方程组的通解

123412341

23240248203620

x x x x x x x x x x x +++=??

+++=??++=? 解:首先写出方程组的系数矩阵A ,然后把A 用行初等变换化成梯矩阵J

A =124112

41124124820000001033620001030000J ????????????=--??????

??????--??????

由J 可以看出r(A )=2而方程组未知元的个数n=4, r(A )=2

J=124

1001030000????--??????~31012410010000??????

????~310112050010000??-????????得到与原给方程组同解的

方程组

12434

20

0x x x x x +=??+=?15310- 此方程组改写成首非零元对应的未知数13x x ,具有唯一解的r r ?方程组形成(此

题中2r r A ==()),而其余的n r A -()个未知数24x x ,作为任意参数,被移至方程组的右端,即

15124

3103

42x x x x x =-+??=-? 再在该表达式中补上两个平凡的等式2244x x x x ==,令23x x ,分别是任意常数

12t t ,,从而得到方程组的通解,即

115512412221233101034

34442210001x x x x x x x t t x x x x x x =-+-?????????? ? ?

=??? ? ??=+??? ? ?=--??? ? ? ? ??=?????????

]

令1[2,1,0,0]T a =-,231510[,0,,1]T a =-,显然1a ,2a 均是所给齐次线性方程组的非平凡解,而且1t ,2t 任意一组具体值,都会确定出原方程组的一个具体的解,称通解式中这2个(())n r A -非零解向量1a ,2a 构成齐次线性方程组的基础解系。

91P 例4(2)、(3)解的过程类似,在课上看书,给予简要说明,并强调求解的步骤和过程的规范性。 2 非齐次线性方程组

m n ?非齐次线性方程组的矩阵—向量形式为 Ax b =

这里[]ij A a =,A 的维是m n ?,称为系数矩阵;[;],A A b A =的维是

(1)m n ?+,称为增广矩阵;1,[]T n x x x = 是n 维的未知数向量;

1,[]T m b b b = 是m 维自由项非零向量;与Ax b =具有相同系数矩阵的齐次线性方程组0Ax =,称为Ax b =对应齐次线性方程组。 [定理4]定理内容见92P

证明:对A 施以将A 变成梯形矩阵1N 的行初等变换,有

1[:][:]A A b N β= ,其中1,1,,[],T n ββββ= 于是得到Ax b =的同解方程组1N x β=。

(1) 当()()r A r A r ==时,必有10r m ββ+== 。若r n =,则在删除后

m r -个平凡方程后1N x β=成为系数矩阵是满秩阵的n n ?线性方程组,此时可求锝方程组的唯一解。

若r n <,而1N 各非零解的首非零元分别出现在1,2,,r i i i 列,则将

1N x β=中12,,r i i i x x x 以外的n r -个未知数移向右端作自由项(即任意参数)对待,可求出12,,r i i i x x x 从而得到方程组解的一般表达式,即通解式。自由未知数任意一组具体值,都会确定出原方程组的一个具体的解,故此时方程组有无限多个解。

(2) 当()()r A r r A =<时,12,r r m βββ++ 中至少有一个不为零,不妨

令10,r β+≠于是1N x β=中的第1r +个方程是:

121000n r x x x β+++=

这是矛盾方程,故此时,方程组没有解。 例6解下面的方程组

1234123412343133445980

x x x x x x x x x x x x +--=??

--+=??+--=?

解:用行初等变换将A 化成梯矩阵J

A

=1

1311113111131131344046710467115980046710

0000J ------??????

??????----=?????

???????-----??????

由J 看出()()2r A r A ==,故原方程组相容且在最后锝出的通解表达式中有()422n r A -=-=个任意参数。原方程组的等价方程组是:

123423431

4671x x x x x x x +--=??-++=?

由此方程组解出r 个未知元(这里2r =)我们解出12,x x

1234

234134167x x x x x x x +=++??-=--?

从而有

533424134

371

424234

x x x x x x =+-??=-+-?

值得指出的是在解出r 个未知数时,是当成r r ?方程组处理的,这时必须要求r r ?方程组的系数矩阵是满秩阵,这是选定待解未知数的根本原则。对于此题,欲解出2个未知数,我们选定12,x x 为待解未知数,而当

做为22?方程组处理的系数阵 是1104-??

??

-??

,这是2阶满秩阵。(是否可以选定34,x x 请读者自己思考)

我们再补上平凡等式3344,x x x x ==得到

533424134371424234

3344x x x x x x x x x x =+-??=-++??=??=

?

令3x 和4x 分别是任意参数1t 和2t ,从而得到方程组的通解

533424137142421234010001x x t t x x --?????????? ? ? ?

-??

? ? ?=++?? ? ? ??? ? ? ? ? ? ???????????

这里[]514400T

-是方程组的一个解,而[]33

2

2

10T

[]37

4

4

01T

-是对应齐次方程组的基础解系。

事实上,若分别以,,g p h x x x 表示方程组的通解,特解及对应齐次方程组的通解,则非齐次线性方程组的有如下结构式 g p h x x x =+

即“相容线性非齐次方程组的通解是由其某个解(特解)与对应齐次线性方程组的解叠加而成”。 例5 对方程组 1231232353218522kx x x x x kx k x x ++=??

++=-??+=?

问k 取何值时方程组有唯一解,无限多解或无解。在有无限多解时,求出通解。

解:根据方程组是""n n ?的特点,常可利用行列式 进行讨论

1111

det 32324(1)(3)012011

k k A k k k k -==-=--

故由克拉默法则知,当1k ≠且3k ≠时,方程组有唯一解。方程组解的另外两种情况一定是在k=1和k=3的时候,为此将k=1和k=3代入到原方程组之中,进一步讨论。 当k=1时,原方程组成为 123123235321322x x x x x x x x ++=??

++=??+=?

1115101332113~012201220000A -

-????

????=????????????

得13233

332x x x x x x =+??=-??=? 即123312201x x t x ????????????=+-?????????????????? 当k=3时,原方程组成为 1231232335323322311531153233~012201220004x x x x x x x x A -

++=??

++=??+=?

????

????=-????????????

此时,()2()3r A r A -

=≠=,方程组无解

总之,当1k ≠且3k ≠时,方程组有唯一解。 k=3时,方程组无解。

k=1时,方程组有无限多个解,通解是

[][]3,2,01,2,1T T

t +-

简要讲解本题的另一种解法(PP3,exp5的解法1)选讲习题3-4,3-5题。习题3-2,3-3作为思考题留给学生。 三 学时分配

齐次线性方程组的消元解法 25分钟 非齐次线性方程组解的存在定理 25分钟 非齐次线性方程组的通解求法 40分钟

线性代数试题与答案

2011-2012-2线性代数46学时期末试卷(A) 考试方式:闭卷 考试时间: 一、单项选择题(每小题 3分,共15分) 1.设A 为m n ?矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。 (A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222 123123 (,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型. (A ) 1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥. 4.初等矩阵(A ); (A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,, ,n ααα线性无关,则(C ) A. 12231,,,n n αααααα-+++必线性无关; B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关; C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关; D. 以上都不对。 二、填空题(每小题3分,共15分) 6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t 7.设矩阵020003400A ?? ? = ? ??? ,则1A -=

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

2019春北京大学网络教育学院线性代数作业答案

春季学期线性代数作业 一、选择题(每题2分,共20分) 1.(教材§1.1,课件第一讲)行列式(B )。 A.13 B.-11 C.17 D.-1 2.(教材§1.3,课件第二讲)下列对行列式做的变换中,(B )不会改变行列式的值。 A.将行列式的某一行乘以一个非零数 B.将行列式的某一行乘以一个非零数后加到另外一行 C.互换两行 D.互换两列 3.(教材§2.2,课件第四讲)若线性方程组无解,则a的值为( D )。 A.1 B.0 C.-1 D.-2 4.(教材§3.3,课件第六讲)下列向量组中,线性无关的是(C )。 A. B. C. D. 5.(教材§3.5,课件第八讲)下列向量组中,(D )不是的基底。 A. B. C. D.

6.(教材§4.1,课件第九讲)已知矩阵,矩阵和矩阵均为n阶矩阵,和均为实数,则下列结论不正确的是( A )。 A. B. C. D. 7.(教材§4.1,课件第九讲)已知矩阵,矩阵,则 ( C )。 A. B. C. D. 8.(教材§4.1,课件第九讲)已知矩阵,为矩阵,矩阵为矩阵,为实数,则下列关于矩阵转置的结论,不正确的是( D )。 A. B. C. D. 9.(教材§4.3,课件第十讲)下列矩阵中,(A )不是初等矩阵。 A. B. C. D. 10.(教材§5.1,课件第十一讲)矩阵的特征值是(B )。 A. B. C. D. 二、填空题(每题3分,共30分)

11.(教材§1.1,课件第一讲)行列式的展开式中,的一次项的系数是 2 。 12.(教材§1.4,课件第三讲)如果齐次线性方程组有非零解,那么的值为0或1 。 13.(教材§2.3,课件第四讲)齐次线性方程组有(填“有”或“没有”)非零解。 14. (教材§3.1,课件第五讲)已知向量则 。 15. (教材§3.3,课件第六讲)向量组是线性无关(填“相关”或“无关”)的。 16. (教材§4.1,课件第九讲)已知矩阵,矩阵,那 么。 17. (教材§4.2,课件第九讲)已知矩阵,那么 。 18. (教材§5.1,课件第十一讲)以下关于相似矩阵的说法,正确的有1,2,4

西南大学线性代数作业答案

西南大学线性代数作业答案

第一次 行列式部分的填空题 1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符 号应取 + 号。 2.排列45312的逆序数为 5 。 3.行列式2 5 1122 1 4---x 中元素x 的代数余子式是 8 . 4.行列式10 2 3 25403--中元素-2的代数余子式是 —11 。 5.行列式25 11 22 14--x 中,x 的代数余子式是 — 5 。 6.计算00000d c b a = 0 行列式部分计算题 1.计算三阶行列式 3 811411 02--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)× (—4)—0×1×3—2×(—1)×8=—4 2.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。

3.(7分)已知0010413≠x x x ,求x 的值. 解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2 所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组 ?? ? ??=++=++=++000z y x z y x z y x λλ 有非零解,求λ。 解:()211 1 1 010001 1 111111-=--= =λλλλλD 由D=0 得 λ=1 5.用克莱姆法则求下列方程组: ?? ? ??=+-=++=++10329253142z y x z y x z y x 解:因为 33113 210421711 7021 04 21 911 7018904 2 1 351 1321 5 421231 312≠-=?-?=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算: 81 1 11021 29 42311-=-=D 108 1 103229543112-==D 135 10 13291 5 31213=-=D 因此,根据克拉默法则,方程组的唯一解是:

线性代数练习册-答案

第一章 行列式习题答案 二、三阶行列式及n 阶行列式的定义部分习题答案 1.计算下列二阶行列式 (1) 23112 =; (2) cos sin 1sin cos θθθ θ -=; (3) 111112122121 2222 a b a b a b a b ++++1122112211221122a a a b b a b b 1221 12211221 1221a a a b b a b b (4) 11121112 21222122 a a b b a a b b + 11221122 1221 1221a a b b a a b b 2.计算下列三阶行列式 (1)103 12 126231-=--; (2)11 1213222332 33 a a a a a a a 112233 112332 a a a a a a 1122332332a a a a a (3)a c b b a c c b a 3 3 3 3a b c abc 3.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)3214; (2)614235. 123t 112217t (3)() ()() 123225 24212n n n n --- 当n 为偶数时,2n k ,排列为 143425 2122 21 223 412 k k k k k k k k --+++-1122(1)(1)t k k k (1)(2)21k k 2 2 (1) 1 3 1 31 42 n k k k k k k n

其中11(1)(1)k k 为143425 2122k k k k --+的逆序 数;k 为21k 与它前面数构成的逆序数;(1) (2) 21k k 为 23,25, ,2(21)k k k k 与它们前面数构成的逆序数的和; 113131k k k k 为2k ,22,24,,2k k 与它们前面数构成的逆序数的和. 当n 为奇数时,21n k ,排列为 142345 2122 23 225 412 k k k k k k k k ++++++1122t k k (1)21k k 2 2 1 3 32 3432n k k k k k k n 其中1122k k 为142345 2122k k k k +++的逆序数; (1)21k k 为23,25, ,2(21)k k k k 与它们前面数构成的逆序数的和;3323k k k k 为2,22, ,2k k 与它们前面数构成的逆序数的 和. 4.确定,i j ,使6元排列2316i j 为奇排列. 解:4,5i j ,()()23162431655t i j t ==为奇排列. 5.写出4阶行列式中含有1321a a 的项. 解:13213244a a a a ;13213442a a a a - 6.按定义计算下列行列式: (1) 0001 002003004000(4321) (1) 2424 (2) 00 000000000 a c d b (1342) (1) abcd abcd

数值分析学习心得体会.doc

数值分析学习感想 一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。这门 课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处 理问题的时候,可以合理适当的提出方案和假设。他的内容贴近实际,像数值分析,数值微 分,求解线性方程组的解等,使数学理论更加有实际意义。 数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有 了更加方便以及科学的方法。像第一章就讲的误差,在现实生活中,也许没有太过于注意误 差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误 差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在 别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数 值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出 的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。 数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数 学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中 的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容 易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的, 这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的 都是不同的算法。而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题, 从而知道如何去解决。 在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下, 我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自 己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触 到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。 计算132 2013014923 张霖篇二:数值分析学习报告 数值分析学习心得报告 班级:11级软工一班 姓名: * * * 学号: 20117610*** 指导老师:* * * 学习数值分析的心得体会 无意中的一次选择,让我接触了数值分析。 作为这学期的选修课,我从内心深处来讲,数值分析真的有点难。感觉它是在高等数学 和线性代数的基础上,又加深了探讨。虽然这节课很难,我学的不是很好,但我依然对它比 较感兴趣。下面就具体说说我的学习体会,让那些感兴趣的同学有个参考。 学习数值分析,我们首先得知道一个软件——matlab。matrix laboratory,即矩阵实验 室,是math work公司推出的一套高效率的数值计算和可视化软件。它是当今科学界最具影 响力、也是最具活力的软件,它起源于矩阵运算,并高速发展成计算机语言。它的优点是强 大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面、便捷的与其他程序和语 言接口。 根据上网搜集到的资料,你就会发现matlab有许多优点: 首先,编程简单使用方便。到目前为止,我已经学过c语言,机器语言,java语言,这

河北工业大学线性代数作业答案

线性代数作业提示与答案 作业(1) 一.k x x k x k x -====4321,0,, 二.??? ??? ???==--=++=24 13212 211,757975,767171k x k x k k x k k x 三.1.阶梯形(不唯一):????? ? ???? ??---140 10612 0071210 02301 ,简化阶梯形?????? ? ????? ????- 10000 02 1 100 00 01002 7 01 秩为4; 2.简化阶梯形为单位矩阵. 四.1.其系数矩阵的行列式值为 2 )1)(2(-+λλ(该方程组的系数矩阵为方阵,故可以借助于行列式来判定) 当12≠-≠λλ,时,方程组只有零解, 当2-=λ时,通解为=x ???? ? ?????111k ; 当1=λ时,通解为=x T T k k ]1,0,1[]0,1,1[21-+-; 2.?? ?? ???? ??? ???? ? -++-- - -2200123 23012 1211~2 λλλλA , 当2-≠λ时,方程组有唯一解; 当2-=λ时,方程组有无穷解,通解为=x T T k ],,[],,[022111+.

作业(2) 一.1. =x 1,2,3; 2. !)(n n 11-- 3.-120 4. ()() !) 1(2 21n n n --- 5. 41322314a a a a 6. 2,0=x 7.abc 3- 8.12 二.1.1; 2.以第二列、第三列分别减去第一列,再把第二列、第三列分别加到第一列上,得到 333 33 32222221 11111b a a c c b b a a c c b b a a c c b +++++++++=23 2 3 3221 11c b a c b a c b a 3. 0; (注:行列式计算中注意行列式的表示方法不要和矩阵表示方法混淆,而且计算过程中用的是等号) 4.12 2 2 +++γβα 作业(3) 一.1.c; 2. d ; 3.a 二.1.将第n ,,, 32列都加到第一列上,提出公因子∑=+ n i i a x 1 ,得到(∑=+ n i i a x 1 )1-n x . 2.由第二列起,各列均减第一列,按第二行展开,得)!(22--n . 3.由第1-n 行至第一行,相继将前一行元素乘以1-后加到后一行上,得到 .)1(0 1 00001011 111 22 1 2) 1(n n n n n n --=-- 4.按第一列展开,得到行列式的值为.)(n n n y x 11+-+ 三.3)(=A R (注:用矩阵的行初等变换化为梯矩阵,数非零行即可.注意矩阵的表

线性代数心得体会

线性代数 关键词:高等数学自学理解 线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。 线性代数是继微积分之后又一门高等数学,与微积分想比,线性代数的基础行列式和矩阵是在高中有所学习的,入门还是相对比较简单的。线性代数从内容上看前后联系紧密,环环相扣,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。所以多做题也是积累经验来方便自己在解题时能更快更准确得运用适当的性质来简化题目。 认真上好每一堂课对于学习好线性代数是格外重要的.教材上的知识和技巧主要由老师在课堂上以授课的形式传授给你。你在上课时应集中精力听讲,积极思考老师提出的问题,迅速而恰当地做笔记。看书的准确程序是:课前预习内容,课上跟着老师的思路走,尽量不看书来回答上课提出的问题,课后进行复习巩固。而有的人恰恰相反,他们在课上埋头看自己的书,丝毫不理会老师在讲什么,这样做只会降低效率 线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只要能朦朦胧胧地想到它的所以然就行了。学习线代及其它任何学科时都要静下心来,如果学习前很亢奋就拿出一两分钟时间平静下来再开始学习。遇到不会做的题时不要去想“这道题我怎么又不会做”等与这道题无关的东西,一心想题,这样解出来的可能性会大很多。做完题后要想想答案上的方法和自己的方法是怎么想出来的,尤其对于自己不会做的题或某个题答案给出的解法非常好且较难想到,然后将这种思路记住,即做完题目后要总结自己做题的思路,活用在之后的做题中。 很多人都说,审计是文科的,学像微积分和线代这样的理科课程没有什么意义,虽然表面看起来是这样的,但实际上却不然。理科注重的逻辑,在学习的理科的过程中,我们的思路会变得清晰,会计是很复杂的一个专业,很多时候不同的条件会需要进行不同的处理,而理科会让这些复杂的东西在我们脑海中变得仅仅有条,所以学习线代也是有必要的。

专科《线性代数》大作业

学习中心 姓 名_____________ 学 号 西安电子科技大学网络教育 2014学年上学期 《线性代数》期末考试试题 (综合大作业) 考试说明: 1.大作业于2014年06月17日下发,2014年06月29日交回。 2.试题必须独立完成,如发现抄袭、雷同均按零分计。 3. 试题须手写完成,不能提交打印稿和复印稿,否则计零分。 一、选择题:(每小题3分,共18分) 1.向量组1α=(),0,0,1T 2α=(),0,2,1T 3α=()T 5,0,0是线性 ; ()A 相关; ()B 无关; ()C 表示; ()D 组合. 2.设有向量1α=()T k ,3,1,4-,2α=,41,43,41,1T ??? ??- 当k = 时,1α,2α为线性相关; ()A 1; ()B -1; ()C 3; ()D -4. 3.行列式8 76 54321 0000 00 00a a a a a a a a 中元素7a 的代数余子式为 ; ()A 542632a a a a a a - ()B 542631a a a a a a - ()C 632542a a a a a a - ()D 854863a a a a a a -. 4.设 10010020 000 1000 -=a a ,则a = ; ()A 21- ; ()B 21; ()C -1; ()D 1.

5.设??????????=1011α,??????????=0102α,??????????=1003α,向量???? ? ?????--=011β可表示为321,,ααα的线性 组合:321αααβc b a ++=,则 ; ()A 1,1,1-=-=-=c b a ; ()B 1,1,1-=-==c b a ; ()C 1,1,1-==-=c b a ; ()D 1,1,1=-=-=c b a . 6.设有矩阵23?A ,32?B ,33?C ,下列矩阵运算可行的是 ; ()A AC ; ()B ABC ; ()C C B T ; ()D BC AB -. 二、填空题:(每小题3分,共21分) 1.设34?A ·5?B k = C n m ?, 则 k = ,m = ,n = ; 2.设A =??????-432101,B =?? ????065231,则T AB = ; 3.设A =???? ? ?????--c b c a b c 000,则A 2= ; 4.设A =??????????--210413161,B =???? ??????--121312510, 则 (1)A +B 2= , (2)A 2-B = ; 5.排列534162的逆序数()=534162 t ; 6.非齐次线性方程组x A =b 有解的充要条件是 。 三、计算题:(共20 分) 1.4 1111411 1141 1114 ===

华理线性代数第8册参考答案

华东理工大学 线性代数 作业簿(第八册) 学 院____________专 业____________班 级____________ 学 号____________姓 名____________任课教师____________ 6.1 二次型及其标准型 1. 填空题 (1)设三阶矩阵A 的行列式为0,且有两个特征值为1,1-,矩阵A 与B 合同,B 与C 合同,则矩阵C 是_____阶矩阵,其秩 _____)(=C r . 解:三,2. (2) 设n 阶矩阵A 与正交阵B 合同,则_____)(=A r . 解:n . 因B 为正交阵,故B 可逆.A 与B 合同即存在可逆矩阵C ,使得B AC C =T ,故)()(B r A r ==n . (3)二次型21 1 221)(),,,(∑∑==-=???n i i n i i n x x n x x x f , 则此二次型的 矩阵=A , 二次型的秩为______, 二次型的正交 变换标准型为________________.

解:? ???? ? ? ?? ???---------1 (11) ... 1...111... 11n n n ,1-n ,222121,n ny ny ny -++???+ 提示:二次型的秩就是二次型的矩阵的秩,也是其标准型中非零项的个数(注:标准型不唯一). 因此求二次型的秩有两种方法:1) 直接求二次型的矩阵A 的秩,2)先求A 的特征值,A 有几个非零特征值(重根按重数计算),二次型的秩就是几. (4) 二次型,)(T Ax x x f = 其中A A ≠T ,则二次型的矩阵为_____ ____. 解:)(2 1 T A A +. 提示:A 不是二次型的矩阵,因A 不是对 称阵。 注意到Ax x x f T )(=的值是一个数,即)()(T x f x f =,故有 x A A x x f x f x f )(21)]()([21)(T T +=+=. 而)(21 T A A +为对称阵. (5) 设n 元(n >2)实二次型()T f x x Ax = )(T A A =其中的正 交变换标准型为2 2212y y -,则=A ______,矩阵A 的迹为 _____. 解:0, 1-. 提示:A 的特征值为11,λ=22,λ=- 30n λλ=???==,根据A A tr n i i n i i ==∏∑==1 1 ), (λ λ 易得. (6) 如果二次型222 12312 31213(,,)5526f x x x x x cx x x x x =++-+ 236x x - 的秩为2,则参数c = _____,1),,(321=x x x f 表示的曲面 为__________.

线性代数学习有感

线性代数学习有感 从素未谋面到一知半解,或许将来会有相见恨晚。总之到现在为止,经过将近一个学期的学习,我对线性代数有了一些小小的感想。 线性代数是高等院校一门重要的基础数学课程,具有较强的了逻辑性,抽象性和广泛的实用性。这是我在上网查阅资料时看到的大家对于线性代数的定义。不同于高等数学的是,线性代数几乎从一开始就是一个全新的概念,至少给我的感觉是这样。虽说线性代数主要就是为了解齐次或非齐次的线性方程组,这个目的之于我并不算太陌生,可是它所运用到的东西却是我几乎从未见到过的。我们都知道,线性代数研究的范围通常都不是我们能想象到的二维空间,而是上升到n维空间,这一点相当不可爱。并且在线性代数的学习过程中,我们几乎每天都是跟一些新的概念,新的定理打交道,因此理解和记忆起来有相当大的困难,常常是花很久的时间还是理解不了。 我跟一些就读于其他高校的高中同学交流了一下各自学校线性代数的教学情况,很多同学都谈到了同一个问题。不少老师在教学的时候,经常会舍弃一些重要概念、性质和定理的引入,以及相关的几何意义的解释,以至于学生接受的通常是一个个被硬生生灌输的概念,法则或定理。平心而论,我觉得北邮线性代数的老师在这一点上做得还是不错的,至少给我授课的张鹏老师对这一点抓得比较好。张老师对细节的要求比较高,她会时不时询问学生对知识的理解情况,经常会多次讲解,这真的是一个好现象。不过说实话,由于课时的限制,老师不可能把所有东西都讲解得很透彻,尽管老师尽力讲解了,可每次上完课我仍会有些许疑惑。不过乐观地看,这也未必不是件好事。这就要求我们自己在课下去总结去思考,才能有深刻的理解,并且这样能更好地培养我们的逻辑思维能力。 俗话说得好:“学而不思则罔”。如果我们不去进行深入的思考,那么我们所学到的线性代数的知识就只是一些零散的孤立的概念和方法,无法理解这些概念和方法的意义以及它们之间的联系,到头来只会做一些简单的计算,我们的眼光会被限制,无法上升到一个高度去看待线性代数问题,无法将所学的知识点融会贯通。记得张老师说过,当给你一个信息的时候,尤其是一些不太明显的信息,你要能立刻理解它的内涵,也就是说能够马上联想到与它等价的一些信息。比如说,告诉你一个矩阵是非奇异矩阵,它包含的信息有:首先明确它是一个n阶方阵,它的秩是n,它便是满秩矩阵,它所对应的n阶行列式不等于零,那么n个n维向量便线性无关,还有这个方阵是可逆方阵,并且可以想到它的转置矩阵也是可逆的······还有一点,在线性代数的学习过程中,大片大片的定理确实令人头痛,不过我觉得,其实有些定理或推论是没有必要去背的,因为它们就是另外某个定理的特殊情况,而这些特殊情况,只要我们稍微思考一下,思维稍微开放一点,完全可以自己概括,没有必要多记几个来增加自己的记忆负担。比如说向 “当m>n时,m个n维向量一定线性无关”,量组的线性相关性的定理6的推论2: 看过定理6后你会觉得这完全就是废话嘛,如果你把这当作另一个定理来记忆的话,说句不脸红的话,我们自己都可以联想出很多这种“推论”,会让你记到疯掉。再有就是在记忆一些定理概念的时候,不一定非得按原文记忆,我们可以按照自己的理解来记忆,适合自己的方法才是最好的方法。在学习线性代数的过程中,联想和思考是非常重要的,不要畏惧线性代数的抽象性,理解后的喜悦是难以言表的。通过联想和思考,把学过的知识点串起来,深化理解,我们才能把线性代数学得更好。

数值线性代数大作业报告

数值线性代数实验 大报告 指导老师:赵国忠 姓名:1108300001 刘帅 1108300004 王敏 1108300032 郭蒙

一、实验名称:16题P75上机习题 二、实验目的:编制通用的子程序,完成习题的计算任务 三、实验内容与要求: P75上机习题 先用熟悉的计算机语言将算法2.5.1编制成通用的子程序,然后再用所编制的子程 序完成下面两个计算任务: (1) 估计5到20阶Hilbert 矩阵的无穷范数条件数。 (2) 设A n = 1 1...111... .......... ... 1-1 (01) -- 先随机地选取x ∈R n ,并计算出b=A n x;然后再用列主元Gauss 消去法求解该方程组,假定计算解为∧x .试对n 从5到30估计计算解∧ x 的精度,并且与真实的相对误差作比较。 四、 实验原理: (1)矩阵范数(martix norm )是数学上向量范数对矩阵的一个自然推广。利用for 循环和cond (a )Hilbert 求解Hilbert 矩阵的无穷范数,再利用norm(a,inf)求矩阵的无穷范数条件数。 (2)本题分为4步来求解。先运用rand 随机选取x ∈R n ,输入A n 矩阵,编制一个M 文件计算出b 。第二步用列主元高斯消去法求解出方程的解X2。第三步建立M 文件: soluerr.m 估计计算解∧x 的精度。第四步, 建立M 文件: bijiao.m ,与真实相对误差作比较。 五、 实验过程: (1)程序: clear for n=5:20

for i=1:n for j=1:n a(i,j)=1/(i+j-1); end end c=cond(a); f=norm(c,inf); fprintf('n=%3.0f\nnorm(c,inf)%e\n',n,f) end 运行结果: n= 5 norm(c,inf)4.766073e+005 n= 6 norm(c,inf)1.495106e+007 n= 7 norm(c,inf)4.753674e+008 n= 8 norm(c,inf)1.525758e+010 n= 9 norm(c,inf)4.931542e+011 n= 10 norm(c,inf)1.602467e+013 n= 11 norm(c,inf)5.224376e+014 n= 12 norm(c,inf)1.698855e+016 n= 13 norm(c,inf)3.459404e+017 n= 14 norm(c,inf)4.696757e+017 n= 15 norm(c,inf)2.569881e+017 n= 16 norm(c,inf)7.356249e+017 n= 17 norm(c,inf)4.362844e+017 n= 18 norm(c,inf)1.229633e+018 n= 19 norm(c,inf)9.759023e+017 n= 20 norm(c,inf)1.644051e+018 (2)程序:

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

学习线性代数的意义

线性代数有什么用? 线性代数有什么用?这是每一个圈养在象牙塔里,在灌输式教学模式下的“被学习”的学生刚刚开始思考时的第一个问题。我稍微仔细的整理了一下学习线代的理由,竟然也罗列了不少,不知道能不能说服你: 1、如果你想顺利地拿到学位,线性代数的学分对你有帮助; 2、如果你想继续深造,考研,必须学好线代。因为它是必考的数学科目,也是研究生科目《矩阵论》、《泛函分析》的基础。例如,泛函分析的起点就是无穷多个未知量的无穷多线性方程组理论。 3、如果你想提高自己的科研能力,不被现代科技发展潮流所抛弃,也必须学好,因为瑞典的L.戈丁说过,没有掌握线代的人简直就是文盲。他在自己的数学名著《数学概观》中说: 要是没有线性代数,任何数学和初等教程都讲不下去。按照现行的国际标准,线性代数是通过公理化来表述的。它是第二代数学模型,其根源来自于欧几里得几何、解析几何以及线性方程组理论。…,如果不熟悉线性代数的概念,像线性性质、向量、线性空间、矩阵等等,要去学习自然科学,现在看来就和文盲差不多,甚至可能学习社会科学也是如此。 4、如果毕业后想找个好工作,也必须学好线代: 想搞数学,当个数学家(我靠,这个还需要列出来,谁不知道线代是数学)。恭喜你,你的职业未来将是最光明的。如果到美国打工的话你可以找到最好的职业(参考本节后附的一份小资料)。 想搞电子工程,好,电路分析、线性信号系统分析、数字滤波器分析设计等需要线代,因为线代就是研究线性网络的主要工具;进行IC集成电路设计时,对付数百万个集体管的仿真软件就需要依赖线性方程组的方法;想搞光电及射频工程,好,电磁场、光波导分析都是向量场的分析,比如光调制器分析研制需要张量矩阵,手机信号处理等等也离不开矩阵运算。 想搞软件工程,好,3D游戏的数学基础就是以图形的矩阵运算为基础;当然,如果你只想玩3D游戏可以不必掌握线代;想搞图像处理,大量的图像数据处理更离不开矩阵这个强大的工具,《阿凡达》中大量的后期电脑制作没有线代的数学工具简直难以想象。 想搞经济研究。好,知道列昂惕夫(Wassily Leontief)吗?哈佛大学教授,1949年用计算机计算出了由美国统计局的25万条经济数据所组成的42个未知数的42个方程的方程组,他打开了研究经济数学模型的新时代的大门。这些模型通常都是线性的,也就是说,它们是用线性方程组来描述的,被称为列昂惕夫“投入-产出”模型。列昂惕夫因此获得了1973年的诺贝尔经济学奖。 相当领导,好,要会运筹学,运筹学的一个重要议题是线性规划。许多重要的管理决策是在线性规划模型的基础上做出的。线性规划的知识就是线代的知识啊。比如,航空运输业就使用线性规划来调度航班,监视飞行及机场的维护运作等;又如,你作为一个大商场的老板,线性规划可以帮助你合理的安排各种商品的进货,以达到最大利润。 对于其他工程领域,没有用不上线代的地方。如搞建筑工程,那么奥运场馆鸟巢的受力分析需要线代的工具;石油勘探,勘探设备获得的大量数据所满足的几千个方程组需要你的线代知识来解决;飞行器设计,就要研究飞机表面的气流的过程包含反复求解大型的线性方程组,在这个求解的过程中,有两个矩阵运算的技巧:对稀疏矩阵进行分块处理和进行LU分解;作餐饮业,对于构造一份有营养的减肥食谱也需要解线性方程组;知道有限元方法吗?这个工程分析中十分有效的有限元方法,其基础就是求解线性方程组。知道马尔科夫链吗?这个“链子”神通广大,在许多学科如生物学、商业、化学、工程学及物理学等领域中被用来做数学模型,实际上马尔科夫链是由一个随机变量矩阵所决定的一个概率向量序列,看看,矩阵、向量又出现了。 另外,矩阵的特征值和特征向量可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中,甚至数学生态学家用以在预测原始森林遭到何种程度的砍伐会造成猫头鹰的种群灭亡;大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解;二次型常常出现在线性代数在工程(标准设计及优化)和信号处理(输出的噪声功率)的应用中,他们也常常出现在物理学(例如势能和动能)、微分几何(例如曲面的法曲率)、经济学(例如效用函数)和统计学(例如置信椭圆体)中,某些这类应用实例的数学背景很容易转化为对对称矩阵的研究。 嘿嘿(脸红),说实在的,我也没有足够经验讲清楚线代在各个工程领域中的应用,只能大概人云亦云地讲述以上线代的一些基本应用。因为你如果要真正的讲清楚线代的一个应用,就必须充分了解所要应用的领域内的知识,最好有实际的工程应用的经

线性代数课后作业答案(胡觉亮版)

第一章 1.用消元法解下列线性方程组: (1)??? ??=++=++=++. 5432,9753,432321 321321x x x x x x x x x 解 由原方程组得同解方程组 12323234,23,x x x x x ++=?? +=? 得方程组的解为13232, 2 3. x x x x =-?? =-+?令3x c =,得方程组的通解为 c x c x c x =+-=-=321,32,2,其中c 为任意常数. 2.用初等行变换将下列矩阵化成行阶梯形矩阵和行最简形矩阵: (2)???? ? ??--324423211123. 解 1102 232111232551232041050124442300000000r r ? ?- ?-???? ? ? ? ? -??→--??→- ? ? ? ? ?- ????? ? ?? ? ,得 行阶梯形:????? ? ?---0000510402321(不唯一);行最简形:???? ??? ? ? ? - -00004525 10212 01 3.用初等行变换解下列线性方程组: (1)?? ? ??=+-=+-=++.3,1142,53332321321x x x x x x x x

解 2100313357214110109011320019r B ? ? ??? ? ? ?=-??→- ? ? ?- ??? ? ?? ?M M M M M M , 得方程组的解为 9 20 ,97,32321=-==x x x . (2)??? ??=+++=+++=++-. 2222,2562, 1344321 43214321x x x x x x x x x x x x 解 114311143121652032101222200001r B --???? ? ? =?? →-- ? ? ? ????? M M M M M M , 得方程组无解. 第二章 1.(2) 2 2 x y x y . 解 原式()xy y x =-. (2)01000 020 00010 n n -L L L L L L L L L . 2.解 原式1 100 020 (1) 001 n n n +=-=-L L M M M L !)1(1n n +-

线性代数学习心得体会doc

线性代数学习心得体会 篇一:学习线性代数的心得体会 学习线性代数的心得体会 线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。 线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。 线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。那么,就应该在第二天有线代课时晚上睡得早一点。如果你觉得上课跟不上老师的思路那么请预习。这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,

想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。 一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。上课时一定要“虚心”,即使老师讲的某个题自 己会做也要听一下老师的思路。 上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做题,不会时看书后或做完后看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。做作业时遇到不会的题可以 问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。适当多做些题对学习是有帮助的。。 线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只

相关文档
相关文档 最新文档