文档库 最新最全的文档下载
当前位置:文档库 › Matlab

Matlab

Matlab
Matlab

控制系统MATLAB仿真基础

系统仿真 § 4.1控制系统的数学模型 1、传递函数模型(tranfer function) 2、零极点增益模型(zero-pole-gain) 3、状态空间模型(state-space) 4、动态结构图(Simulink结构图) 一、传递函数模型(transfer fcn-----tf) 1、传递函数模型的形式 传函定义:在零初始条件下,系统输出量的拉氏变换C(S)与输入量的拉氏变换R(S)之比。 C(S) b1S m+b2S m-1+…+b m G(S)=----------- =- -------------------------------- R(S) a1S n + a2S n-1 +…+ a n num(S) = ------------ den(S) 2、在MATLAB命令中的输入形式 在MATLAB环境中,可直接用分子分母多项式系数构成的两个向量num、den表示系统: num = [b1, b2, ..., b m]; den = [a1, a2, ..., a n]; 注:1)将系统的分子分母多项式的系数按降幂的方式以向量的形式输入两个变量,中间缺项的用0补齐,不能遗漏。 2)num、den是任意两个变量名,用户可以用其他任意的变量名来输入系数向量。 3)当系统种含有几个传函时,输入MATLAB命令状态下可用n1,d1;n2,d2…….。 4)给变量num,den赋值时用的是方括号;方括号内每个系数分隔开用空格或逗号;num,den方括号间用的是分号。 3、函数命令tf( ) 在MATLAB中,用函数命令tf( )来建立控制系统的传函模型,或者将零极点增益模型、状态空间模型转换为传函模型。 tf( )函数命令的调用格式为: 圆括号中的逗号不能用空格来代替 sys = tf ( num, den ) [G= tf ( num, den )]

VB与MATLAB接口的实现

VB与MATLAB接口的实现: https://www.wendangku.net/doc/92473534.html, 实例说明 在本实例中,我们制作一个能够与Matlab进行交互的应用程序。程序运行结果如图78-1所示。 图78-1 运行结果 技术要点 z引用Matlab库 z执行Matlab命令 z结束Matlab 实现过程 ■ 新建项目 打开Visual https://www.wendangku.net/doc/92473534.html,,选择“新建项目”,在项目类型窗口中选择“Visual Basic项目”,在模板窗口中选择“Windows应用程序”,在名称域中输入“CnMatlab”,然后选择保存路径。单击“确认”。 ■ 添加控件 向当前窗体添加五个Button按钮,两个Picture控件,一个Label控件,一个Hscroll控件和一个Vscroll控件。单击菜单“项目|添加引用”,选中“Matlab Automation(Version5.3)Type Library”这一项。 注意:本程序只能在安装有Matlab的机器上运行。 ■ 设置属性 将Label控件和Command按钮的Text属性设置为与界面一致。在此不再赘述。 ■ 添加代码 Dim str1 As String ' 显示正弦图 Private Sub Command1_Click(ByVal eventSender As System.Object, ByVal eventArgs As System.EventArgs) Handles Command1.Click Dim matlab As Object matlab = CreateObject("matlab.application") matlab.MinimizeCommandWindow()

MATLAB与系统仿真

学习中心/函授站_ 成都学习中心 姓名赵洪学号7020140122093 西安电子科技大学网络与继续教育学院 2015学年上学期 《MATLAB与系统仿真》期末考试试题 (综合大作业) 考试说明: 1、大作业于2015年4月3日公布,2015年5月9日前在线提交; 2、考试必须独立完成,如发现抄袭、雷同、拷贝均按零分计。 3、程序设计题(三(8,10))要求写出完整的程序代码,并在matlab软件环境调试并运行通过,连同运行结果一并附上。 一、填空题(1? ×25=25?) 1、Matlab的全称为矩阵实验室。 2、在Matlab编辑器中运行程序的快捷键是:F5 。 3、Matlab的工作界面主要由以下五个部分组成,它们分别是:菜单栏、 工具栏、当前工作目录窗口、工作空间管理窗口和命令窗口。 4、在Matlab中inf表示:无穷大;clc表示:清空命令窗口中的显示内容;more表示:在命令窗口中控制其后每页的显示内容行数;who表示:查阅Matlad内存变量名;whos表示:列出当前工作空间所有变量。 5、在Matlab命令窗口中运行命令Simulink 可以打开Simulink模块库浏览器窗口。 6、求矩阵行列式的函数:det ;求矩阵特征值和特征向量的函数eig 。 7、Matlab预定义变量ans表示:没有指定输出变量名;eps表示:系统精度 ;nargin表示:函数输入参数的个数。 8、Matlab提供了两种方法进行程序分析和优化,分别为:通过Profiler工具优化和通过tic和toc函数进行优化。 9、建立结构数组或转换结构数组的函数为:struct ; 实现Fourier变换在Matlab中的对应函数为:fourier() ;Laplace变换的函数:Laplace() 。

matlab控制系统仿真课程设计

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称机电工程学院专业 班级 学生姓名 学号 课程设计地点 课程设计学时 指导教师 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。 (d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应

曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统 无积分作用单回路控制系统

大比例作用单回路控制系统 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;增大积分时间有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长,加入微分环节,有利于加快系统的响应速度,使系统超调量减小,稳定性增加。 (2).串级控制系统的设计及仿真。 (a)已知主被控对象传函W 01(s) = 1 / (100s + 1),副被控对象传函W 02 (s) = 1 / (10s + 1),副环干扰通道传函W d (s) = 1/(s2 +20s + 1)。 (b)画出串级控制系统方框图及相同控制对象下的单回路控制系统的方框图。(c)用MatLab的Simulink画出上述两系统。

MATLAB仿真教程

一、设计目的 通过运用MATLAB对函数进行Z域分析和单边带信号的调制与解调,使我们进一步加深对MATLAB的认识和运用,以实现以下目的: 1.本次试验进一步熟悉了MATLAB软件的使用方法及相关的操作。 2.对Z变换及其反变换函数在MATLAB中的调用有了掌握。 3.理论与实际的仿真相结合,更直观的看到结果。 4.观察了单边带信号调制与解调后的图像,加深认识。 二、设计原理 MATLAB是The MathWorks公司在1984年推出的一种商品化软件,它提供了大量丰富的应用函数,并且具有扩充的开放性结构。目前,该软件包涵盖了控制系统应用、数字信号处理、数字图像处理、通讯、神经网络、小波理论分析、优化与统计、偏微分方程、动态系统实时仿真等多学科专业领域。 其中单边带调制信号是将双边带信号中的一个边带滤掉而形成的。根据方法的不同,产生单边带调制信号的方法有:滤波和相移法。 由于滤波法在技术上比较难实现所以在此我们将用相移法对单边带调制与解调系统进行讨论与设计。 三、设计内容和MATLAB图像

1、数字系统的响应 源代码如下: b=[0 1 2 1 0]; a=[1 -0.5 0 0.3 -0.005]; subplot(421);zplane(b,a); title('系统的零极点图'); subplot(422);impz(b,a,21); title('单位脉冲响应'); subplot(423);stepz(b,a,21); title('单位阶跃响应');

N=21;n=0:N-1; x=exp(-n); x0=zeros(1,N); y0=[1,-1]; xi=filtic(b,a,y0); y1=filter(b,a,x0,xi); xi0=filtic(b,a,0); y2=filter(b,a,x,xi0); y3=filter(b,a,x,xi); [h w]=freqz(b,a,21); subplot(424);stem(n,y1); title('零输入响应');grid on; subplot(425);stem(n,y2); title('零状态响应');grid on; subplot(426);stem(n,y3); title('系统的全响应');grid on; subplot(427);plot(w,abs(h)); title('幅频特性曲线');grid on; subplot(428);plot(w,angle(h)); title('相频特性曲线');grid on;

利用MATLAB实现循环卷积.doc

一、实验目的 1.利用MATLAB 实现循环卷积。 2.比较循环卷积与线性卷积的区别。 二、实验条件 PC 机,MATLAB7.0 三、实验内容 1)循环卷积的定义:两个序列的N 点循环卷积定义为: )0()()()]()([1 0N n m n x m h n x n h N k N N <≤-=?∑-= 利用MATLAB 实现两个序列的循环卷积可以分三个步骤完成: (1)初始化:确定循环点数N ,测量输入2个序列的长度。 (2)循环右移函数:将序列x(n)循环右移,一共移N 次(N 为循环卷积的循环次数),最后将每次循环成的新序列组成一个矩阵V 。 (3)相乘:将x(n)移位后组成的矩阵V 与第二个序列h(n)对应相乘,即得循环卷积结果。程序如下: 程序一: clear;close all ; N=10; x1=[6 15 -6 3 5 7 0 1]; x2=[7 1 2 9 4 3 20 6]; xn1=length(x1); xxn1=0:xn1-1; xn2=length(x2); xxn2=0:xn2-1; subplot(3,1,1); stem(xxn1,x1); subplot(3,1,2); stem(xxn2,x2); x11=fft(x1,N);

x12=fft(x2,N); y11=x11.*x12; y1=ifft(y11,N); subplot(3,1,3); n=0:length(y1)-1; stem(n,y1,'.'); title('循环卷积的结果'); xlabel('n');ylabel('y1(n)'); 运行后所得图形如下: 观察所得的循环卷积结果发现并没有呈现周期性的序列,因此将程序做下列改变。程序二: clear;close all; N=40; x1=[6 15 -6 3 5 7 0 1]; x2=[7 1 2 9 4 3 20 6]; x2=[x2,x2,x2,x2]; xn1=length(x1); xxn1=0:xn1-1; xn2=length(x2); xxn2=0:xn2-1; subplot(3,1,1);

MATLAB与FPGA的接口

FPGA器件的开发平台与MATLAB接口仿真 2007-09-03 16:24 FPGA器件的开发平台与MATLAB接口仿真 中南财经政法大学信息学院周巍武汉大学电气工程学院张志杰引言 现场可编程逻辑门阵列FPGA器件的出现是超大规模集成电路技术和计算机辅助设计技术发展的结果。FPGA器件集成度高、体积小,具有通过用户编程实现专门应用功能。 它允许电路设计者利用基于计算机的开发平台,经过设计输入、仿真、测试和校验,直到达到预期的结果。目前使用最多的Quartus II 软件支持几乎所有的EDA工具,并且可以通过命令行或Tcl脚本与第三方EDA工具之间进行无缝连接。但在很多工程设计应用中,由FPGA器件完成的主程序中只完成大量的数学运算,程序调试时以二进制输出的信号可视性差,给设计人员进行仿真、调试带来了很多不便。对于很多工程设计人员来说MATLAB是一种熟悉的具有强大的运算功能和波形仿真、分析功能的软件,如果能将FPGA与MA TLAB接口,就可以快速、准确、直观地对FPGA程序进行校验和仿真,尤其在波形信号处理等工程应用领域具有实际意义。 Quartus II 开发软件 Altera公司的QuartusII软件提供了可编程片上系统(SOPC)设计的一个综合开发环境。Quartus II 开发工具人机界面友好、易于使用、性能优良,并自带编译、仿真功能。QuartusII 软件支持VHDL和Verilog硬件描述语言的设计输入、基于图形的设计输入方式以及集成系统级设计工具。QuartusII软件可以将设计、综合、布局和布线以及系统的验证全部都整合到一个无缝的环境之中,其中也包括和第三方EDA工具的接口。QuartusII设计软件根据设计者需要提供了一个完整的多平台开发环境,它包含整个FPGA和CPLD设计阶段的解决方案。图1说明了QuartusII软件的开发流程。 在实际应用设计中,对程序原理性及可执行性的验证主要集中在程序修改阶段,尤其在

自控-二阶系统Matlab仿真

自动控制原理 二阶系统性能分析Matlab 仿真大作业附题目+ 完整报告内容

设二阶控制系统如图1所示,其中开环传递函数 ) 1(10 )2()(2+=+=s s s s s G n n ξωω 图1 图2 图3 要求: 1、分别用如图2和图3所示的测速反馈控制和比例微分控制两种方式改善系统的性能,如果要求改善后系统的阻尼比ξ =0.707,则和 分别取多少? 解: 由)1(10 )2()(2 += +=s s s s s G n n ξωω得10 21,10,102===ξωωn t K d T

对于测速反馈控制,其开环传递函数为:) 2()s (2 2n t n n K s s G ωξωω++=; 闭环传递函数为:2 2 2)2 (2)(n n n t n s K s s ωωωξωφ+++= ; 所以当n t K ωξ2 1+=0.707时,347.02)707.0(t =÷?-=n K ωξ; 对于比例微分控制,其开环传递函数为:)2()1()(2 n n d s s s T s G ξωω++=; 闭环传递函数为:) )2 1(2)1()(2 22 n n n d n d s T s s T s ωωωξωφ++++=; 所以当n d T ωξ2 1 +=0.707时,347.02)707.0(=÷?-=n d T ωξ; 2、请用MATLAB 分别画出第1小题中的3个系统对单位阶跃输入的响应图; 解: ①图一的闭环传递函数为: 2 22 2)(n n n s s s ωξωωφ++=,10 21 ,10n ==ξω Matlab 代码如下: clc clear wn=sqrt(10); zeta=1/(2*sqrt(10)); t=0:0.1:12; Gs=tf(wn^2,[1,2*zeta*wn,wn^2]); step(Gs,t)

matlab仿真模拟

中国地质大学长城学院 本科课程设计题目:双手协调机器人 系别信息工程系 学生姓名 专业电气工程及其自动化 学号 指导教师王密香 职称研究生 2015年12 月22日

双手协调机器人 摘要 多机器人的协同作业是制造业发展的必然要求,双臂机器人就是适应这一要求而开发出的一种新型机器人,相对于单臂机器人它可以大大增强机器人对复杂装配任务的适应性,同时可以提高工作空间的利用效率。当前大多数工业机器人的应用是为单臂机器人独自工作的能力准备的。一般地,单臂机器人只适合于刚性工件的操作,并受制于环境,随着现代工业的发展和科学技术的进步,对于许多任务而言单臂操作是不够的。为了适应任务的复杂性、智能性的不断提高以及系统柔顺性的要求而扩展为双手协调控制。即由两个单臂机器人相互协调、相互配合的去完成某种作业,但由于组成双手协调控制系统的是两个机器人它们不可能是两个单手机器人的简单组合,除了它们各自共同目标的控制实现外,它们相互间的协调控制以及对环境的适应性就成为组合的关键,这样双手协调控制机器人系统的进一步应用就受到了限制。而双臂机器人能完成对于人来说易于实现的功能,它比双手协调机器人更具有实用价值,它的高自律性以及学习性,能够适应许多环境,使其在工业生产、危险处理、国防、航天航空等方面运用广泛采用了Matlab/Simulink 仿真软件,分别用模块法和程序法对双手协调机器人系统进行了PID 控制器的校正仿真设计。 关键词:双手协调机器人;Matlab/Simulink;PID 校正;仿真 Using the Matlab/Simulink simulation software, using method of module and the procedural law on hands coordinate robot system has carried on the correction for the simulation of PID controller design simulation results show that these two kinds of design method is not only convenient and quick, and the correction effect is satisfactory to people Keywords:Hands coordinate robot; Matlab/Simulink; PID correction; The simulation

matlab循环语句

matlab 基本语句 1.循环语句for for i=s1:s3:s2 循环语句组 end 解释:首先给i赋值s1;然后,判断i是否介于s1与s2之间;如果是,则执行循环语句组,i=i+s3(否则,退出循环.);执行完毕后,继续下一次循环。 例:求1到100的和,可以编程如下: sum=0 for i=1:1:100 sum=sum+i end 这个程序也可以用while语句编程。 注:for循环可以通过break语句结束整个for循环. 2.循环语句while 例:sum=0;i=1; while(i<=100) sum=sum+i;i=i+1; end 3.if语句 if(条件) 语句 end if(条件) 语句 else 语句 end if(条件) 语句 elseif 语句 end 4.关系表达式:

=,>,<,>=,<=,==(精确等于) 5.逻辑表达式:|(或),&(且) 6.[n,m]=size(A)(A为矩阵) 这样可以得到矩阵A的行和列数 n=length(A),可以得到向量A的分量个数;如果是矩阵,则得到矩阵A的行与列数这两个数字中的最大值。 7.!后面接Dos命令可以调用运行一个dos程序。 8.常见函数: poly():为求矩阵的特征多项式的函数,得到的为特征多项式的各个系数。如 a=[1,0,0;0,2,0;0,0,3],则poly(a)=1 -6 11 -6。相当于poly(a)=1入^3+(-6)入^2+11入+(-6)。 compan():可以求矩阵的伴随矩阵. sin()等三角函数。 MATLAB在数学建模中的应用(3) 一、程序设计概述 MATLAB所提供的程序设计语言是一种被称为第四代编程语言的高级程序设计语言,其程序简洁,可读性很强,容易调试。同时,MATLAB的编程效率比C/C++语言要高得多。 MATLAB编程环境有很多。常用的有: 1.命令窗口 2.word窗口 3.M-文件编辑器,这是最好的编程环境。 M-文件的扩展名为“.m”。M-文件的格式分为两种: ①λ M-脚本文件,也可称为“命令文件”。 ② M-函数文件。这是matlab程序设计的主流。λ 保存后的文件可以随时调用。 二、MATLAB程序结构 按照现代程序设计的观点,任何算法功能都可以通过三种基本程序结构来实现,这三种结构是:顺序结构、选择结构和循环结构。其中顺序结构是最基本的结构,它依照语句的自然顺序逐条地执行程序的各条语句。如果要根据输入数据的实际情况进行逻辑判断,对不同的结果进行不同的处理,可以使用选择结构。如果需要反复执行某些程序段落,可以使用循环结构。 1 顺序结构 顺序结构是由两个程序模块串接构成。一个程序模块是完成一项独立功能的逻辑单元,它可以是一段程序、一个函数,或者是一条语句。 看图可知,在顺序结构中,这两个程序模块是顺序执行的,即先执行<程序

matlab软件的使用方法

MATLAB 软件使用简介 默认分类2007-03-15 21:26:49 阅读4106 评论8 字号:大中小订阅 MATLAB 软件使用简介 MATLAB 是一个功能强大的常用数学软件, 它不但可以解决数学中的数值计算问题, 还可以解决符号演算问题, 并且能够方便地绘出各种函数图形。MATLAB自1984年由美国的MathWorks公司推向市场以来,历经十几年的发展和竞争,现已成为国际最优秀的科技应用软件之一。这里主要以适用于Windows操作系统的MATLAB5.3版本向读者介绍MATLAB 的使用命令和内容。 一、MATLAB 的进入/退出 MA TLAB 的安装成功后, 系统会在Windows【开始】菜单的【程序】子菜单中加入启动MATLAB命令的图标, 用鼠标单击它就可以启动MATLAB系统,见图2.1。 图2.1 启动MA TLAB 启动MATLAB后, 屏幕上出现MATLAB命令窗口: 图2.2 MA TLAB命令窗口 图2.2的空白区域是MATLAB 的工作区(命令输入区), 在此可输入和执行命令。 退出MATLAB系统像关闭Word文件一样, 只要用鼠标点击MATLAB系统集成界面右上角的关闭按钮即可。 二、MATLAB 操作的注意事项 l 在MA TLAB工作区输入MATLAB命令后, 还须按下Enter键, MA TLAB才能执行你输入的MA TLAB命令, 否则MA TLAB不执行你的命令。 l MATLAB 是区分字母大小写的。 l 一般,每输入一个命令并按下Enter键, 计算机就会显示此次输入的执行结果。(以下用↙表示回车)。如果用户不想计算机显示此次输入的结果,只要在所输入命令的后面再加上一个分号“;”即可以达到目的。如: x= 2 + 3 ↙x=5 x = 2 + 3 ; ↙不显示结果5 l 在MA TLAB工作区如果一个表达式一行写不下,可以用在此行结尾处键入三个英文句号的方法达到换行的目的。如: q=5^6+sin(pi)+exp(3)+(1+2+3+4+5)/sin(x)… -5x+1/2-567/(x+y) l MATLAB 可以输入字母、汉字,但是标点符号必须在英文状态下书写。 l MATLAB 中不需要专门定义变量的类型,系统可以自动根据表达式的值或输入的值

系统仿真的MATLAB实现.

第七章系统仿真的MATLAB实现 由于计算机技术的高速发展,我们可以借助计算机完成系统的数字仿真。综前所述,数字仿真实质上是根据被研究的真实系统的模型,利用计算机进行实验研究的一种方法。仿真的主要过程是:建立模型、仿真运行和分析研究仿真结果。仿真运行就是借助一定的算法,获得系统的有关信息。 MATLAB是一种面向科学与工程计算的高级语言,它集科学计算、自动控制、信号处理、神经网络和图像处理等学科的处理功能于一体,具有极高的编程效率。MATLAB是一个高度集成的系统,MATLAB提供的Simulink是一个用来对动态系统进行建模、仿真和分析的软件包,它支持线性和非线性系统,能够在连续时间域、离散时间域或者两者的混合时间域里进行建模,它同样支持具有多种采样速率的系统。在过去几年里,Simulink已经成为数学和工业应用中对动态系统进行建模时使用得最为广泛的软件包。 MATLAB仿真有两种途径:(1)MATLAB可以在SIMULINK窗口上进行面向系统结构方框图的系统仿真;(2)用户可以在MATLAB的COMMAND窗口下,用运行m文件,调用指令和各种用于系统仿真的函数,进行系统仿真。这两种方式可解决任意复杂系统的动态仿真问题,前者编辑灵活,而后者直观性强,实现可视化编辑。 下面介绍在MATLAB上实现几类基本仿真。 7.1 计算机仿真的步骤 在学习计算机仿真以前,让我们先总结一下计算机仿真的步骤。 计算机仿真,概括地说是一个“建模—实验—分析”的过程,即仿真不单纯是对模型的实验,还包括从建模到实验再到分析的全过程。因此进行一次完整的计算机仿真应包括以下步骤:

(1)列举并列项目 每一项研究都应从说明问题开始,问题由决策者提供或由熟悉问题的分析者提供。 (2)设置目标及完整的项目计划 目标表示仿真要回答的问题、系统方案的说明。项目计划包括人数、研究费用以及每一阶段工作所需时间。 (3)建立模型和收集数据 模型和实际系统没有必要一一对应,模型只需描述实际系统的本质或者描述系统中所研究部分的本质。因此,最好从简单的模型开始,然后进一步建立更复杂的模型。 (4)编制程序和验证 利用数学公式、逻辑公式和算法等来表示实际系统的内部状态和输入/输出的关系。建模者必须决定是采用通用语言如MATLAB、FORTRAN、C还是专用仿真语言来编制程序。在本教材中,我们选择的是MATLAB和其动态仿真工具Simulink。 (5)确认 确认指确定模型是否精确地代表实际系统。它不是一次完成,而是比较模型和实际系统特性的差异,不断对模型进行校正的迭代过程。 (6)实验设计 确定仿真的方案、初始化周期的长度、仿真运行的长度以及每次运行的重复次数。 (7)生产性运行和分析 通常用于估计被仿真系统设计的性能量度。利用理论定性分析、经验定性分析或系统历史数据定量分析来检验模型的正确性,利用灵敏度分析等手段来检验模型的稳定性。 (8)文件清单和报表结果 (9)实现

MATLAB仿真实验全部

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间围0---Tn 。 3、),(T sys step ;表示时间围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:)()()()(1 )(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

MATLAB仿真程序

窗型选择仿真程序: clear,clc bw=3e6;% 信号带宽 T=1e-4;%信号脉冲宽度 A=2;%信号幅度 fs=4*bw; lfft=round(T*fs);%采样点数 lfft=2^nextpow2(lfft); dt=1/fs;%采样间隔 f0=1e6; t=(0:lfft-1)*dt;%时域采样点 q=(0:lfft-1)*2*pi/lfft; s=A*exp(j*2*pi*f0*t+j*pi*bw*t.*t/T);%产生线性调频信号 S=(fft(s));%线性调频信号的傅立叶变换fft H=conj(S);%匹配滤波器的频率响应 Y=S.*H;%线性调频信号的频域匹配滤波输出 y=fftshift(ifft(Y));%线性调频信号的时域匹配滤波输出 %对chirp信号进行时域加权 h1=(triang(lfft))';%三角窗函数 s1=s.*h1;S1=fft(s1);H1=conj(S1); Y1=S1.*H1; y1=fftshift(ifft(Y1));%加三角窗后的线性调频信号的时域匹配滤波输出h2=(hanning(lfft))';%汉宁窗函数 s2=s.*h2;S2=fft(s2);H2=conj(S2); Y2=S2.*H2; y2=fftshift(ifft(Y2));%加汉宁窗后的线性调频信号的时域匹配滤波输出h3=(hamming(lfft))';%海明窗函数 s3=s.*h3;S3=fft(s3);H3=conj(S3); Y3=S3.*H3; y3=fftshift(ifft(Y3));%加海明窗后的线性调频信号的时域匹配滤波输出 figure; subplot(3,1,1), plot(t,real(s)),title('chirp signal'); subplot(3,1,2), plot(q,abs(S)),title('线性调频信号幅度谱'); subplot(3,1,3), plot(q,angle(S)),title('线性调频信号相位谱');

二阶系统matlab仿真

simulink仿真 -1<ξ<0 >> step(tf(4^2,[1,2*(-0.5)*4,4^2])) ξ<-1 >> step(tf(4^2,[1,2*(-1.5)*4,4^2])) ξ=0 >> step(tf(4^2,[1,2*0*4,4^2])) 0<ξ<1 >> figure >> step(tf(4^2,[1,2*0.1*4,4^2])) >> step(tf(4^2,[1,2*0.2*4,4^2])) >> step(tf(4^2,[1,2*0.3*4,4^2])) >> step(tf(4^2,[1,2*0.4*4,4^2])) >> step(tf(4^2,[1,2*0.5*4,4^2])) >> step(tf(4^2,[1,2*0.6*4,4^2])) >> step(tf(4^2,[1,2*0.7*4,4^2])) >> step(tf(4^2,[1,2*0.8*4,4^2])) >> step(tf(4^2,[1,2*0.9*4,4^2])) ωn不变,ζ减小

ξ=1 >> figure >> step(tf(4^2,[1,2*1*4,4^2])) ξ>1 >> hold on >> step(tf(4^2,[1,2*2.0*4,4^2])) >> step(tf(4^2,[1,2*4.0*4,4^2])) >> step(tf(4^2,[1,2*8.0*4,4^2])) ωn不变,ζ减小 ξ=0.5,改变ωn时的情况: >> figure >> step(tf(1^2,[1,2*0.5*1,1^2])) (ωn=1)

>> hold on >> step(tf(2^2,[1,2*0.5*2,2^2])) (ωn=2)>> step(tf(4^2,[1,2*0.5*4,4^2])) (ωn=4)>> step(tf(8^2,[1,2*0.5*8,8^2])) (ωn=8) ζ不变,ωn增大 曲线拟合程序 >> figure >> x=[0,0.2,0.4,0.6,0.8,1.0,1.2]; >> y=[1.135,1.135,1.216,1.351,1.534,1.737,2.0,]; >> plot(x,y,'.') >> hold on >> x1=[0:0.1:1.2]; >> y1=1+0.6*x1+0.2*x1.^2; >> plot(x1,y1) >> y1=1+0.7*x1; >> plot(x1,y1)

MATLAB仿真技术

MATLAB仿真技术 作 业 合 集

第1章 习题 5.利用直接输入法和矩阵编辑器创建矩阵A=? ? ? ? ??642531。 解:⑴利用直接输入法输入程序 A=[1 3 5;2 4 6] 按Enter 键后,屏幕显示 A = 1 3 5 2 4 6 ⑵用矩阵编辑器创建矩阵,如图1.1所示。 图1.1 MATLAB 编辑器 7.用矩阵编辑器创建矩阵a,使a 具有如下矩阵形式。 a=??????642531?a=??????????654321?a=??????????987654321?a=???? ??????098706540321?a=????? ???????00 00 09870654 0321 解:用矩阵编辑器创建矩阵a 的过程如图1.2、1.3、1.4、1.5、1.6所示。 图1.2 图1.3 图1.4 图1.5

图1.6 9.已知矩阵B=????? ?? ?????????922518113211912102201304161475231501017,试:①提取矩阵B 的第一行和第二行的第2、4、5个元素组成新矩阵1B ;②提取矩阵B 的第三行和第一行的全部元素组成新矩阵2B ;③使矩阵B 的第一行和第三行的第2;4个元素为0;④标出矩阵B 的第一行中小于5的元素。 解:①如上题,用矩阵编辑器生成矩阵B ,再输入程序 B1=B([1,2],[2,4,5]) 按Enter 键后,屏幕显示 B1 = 0 0 15 5 14 16 ②输入程序 B2=B([1,3],:) 按Enter 键后,屏幕显示 B2 = 17 0 1 0 15 4 0 13 0 22 ③第一行和第三行的第2;4个元素原本就为0。 ④输入程序如下 C=B(1,:)<5; %将B 矩阵第一行中小于5 的值标记为1 D=B(1,C) %去B 矩阵第一行中标为1的元素 按Enter 键后,屏幕显示 D= 0 1 0 11.已知矩阵a 为4阶魔方阵,令a+3赋值给b ,a+b 赋值给c ,求b 和c 。 解:程序如下。 >> a=magic(4) %建立4阶魔方矩阵 a = 16 2 3 13 5 11 10 8 9 7 6 12 4 14 15 1 >> b=a+3 %将a 中各元素加3 b = 19 5 6 16 8 14 13 11 12 10 9 15 7 17 18 4

matlab中循环语句用法

循环结构:for语句 格式: for 循环变量=表达式1:表达式2:表达式3 循环体 end 【注】:表达式1:循环变量初值, 表达式2:步长,为1时,可省略; 表达式3:循环变量终值。 或: for循环变量=矩阵表达式 循环体 end 【注】:执行过程是依次将矩阵的各列元素赋给循环变量,然后执行循环体语句,直至各列元素处理完毕。 2 while语句: 格式: while(条件) 循环体 end 【注】:条件成立时,执行循环体 3

break语句&& continue语句: break:破坏,破坏循环,终止循环的进行,跳出循环,程序将执行循环语句的下一语句。 continue:继续,循环继续,程序将跳过循环体中剩下的语句,继续下一次循环。 4 循环的嵌套—多重循环结构 5 选择结构:if-else语句 格式: if 表达式 程序模块 end 或 if 表达式 程序模块1 else 程序模块2 end 6 switch语句: 格式:

switch 表达式 case 数值1 程序模块1 case 数值2 程序模块2 case 数值3 程序模块3 ...... otherwise 程序模块n end 执行过程:首先计算表达式的值, 然后将其结果与每一个case后面的数值依次进行比较, 如果相等,则执行该case的程序模块; 如果都不相等,则执行otherwise模块中的语句。 switch语句可以替代多分支的if语句,而且switch语句简洁明了,可读性更好。 7 matlab中一些基本知识: END 注意事项 for循环可以通过break语句结束整个for循环

labview与matlab接口的方法

LabVIEW与Matlab接口的方法 The Method of Interfacing Between LabVIEW and Matlab 陈金平 (新疆大学,乌鲁木齐 830008) 0 引言 虚拟仪器技术是计算机技术、现代测控技术和电子仪器技术相互结合、渗透的产物。在虚拟仪器系统中,数据的分析处理、控制、结果输出和用户界面等功能都由软件完成,硬件仅仅是为了解决信号的输入输出,因此,软件是整个仪器系统的核心,从某种意义上可以说:“软件即仪器”。虚拟仪器系统的软件设计可以采用通用的可视化编程语言,如Visual C++、Visual Basic、Delphi等,但更为方便高效的还是专用的虚拟仪器软件开发平台,如美国国家仪器公司(National Instruments,NI)的Lab2 VIEW、LabW indows/C VI,惠普公司的VEE等,而其中首推NI公司的图形化编程语言LabVIEW。 1 LabVIEW的功能及特点 LabVIEW是NI公司推出的一种虚拟仪器软件开发平台,自1986年正式推出,经过短短不到15年的时间,已经发展到以最新板本LabVIEW611为核心,包括控制与仿真、高级数字信号处理、统计过程控制、模糊控制和PID控制等众多附加软件包,运行于W indows NT/98、Linux、M acintosh、Sun和HP-UX等多种平台的工业标准软件开发环境。 LabVIEW在包括航空航天、通信、汽车、半导体和生物医学等众多领域内得到了广泛的应用。其最大的特色是采用编译型图形化编程语言———G语言(G raph2 Pro gramm ing),即用户设计好程序的大体框架后,如同画流程图一般,只需将系统提供的各种图形化功能模块连接起来,就可得到所需的应用软件。LabVIEW中的程序称为VI(virtual instruments),每个VI都由前面板和框图程序以及图标/连接端口三部分组成。 除了具备其它编程语言所提供的常规函数功能外,LabVIEW内部还集成了大量的生成图形界面的模板,如各种表头、旋钮、开关、LE D指示灯、图表等;丰富实用的数值分析、信号处理功能,如FFT变换、各种滤波器、信号发生器等;以及对RS-232、G PI B、VXI、数据采集板卡、网络等多种硬件的设备驱动功能,并免费提供数十家世界知名仪器厂商的几百种源码级仪器驱动,大大方便和简化了用户的设计开发工作。Lab2 VIEW使得过去繁琐、枯燥的软件开发变得简单、方便,尤其适合不熟悉传统文本编程语言(如C、BASIC等)的工程技术人员,被誉为工程师和科学家的语言。 但是,在大型的系统测试和仿真过程中,需要软件进行一些很复杂的数值计算时,LabVIEW的图形化编程语言就显得力不从心,M atlab是一种常用的高效率数学运算工具,它建立在向量、数组和复数矩阵的基础上,使用方便,将它和LabVIEW有机地结合起来会大大减少编程的工作量,提高编程效率。本文通过求解一常微分方程初值问题的例子,介绍了两种编程语言的接口方法。 2 在LabVIEW中调用Matlab语言的方法在测试系统设计和软件开发过程中,数学分析与信号处理是两个不可缺少的重要内容。LabVIEW将数据采集和测试分析中常用的数学和信号分析算法程序集成在一起,提供了先进的数学和信号分析环境,所有的数学分析节点都集中在M athematics子模板中。在此模板中有一M atlab Script节点,利用此节点就可以实现在LabVIEW中对M atlab语言的调用。下面通过具体例子介绍调用方法。举例如下: 用Runge2K utta法计算下列微分方程的解(初值问题): y′=-50y+50x2+2x , 0≤x≤1 y(0)=1 2.1 编制M文件 启动M atlab610,利用其M文件编辑器编写M文件如下: function y=ff2(x,y) y=-50?y+50?x?x+2?x; 35 LabVIEW与M atlab接口的方法 陈金平

控制系统Matlab仿真 (传递函数)

控制系统仿真 [教学目的] 掌握数字仿真基本原理 控制系统的数学模型建立 掌握控制系统分析 [教学内容] 一、控制系统的数学模型 sys=tf(num,den)%多项式模型,num为分子多项式的系数向量,den为分母多项式的系%数向量,函数tf()创建一个TF模型对象。 sys=zpk(z,p,k)%z为系统的零点向量,p为系统的极点向量,k为增益值,函数zpk()创建一个ZPK模型对象。 (一)控制系统的参数模型 1、TF模型 传递函数 num=[b m b m-1b m-2…b1b0] den=[a m a m-1a m-2…a1a0] sys=tf(num,den) 【例1】系统的传递函数为。 >>num=[01124448]; >>den=[11686176105]; >>sys=tf(num,den); >>sys Transfer function: s^3+12s^2+44s+48 ------------------------------------- s^4+16s^3+86s^2+176s+105 >>get(sys) >>set(sys) >>set(sys,'num',[212])

>>sys Transfer function: 2s^2+s+2 ------------------------------------- s^4+16s^3+86s^2+176s+105 【例2】系统的传递函数为。 >>num=conv([20],[11]); >>num num= 2020 >>den=conv([100],conv([12],[1610])); >>sys=tf(num,den) Transfer function: 20s+20 ------------------------------- s^5+8s^4+22s^3+20s^2 【例3】系统的开环传递函数为,写出单位负反馈时闭环传递函数的TF模型。>>numo=conv([5],[11]); >>deno=conv([100],[13]); >>syso=tf(numo,deno); >>sysc=feedback(syso,1) Transfer function: 5s+5 ---------------------- s^3+3s^2+5s+5 【例4】反馈系统的结构图为: R

相关文档