文档库 最新最全的文档下载
当前位置:文档库 › 锦州20-2凝析气田南高点油环问题浅析

锦州20-2凝析气田南高点油环问题浅析

锦州20-2凝析气田南高点油环问题浅析
锦州20-2凝析气田南高点油环问题浅析

雅克拉凝析气藏开发中油气比降低原因分析

雅克拉凝析气藏开发中油气比异常变化原因分析 摘要:雅克拉凝析气田是中石化最大的整装凝析气田,2005年投入衰竭开发。随着生产的持续,气藏气油比出现初期缓慢上升,后下降再上升的趋势,有异于正常凝析气田压力低于露点后气油比单调上升的情况。通过分析认为,前期主要受反凝析和多孔介质双重影响,出现总体上升,实际先升后降再升的情况;气油比下降阶段则主要受边水推进影响;当边水推进影响达到一定程度后气油比恢复上升趋势。 关键词:凝析气藏气油比水侵多孔介质 一、雅克拉凝析气藏简介 雅克拉凝析气田位于塔里木盆地北部,在新疆维吾尔自治区阿克苏地区境内,构造位置处于沙雅隆起雅克拉断凸中段雅克拉构造带。1984年SC2井发现该构造,随后相继部署多口探井,1987年S5井在白垩系卡普沙良群钻遇工业油气流从此发现了白垩系凝析气藏,1991年投入试采,2005年正式采用直井+水平井方式进行衰竭式开发。根据流体相态实验显示,该凝析气藏属中高含凝析油型凝析气藏,且地露压差小。 二、生产过程中气油比异常变化 理论上,衰竭开采的凝析气藏随着压力的降低,初期气油比基本保持不变,压力降低至露点压力以下后由于反凝析左右,气油比不断上升(1)。但通过近6年的开发,发现雅克拉凝析气藏的气油比先平稳,随后下降最后上升的异常情况。 从图1地层压力、气油比变化曲线上可以看出,基本可以分为3个阶段,即气油比缓慢上升阶段、下降阶段、和气油比上升阶段。 图1 压力、气油变化曲线 三、气油比异常变化原因分析 1、多孔介质作用阶段:2005.8-2007.2 实际凝析油气体系的相平衡过程和渗流过程发生在地下多孔介质中,流体于储层介质间会发生相互作用。有研究表明,在某一地层温度下,多孔介质的存在对露点的影响使凝析气藏真实露点升高,其影响程度随地露压差的变大而变大(2)。 阶段内地层压力高于露点压力,地层中未发生反凝析,因此气油比变化大趋势基本稳定在4800m3/t左右。但流压测试结果显示,在2006年9月井底流压开始低于露点压力,即在

气井试气地面流程探析——以长庆油田为例

气井试气地面流程探析——以长庆油田为例 【摘要】对油田进行试气是对气层进行定性的重要手段,使我们能够更好的了解油田的油气资料,并根据此数据对试井及相关地层进行评定。在地面测试中要注重数据的真实性、准确性,以便为油田勘测开发提供数据,同时注意气井相关设备安全,以及测试人员的安全等。 【关键词】气井试气地面流程 长庆油田公司(PCOC)是隶属于中国石油天然气股份有限公司(PetroChina)的地区性油田公司,目前公司总部设置在陕西省西安市,其工作区域在鄂尔多斯盆地,横跨陕、甘、宁、内蒙、晋五省区。其勘探总面积为37万平方公里,其中天然气资源量为15亿m3。近年来长庆油田公司逐渐形成油气并举的局面,先后发现靖边气田,苏里格气田,榆林气田,乌审旗气田等大型气田,其探明地质储量为8703.5亿m3,控制储量为4362.5m3。本文针对长庆油田公司苏格里气田地面试气流程进行探析。 试气是对气井进行定性评价的重要手段,其主要地目的是取得地层油气资料,并根据资料对地层进行定性评价。目前长庆油田在苏格里气田采用常规试气工艺,其工艺流程为:安装设备,通井,洗井,试压,射孔,压裂,排液,完井等。本文针对长庆油田公司苏格里气田地面试气流程进行探析。 1 气井测试流程 测试流程主要由采气井口、放喷管线、汽水分离器、临界速度流量计、防喷出口燃烧筒等组成。这种方式主要适用于不产水或产水量较小的凝析水气井。而对于气水井,则应当采用气水井测试流程,两种测试方式基本一致,主要区别在于测试流程中增加重力式气水分离器,分离后,方进行天然气临界速度测量,水则用计量罐剂量。而一般气井则使用旋风分离器进行脱水,这是因为临界速度流量计计数要求为,气体必须不含水分,因此无论气井与气水井进行临界测试时均需脱水处理后方可计数,保证数据的准确性。 气井井口装置主要作用为悬挂井下管柱、密封油管、套管,用以控制油气井生产、回注与安全运行的设备,其主要包括套管头、油管头与采油树三个部分。该装置选定原则为:额定工作压力一定要大于实际工作中井口关井最大压力,对于后期需改造的井则额定压力必须大于实际施工中最大压力,同时根据工作地点温度、采井口装置内流体温度选择温度类别,根据气井的不同情况选择合适的井口装置材料,根据环境以及硫化氢浓度等实际工作因素选择采气井口性能级别。 目前常用管道汇台有丰型与回型两种,根据井口最大关井压力预测结果来选择压力级别。选择应当遵循:井口压力<50MPa采用一级管汇台控制,压力<20MPa采用35MPa管汇,压力在20MPa—50MPa之间采用70MPa管汇,压力>50MPa采用多级节流。而对于经常需要操作的阀门则需选用密封性能好、操

气藏气井生产动态分析题改图

气藏气井生产动态分析题 一、*井位于构造顶部,该气藏为底水衬托的碳酸盐岩裂缝—孔隙性气藏,该井于1984年4月28日完井,井深3058.4米,油层套管7〞×2890.3米,油管21/ 2 〞×3023.3米,井段2880.6~2910.2米为浅灰色白云岩,2910.2~2943.5米为页岩,2943.5~3058.4米为深灰色白云岩,井底距离原始气水界面为107.2米,完井测试时,套压15.31MPa,油压14.98MPa,产气38×104m3/d,产水2.1m3/d(凝析水)为纯气藏。 该井于1986年2月23日10:30开井投产,定产量25×104m3/d,实际生产情况见采气曲线图。1986年4月3日开始,气井生产套压缓慢上升,油压、气量、水量下降,氯根含量无明显变化。4月22日9:00~11:00下井下压力计了解井筒压力梯度,变化情况见井下压力计原始记录。 请结合该井的采气曲线和压力计原始记录: 1、计算该井压力梯度; 2、分析判断气井采气参数变化的原因。 **井井下压力计原始测压记录 测压时间井深(m)压力(MPa) 压力梯度 (MPa/100m) 备注 86.4.28 9:00014.25 9:20100014.930.068 9:40150015.270.068 10:00200015.610.068 10:20227115.800.070 10:40270016.100.070 11:00295016.280.0722950遇阻 测井筒压力梯度为0.070Mpa/100m左右,井筒基本为纯气柱。(2)下井下压力计在井深2950m处遇阻表明油管不通畅,气井生产参数变化的原因为油管下部节流所致。

凝析油开发可行性报告

凝析油开发可行性报告 凝析油(gas condensate)是指从凝析气田的天然气中凝析出来的液相组分。天然气中部分较重的烃类在油层的高温、高压条件下呈蒸气状态,采气时由于压力和温度降低到地面条件,这些较重的烃类从天然气中凝析而出,成为轻质油(称凝析油)。凝析油的主要成分是C5~C8烃类的混合物,并含有少量大于C8的烃类以及二氧化硫、噻吩类、硫醇类、硫醚类和多硫化物等杂质,它的馏分多在20℃~200℃,比重小于0.78,其重质烃类和非烃组分的含量比原油低,挥发性好。凝析油可直接用作燃料,并且是炼油工业的优质原料,通常石脑油收率在60%~80%、柴油收率在20%~40%,API度在50以上。凝析油可分为石蜡基、中间基和环烷基3种类型。石蜡基凝析油适合生产乙烯裂解料,中间基、环烷基凝析油可作为芳烃重整料。澳大利亚的LAMINARIA、印度尼西亚的BON-TANG、BRC等属于石蜡基型,澳大利亚的西北大陆架凝析油(NWS)、印度尼西亚的SENIPAH、HANDIL属于中间基、环烷基型。 全球供需呈上升趋势: 目前全球已发现的凝析油气田超过12200多个,主要分布于美国、俄罗斯、澳大利亚、哈萨克斯坦、乌兹别克斯坦及中东和亚太地区。2005年全球凝析油生产能力约670万桶/d,预计到2010年将达到873.5万桶/d。 中东及亚太地区是世界凝析油的主要生产和消费地区。近年来,中东地区产量不断提高,成为凝析油的主要生产基地,其中波斯湾地区凝析油产量增长最快,特别是沙特、卡塔尔和伊朗。目前波斯湾地区已有大量凝析油分离装置投产,2004年凝析油加工能力已达123万桶/d,2008年将增至176万桶/d,2011年将达到300万桶/d,这将使苏伊士以东地区占世界凝析油加工能力的比例从2004年的60%增至2011年的70%以上。波斯湾地区凝析油生产能力的快速提高,主要是因为该地区许多国家积极推进天然气资源的开发;其次,凝析油装置投资较少,建设周期短;第三,将凝析油分离与现有的炼厂整合,可提高轻、中馏分的产量。亚太地区的主要生产地则在澳大利亚、印度尼西亚、马来西亚、泰国等。泰国的凝析油需求量由2003年的11.8万桶/d将增至2008年的23.4万桶/d;我国预计由2003年的5.9万桶/d增至2008年的22.4万桶/d,2013年将达到27.0万桶/d。为了得到更多的石化原料和汽油等,近年亚太地区的凝析油分离装置能力也在增加。凝析油正成为炼油厂的一个重要原料来源。 随着凝析油需求量的增加,今后几年还会有一些凝析油装置投产。凝析油与液化石油气和石脑油的增加,将使中东地区油品逐渐轻质化。预计2007年轻质油占油品的份额将超过50%;燃料油、沥青和润滑油等重质油产品的份额将会下降,而中馏分油则基本保持不变。我国凝析油开发工作已起步: 目前国内凝析油产地主要分布在新疆油田、中原油田、东海油田等,尤其新疆的塔里木油田,凝析油储量占全国总储量的80%。塔里木油田的凝析油质轻、K值高、烷基性强,工业优化试验乙烯收率可达34.35%、丙烯收率18.15%。目前该油田的凝析油已引起国内乙烯界的密切关注。目前新疆地区已相继发现了牙哈、吉拉克、英买力、迪拉等13个高压凝析气田,凝析油气当量近2.8亿t,仅牙哈凝析气田就日产凝析油2190t、天然气373万m3,可以保证向西气东输管道日输气350万m3。 凝析油气藏的高效开发一直是一项世界难题,如果开采工艺和措施选择不当,会导致80%以上的凝析油滞留地下,造成巨大的资源浪费和经济损失。要提高凝析油的采收率,最有效的办法是循环注气,将凝析气采到地面后分离出凝析油和轻烃液化气,然后将不含凝析油的天然气压缩增压后重新注入地下,使凝析油一直溶解在地下气体中随气体采出。塔里木凝析气田的开发难度更大,首先,其凝析气埋藏深,在地下5000m左右,地层压力高达50MPa

2021年气藏气井生产动态分析题改图

气藏气井生产动态分析题 欧阳光明(2021.03.07) 一、*井位于构造顶部,该气藏为底水衬托的碳酸盐岩裂缝—孔隙性气藏,该井于1984年4月28日完井,井深3058.4米,油层套管7〞×2890.3米,油管21/2〞×3023.3米,井段2880.6~2910.2米为浅灰色白云岩,2910.2~2943.5米为页岩,2943.5~3058.4米为深灰色白云岩,井底距离原始气水界面为107.2米,完井测试时,套压15.31MPa,油压14.98MPa,产气38×104m3/d,产水 2.1m3/d (凝析水)为纯气藏。 该井于1986年2月23日10:30开井投产,定产量25×104m3/d,实际生产情况见采气曲线图。1986年4月3日开始,气井生产套压缓慢上升,油压、气量、水量下降,氯根含量无明显变化。4月22日9:00~11:00下井下压力计了解井筒压力梯度,变化情况见井下压力计原始记录。 请结合该井的采气曲线和压力计原始记录: 1、计算该井压力梯度; 2、分析判断气井采气参数变化的原因。 **井井下压力计原始测压记录

答:该井在生产过程中套压上升,而油压下降,产气量、产水量下降,氯根含量不变(1)4月28日井下压力计测井筒压力梯度为0.070Mpa/100m左右,井筒基本为纯气柱。(2)下井下压力计在井深2950m处遇阻表明油管不通畅,气井生产参数变化的原因为油管下部节流所致。 二、**井位于**气藏顶部,该气藏为砂岩孔隙性纯气藏,该井于1977年4月23日完井,井深1375.7m,油层套管7〞×1203.4米油管21/2〞×1298.8米,衬管5〞×1195.2~1324.9米,完井测试套压9.23MPa,油压8.83MPa,产气量19.4×104m3/d,产水微。1978年2月3日10:00开井投产,投产初期套压8.82MPa,油压8.54MPa,产气21.2×104m3/d,产水0.4m3/d。1990年12月,套压3.82MPa,产气4.3×104m3/d。 请依据该井1978~1990年的采气曲线特征划分生产阶段,并描述出该井各生产阶段的生产特征。 答;根据该井采气曲线特征大致划分为四个生产阶段: (1)上升阶段(产层净化阶段):在此阶段,气井产量、井口压力、无阻流量随着井下渗滤条件的逐渐改善而逐步上升。 (2)稳产阶段:产量基本上保持不变,仅压力下降,在曲线上表现出产量平稳而压力下降的生产过程。 (3)递减阶段:随差开采,当气井能量不足以克服地层的流动阻力、井筒的阻力和地面设备的阻力时,产气量明显下降,递减速度快。

科技进步奖项目名称超深超高压复杂凝析气田开发关键技术

附件2 科技进步奖 项目名称:超深超高压复杂凝析气田开发关键技术创新及工业化提名单位:中国石油天然气集团有限公司 提名意见 凝析油气是国家急需的高端石化产品的稀缺原料。我国凝析油气资源主要集中在塔里木盆地,2005年形成了基于平衡相态理论的高压循环注气凝析气田开发技术,实现了5000m、60MPa、中高渗凝析气田的高效开发。但新发现的迪那、塔中等凝析气藏埋藏更深(>6000m)、压力更高(>105MPa)、储层更复杂(低渗透砂岩、缝洞型碳酸盐岩),效益开发属世界级难题。近十年来,国家和中石油持续立项攻关,创新了超临界凝析气非平衡相态渗流理论,研发了超深超高压低渗透凝析气田高效安全开发技术,创建了超深缝洞型碳酸盐岩凝析气藏效益开发技术,形成了超深超高压复杂凝析气田开发技术。 该项目成果在塔里木凝析气田开发中广泛应用,年产当量由486万吨上升到1000万吨以上并稳产8年,建成了世界最大的深层凝析油气开发基地。2008年以来,累计增产7709万吨,新增利税1098亿元。研究形成的技术和开发模式对国内外同类型凝析气田的开发具有重要的指导和借鉴意义,推广应用前景广阔。 研究成果共获发明专利32件、软件著作权24项,发布标准19项(其中国家标准2项、行业标准2项),出版专著10部,发表论文128篇(SCI、EI论文50篇),获省部级一等奖4项,引领了全球深层油气开发技术的发展。专家评价该成果实现了凝析气田开发技术的重大跨越,整体达到国际领先水平。 经审查,推荐材料真实有效,相关栏目填写符合要求,按照规定内容进行了公示,无异议。

提名该项目为国家科学技术进步奖一等奖。 项目简介 凝析油气富含优质烃类组分,是国家军工和民生领域急需的高端石化原料,备受世界关注。我国凝析油气资源80%集中在塔里木盆地,2005年以前揭示了高含蜡凝析气三相(气-液-固)相变规律,创新了基于平衡相态理论的高压循环注气开发技术,建立了高压(5000m、60MPa)中高渗凝析气田三种高效开发模式。但新发现的凝析气藏埋藏更深(>6000m)、压力更高(>105MPa)、储层更复杂(低渗透砂岩、缝洞型碳酸盐岩),开发理论和技术必须革新换代,关键是攻克以下世界级科学技术难题:①超高压凝析气的超临界特征导致相变渗流规律难以定量描述;②超深超高压低渗透凝析气藏裂缝活动机理复杂,自然产能差异大、开发风险极高;③超深缝洞型碳酸盐岩凝析气藏渗流规律不清、缝洞分散,难以实现效益开发。2008年以来,国家和中石油持续立项攻关,形成了超深超高压复杂凝析气田开发技术,实现了凝析气田开发理论和技术的重大跨越,年产当量超过1000万吨并稳产8年,建成了世界最大的深层凝析油气开发基地,专家评价该成果整体达到国际领先水平。 (1)创新了超临界凝析气非平衡相态渗流理论。实验明确了超高压凝析气具有气体和液体双重性质的超临界特征,建立了干气-凝析气-凝析油相间传质的非平衡理论,创建了基于非平衡相态的多相多组分重力超覆渗流模型,实现了超高压凝析油气体系扩散、渗流行为的定量描述,揭示了凝析气藏循环注气“置换-超覆-扩散”三元驱替机理,发明了注气垂直驱替提高采收率新方法。 (2)研发了超深超高压低渗透凝析气田高效安全开发技术。通过大岩样真三轴裂缝力学活动性模拟实验,揭示了裂缝渗透率与力学活动性指数成正比的规律,创建了裂缝性低渗透凝析气藏应力控产理论,创新了基于地应力与裂缝渗流耦合的井网优化和水侵预测技术,研发了140MPa全通径射孔-完井-改造一体化工艺,实现了少井高产稳产;创建了以13Cr油管抗酸防腐、环空分级管控为核心的超高压全生命周期井完整性技术,建立了国际首套陆上高温高压井完整性指南、设计准则和管理规范,实现

塔中Ⅰ号酸性凝析气田地面工艺技术

34 2016年5月 石 油 规 划 设 计 第27卷 第3期 * 王洪松,男,工程师。2006年毕业于中国石油大学(华东)石油工程专业,获学士学位。现在中国石油塔里木油田公司,从事油气田运行管理工作。地址:新疆维吾尔自治区库尔勒市塔里木油田塔中油气开发部塔中作业区,841000。E-mail:wanghongsong-tlm@https://www.wendangku.net/doc/9a554070.html, 文章编号:1004-2970(2016)03-0034-04 王洪松* 张贤波 张峰 夏明明 尚浩鹏 宫景海 (中国石油塔里木油田公司) 王洪松等. 塔中Ⅰ号酸性凝析气田地面工艺技术. 石油规划设计,2016,27(3):34~37 摘要 塔中Ⅰ号气田是我国最大的碳酸盐岩酸性凝析气田,地面工程包括井口至油气处理厂 的油气集输、天然气脱硫脱水脱烃、硫磺回收、凝析油处理和各种产品外输等主体工程、辅助工程和公用工程,工艺装置复杂。介绍了塔中Ⅰ号气田油气集输工艺和油气处理工艺。气田集输采用气液混输工艺,设置了高、低压两套集气系统,较好地适应了碳酸盐岩凝析气田压力及产量衰减较快、单井生命周期短的特点;油气处理工艺采用MDEA(甲基二乙醇胺)脱硫工艺、注醇+丙烷制冷脱水脱烃工艺和CPS(中国石油硫磺回收法)硫磺回收工艺,硫磺回收率可达99%,适合塔中碳酸盐岩凝析气田中低含硫的现状,为其他同类酸性凝析气田提供了可借鉴的经验。 关键词 酸性凝析气田;集输处理;脱硫;脱水脱烃;硫磺回收 中图分类号:TE866 文献标识码:A DOI :10.3969/j.issn.1004-2970.2016.03.009 塔中Ⅰ号气田开发试验区位于塔里木盆地中部,该气田属碳酸盐岩气藏,为我国最大的奥陶系礁滩体凝析气田,于2010年9月建成投产,设计能 力10×108 m 3 /a,具有硫含量高、蜡含量高和凝固点高等特点。该试验区建成了塔里木油田第一套工艺最完整的酸性气田处理系统,包括从井口至油气处理厂的油气集输、天然气脱硫脱水脱烃、硫磺回收、凝析油处理和各种产品外输等主体工程、辅助工程 和公用工程,涉及专业广泛,工艺装置复杂[1] 。 1 油气集输工艺技术 塔中Ⅰ号气田采用多井集气与单井集气相结合的集输工艺。对于井位分布较为密集,集输半径在3~5 km 的单井采用多井集气工艺,既降低了投资,又方便维护管理。对于少数距离集气站较远但距离集气干线较近的单井,采用单井集气工艺,就近接 入集气干线。该气田包括塔中62井区、塔中82井区和塔中83井区共27口试采井,共设置23座单井站、4座集气站和1座油气处理厂。设高压集气干线4条,分别为TZ62高压集气干线、TZ82高压集气干线、TZ83高压集气干线和TZ721高压集气干线;设低压集气干线1条,为TZ62低压集气干线。高压气进处理厂压力为6.9 MPa,温度21~47 ℃;低压气进处理厂压力为1.0 MPa,温度20~50 ℃。塔中Ⅰ号气田集输系统总体流程见图1。 图1 塔中Ⅰ号气田集输系统总体流程

凝析气藏采气工程特点及技术

凝析气藏开发的特点及技术 摘要:反常凝析现象决定了凝析气藏的开发方式和开发技术不同于一般气藏,除了要保证天然气的采收率外,还需要考虑提高凝析油采收率的问题。基于凝析气藏的基本特征,综述了衰竭式开发和保持压力开发的特点,介绍了常用的保持压力开发方式,并总结了我国凝析气藏开发的成熟技术及今后的主要研究方向。 关键词:凝析气藏;采气工程;开发方式;开发技术 凝析气田在世界气田开发中占有特殊重要的地位,据不完全统计,地质储量超过1012m3的巨型气田中凝析气田占68%,储量超过1000×108m3的大型气田则占56%。世界上富含凝析气田的地区有俄罗斯、美国和加拿大,在我国凝析气田也分布很广。根据第二次全国油气资源评价结果,我国气层气主要分布在陆上中西部地区及近海海域的南海和东海,资源总量为38×1012m3,探明储量为 2.06×1012m3,可采储量为 1.3×1012m3,其中凝析油地质储量为11226.3×104t,采收率若按照36%计算,则凝析油可采储量为4082×104t。 1凝析气藏的基本特征 根据我国石油天然气行业气藏分类标准(SY/T6168-2009),产出气相中凝析油的含量大于50g/m3的气藏为凝析气藏。按照凝析油含量可进一步划分为特高、高、中、低含凝析油凝析气藏,如下表1所示。 1.1 反常凝析现象 凝析气藏是介于油藏和气藏之间的一种特殊烃类矿藏,具有反凝析的显著特点。凝析气藏中流体在原始地层状态下(绝大部分)呈单一气相存在,当地层压力降至上露点压力(又称第二露点压力)以下时,开始有凝析油析出,且凝析油的析出量随着压力的继续下降而先增加至最大值,然后又减小,直至压力降至下露点压力(又称第一露点压力)时,凝析油被全部蒸发,此即为反常凝析现象。特别是对凝析油含量高的凝析气藏采用衰竭式开采,反常凝析现象比较严重。 1.2 埋藏深、温度高、压力高 我国凝析气藏埋深一般在2000~5000m,凝析气藏的原始地层压力高于临界压力,原始地层温度介于临界温度和临界凝析温度之间,储层的温度和压力较高。凝析气藏的地层压力一般为25~56MPa,压力系数一般为1.0~1.2左右。塔里木盆地的凝析气藏埋深在4000~5000m 以上,埋藏最深的塔西南深层凝析气藏达6500m。新疆柯克亚深层凝析气藏压力高达123MPa,在世界上也是屈指可数的超高压气藏。气藏温度一般在70~100℃之间,少数凝析气藏温度高达100~145℃。因此,埋藏深、高温、高压是凝析气藏又一重要特点。 1.3 产出“四低一高”的凝析油 凝析气藏产出的凝析油具有低密度、低粘度、低初馏点、低含蜡量和高馏分的特点。

气藏气井生产动态分析题改图之令狐文艳创作

气藏气井生产动态分析题 令狐文艳 一、*井位于构造顶部,该气藏为底水衬托的碳酸盐岩裂缝—孔隙性气藏,该井于1984年4月28日完井,井深3058.4米,油层套管7〞×2890.3米,油管21/2〞×3023.3米,井段2880.6~2910.2米为浅灰色白云岩,2910.2~2943.5米为页岩,2943.5~3058.4米为深灰色白云岩,井底距离原始气水界面为107.2米,完井测试时,套压15.31MPa,油压14.98MPa,产气38×104m3/d,产水2.1m3/d(凝析水)为纯气藏。 该井于1986年2月23日10:30开井投产,定产量25×104m3/d,实际生产情况见采气曲线图。1986年4月3日开始,气井生产套压缓慢上升,油压、气量、水量下降,氯根含量无明显变化。4月22日9:00~11:00下井下压力计了解井筒压力梯度,变化情况见井下压力计原始记录。 请结合该井的采气曲线和压力计原始记录: 1、计算该井压力梯度; 2、分析判断气井采气参数变化的原因。 **井井下压力计原始测压记录

答:该井在生产过程中套压上升,而油压下降,产气量、产水量下降,氯根含量不变(1)4月28日井下压力计测井筒压力梯度为0.070Mpa/100m左右,井筒基本为纯气柱。(2)下井下压力计在井深2950m处遇阻表明油管不通畅,气井生产参数变化的原因为油管下部节流所致。 二、**井位于**气藏顶部,该气藏为砂岩孔隙性纯气藏,该井于1977年4月23日完井,井深1375.7m,油层套管7〞×1203.4米油管21/2〞×1298.8米,衬管5〞×1195.2~1324.9米,完井测试套压9.23MPa,油压8.83MPa,产气量19.4×104m3/d,产水微。1978年2月3日10:00开井投产,投产初期套压8.82MPa,油压8.54MPa,产气21.2×104m3/d,产水0.4m3/d。1990年12月,套压3.82MPa,产气4.3×104m3/d。 请依据该井1978~1990年的采气曲线特征划分生产阶段,并描述出该井各生产阶段的生产特征。 答;根据该井采气曲线特征大致划分为四个生产阶段: (1)上升阶段(产层净化阶段):在此阶段,气井产量、井口压力、无阻流量随着井下渗滤条件的逐渐改善而逐步上升。(2)稳产阶段:产量基本上保持不变,仅压力下降,在曲线上表现出产量平稳而压力下降的生产过程。

塔里木高压气田集输和处理经验谈参考文本

塔里木高压气田集输和处理经验谈参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

塔里木高压气田集输和处理经验谈参考 文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 塔里木盆地具有丰富的天然气资源,截至20xx年底, 塔里木油田先后建成投产了克拉2、迪那2、英买7、羊 塔克、玉东2、牙哈、桑南东、吉拉克、塔中6、柯克亚 等10 个气田,已建成集气站21 座,气田集输能力达到 277×108m3/a;天然气处理厂12座,处理能力达到297 ×108m3/a,基本形成了以轮南集气总站为天然气总外输 口的总体流向。多年来塔里木油田坚持应用和集成新工 艺、新技术,相继建成了牙哈、克拉2、英买力、迪那等 大型高压气田,攻克了一系列难题,形成了塔里木盆地大 型复杂高压气田地面工程技术,为西部能源基地的建设提 供了强有力的支撑。

1、地面工程特点 1.1 天然气快速上产,地面建设节奏加快 塔里木油田自2000 年以来,实现了跨越式的发展,天然气产量从7.5×108m3/a,增长到2011 年170.5×108m3/a。伴随天然气产量的快速发展,地面建设任务重、节奏快。大型高压气田建设时间平均需要约14 个月,而国外类似气田的建设周期普遍超过2 年,加上前期论证时间,一般要超过3 年。 1.2 高压高产气田比重大,地面工艺技术复杂 在塔里木油田已开发的气田中,高压气田的比例越来越多,高压气田的地质储量占气田总储量的97.3%。气田的类型复杂,有蜡含量高、凝固点高的凝析气田、特高凝析油含量凝析气田、异常高压气田、异常高温气田等。

气田开发地质

第九章气田开发地质 (Chapter8 water sweeping oil field geology analysis) 学时:2学时 基本内容: ①天然气藏开发地质特征,包括气地质特征、天然气藏分类、天然气藏驱动方式、开发层系划分及井网部署等; ②气田开发动态分析 教学重点:天然气藏与油藏的开发地质差异 教学目标:了解基于天然气特点的天然气藏特点、开发基本特征。 教学内容提要: 第一节天然气藏开发地质特征 一、油气差异及开发特点(本节重点) 1.油气差异 天然气的分子直径比石油的小几倍到几十倍,气的密度和粘度比油的低几百倍到几千倍; 气的压缩性强,膨胀系数大,比油的高几百倍; 气在多空隙介质中的渗流能力远远高于石油的渗流能力; 天然气与水的亲合力小,气层都是天然亲水层。 2. 储盖要求 天然气的分子小、粘度低及渗流能力强,气层要求的储层物性下限比油层要求的低,有些不能产油的岩层可以成为产气层。 天然气的扩散能力强,气藏要求的保存条件比油藏的高。对气藏圈闭的完整性、直接盖层分布的稳定性和封闭性能、间接盖层匹配和分布等,都应研究。 3. 开采策略 气田井网比油田井网稀,采用稀井广探和少井高产原则布井; 大多气田开发不采用均匀井网,而是根据气藏特点,避开含水区带和低渗透区布井,通过高、中渗透区带的气井来采低渗透区的气,以提高采收率和增加经济效益。 天然气运输难,气田开发之前要做好后续工程的建设,与用户签定合同,一且开发就要按产销关系按合同执行; 要求气田开发方案编制前对气田地质基本特征有明确认识,取得基本参数,不能边开发、边认识、边建设。 二、气藏类型 1.按气藏圈闭因素分类

负压采气技术在红台凝析气田的应用

油气开采化 工 设 计 通 讯 Oil and Gas Production Chemical Engineering Design Communications ·53· 第45卷第2期 2019年2月 1 红台凝析气田地质概况 红台凝析气田位于吐哈盆地台北凹陷东部,为一北东走向西北宽缓、东南陡峭的不对称背斜构造,长轴长度5.5~6.5km ,短轴长度2~3km ,区块内断层发育,平面上分别被一系列近南北向断层和东西向断层切割成若干断块。截至2016年底,红台凝析气田累计探明凝析气地质储量104.32×108m 3,技术可采 储量67.82×108m 3 ,主力气层为三间房气藏埋深2 000~2 600m , 西山窑油气藏埋深2 500~3 000m 。储集层是以分流河道为主的中细砂岩,物性以中低孔低渗和特低渗为主、随深度增加物性变差,气藏以凝析气藏为主、凝析油含量289~123g/m 3,气藏类型以构造岩性为主,气层发育状况受构造、砂体和边水多重因素控制。 2 红台凝析气田开发现状 红台凝析气田于2005年开始建产,2007年全面投入开发,截至2017年底,累计产气24.89×108m 3,采气速度1.5%,采出程度22.7%。地层压力逐年下降,保持水平低,产水井增多,含水上升,气田开发进入低压开采、多井低产阶段。气田区块的地层压力平均每年下降1.35MPa ,目前压力在5.12MPa ,仅为原始地层压力的27.1%左右。 红台凝析开采工艺特点:自喷采气方式压力下降较快、容易积液,影响自然能量开采;柱塞气举排液采气需要较高的地层能量才能将液体举升至地面,且柱塞气举成本高、灵活性差,在气田中后期生产中不能普及使用;机抽排液采气的生产方式较为常见,但对严重供液不足的气井存在故障率高的问题。在气田开发到中后期,大部分气井井口压力低于集输汇管的压力,有气采不出,负压采气技术成为低压气井开采的捷径。3 负压采气原理 负压采气技术是利用负压压缩机将气井井口的压力由大于或等于大气压降为负压,增大气井生产压差,同时将井内的气体经过抽吸压缩后提高外输压力。 红台凝析气田所用负压压缩机为RS-Z1型压缩机组:吸气压力为0.05~0.42MPa ,排气压力范围0.35~3.5MPa ,撬装液体分离器处理能力可达到8m 3/d ,最大压缩比20∶1,燃气发动机燃气消耗低、每天200~280m 3。机组由气液分离器、压 缩机主机、燃气发动机、控制柜、风冷式冷却器五部分组成,为撬装式,具有占地面积小,便于安装和运输的特点。运行时井口气通过进气管路进入压缩机组入口,经入口调压阀进入气液分离罐对气液态进行分离,同时分离罐下部的排液阀可根据罐内液位自动排液,分离后的气体经压缩机进行压缩提压后通过流量计外输。 4 负压机选井条件及参数管理 利用负压压缩机低压吸入高压输出的特点,可以挖掘因地层压力低而导致低产或停产气井的生产潜力,增加天然气的产量。负压机机选井条件:单井井口压力大于0.05MPa 、单 井日产液量小于8m 3 /d 。 负压机井生产时应保持井口油压、外输压力的相对稳定,实现单井生产相对平稳的目标。通过现场总结和分析,负压机井井口油压控制在0.2~0.4MPa ,外输压力高于汇管压力0.1~0.2MPa ,能较好地维持单井气量平稳生产。若负压机井油压突然上升或下降,可通过负压机的压力阀调节,增加或减少抽吸能力,实现调控井口油压、气量的目标。5 应用效果评价 从2015年开始,红台凝析气田先后投用负压机11台次,负压累计产气量5 554.13×104m 3、累计增气2 460.92×104m 3,以973.5元/千方天然气售价计算,产生经济效益5 406.945 6×104元。 负压机投入按照合同价结算:单机增气量3 000~5 000m 3 /d ,按 0.25元/m 3结算;大于5 000m 3 /d ,按49万元/a 结算;单机增气 量小于3 000m 3 /d ,不予结算。负压机累计费用为543.806 1×104元。 负压采气纯利润为4 863.139×104元,投出产出比为1∶8.94,达到预期目标。6 结束语 根据现场应用效果来看,负压采气技术能最大限度挖潜大部分低压低产气井产能,使用负压压缩机后,不能进站生产的低压气井可恢复生产,间开井可连续生产,负压机组还具有搬迁、安装方便的特点。 目前使用的负压机由于液体分离器处理量小,对选井造成一定的局限性,建议后期优化改造撬装液体分离器,增大液体处理量,扩大负压压缩机选井条件,选择适合使用的气井推广应用。通过现场负压机组的使用,可以一机多井并联采气,实现负压机最大增气功效的目标。 摘 要:负压采气技术是气田开发中后期提高采收率的重要手段,特别是中低孔低渗和特低渗为主的气田。利用负压压缩机组降低井口生产压力,增大生产压差,提高出口压力,达到提高采收率的目标。 关键词:负压采气;采收率;应用中图分类号:TE377 文献标志码:A 文章编号:1003–6490(2019)02–0053–01 Application of Negative Pressure Gas Production Technology in Hongtai Condensate Gas Field Xu Zhong-shu ,Hu Yuan-jun ,An Xiao-dong Abstract :Negative pressure gas recovery technology is an important means to improve oil recovery in the middle and late stages of gas field development ,especially for gas fields with medium-low porosity ,low permeability and ultra-low permeability.The negative pressure compressor group is used to reduce well production pressure and increase production pressure.Poor ,increase export pressure and achieve the goal of enhanced oil recovery. Key words :negative pressure gas recovery ;oil recovery ;application 负压采气技术在红台凝析气田的应用 徐忠树,胡元军,安小东 (吐哈油田公司鄯善采油厂红台采气工区,新疆鄯善?838202) 收稿日期:2018–11–06作者简介: 徐忠树(1978—),男,四川内江人,工程师,主要从事油气田开采工作。

气藏气井生产动态分析题改图之欧阳家百创编

气藏气井生产动态分析题 欧阳家百(2021.03.07) 一、*井位于构造顶部,该气藏为底水衬托的碳酸盐岩裂缝—孔隙性气藏,该井于1984年4月28日完井,井深3058.4米,油层套管7〞×2890.3米,油管21/2〞×3023.3米,井段2880.6~2910.2米为浅灰色白云岩,2910.2~2943.5米为页岩,2943.5~3058.4米为深灰色白云岩,井底距离原始气水界面为107.2米,完井测试时,套压15.31MPa,油压14.98MPa,产气38×104m3/d,产水2.1m3/d(凝析水)为纯气藏。 该井于1986年2月23日10:30开井投产,定产量25×104m3/d,实际生产情况见采气曲线图。1986年4月3日开始,气井生产套压缓慢上升,油压、气量、水量下降,氯根含量无明显变化。4月22日9:00~11:00下井下压力计了解井筒压力梯度,变化情况见井下压力计原始记录。 请结合该井的采气曲线和压力计原始记录: 1、计算该井压力梯度; 2、分析判断气井采气参数变化的原因。 **井井下压力计原始测压记录

答:该井在生产过程中套压上升,而油压下降,产气量、产水量下降,氯根含量不变(1)4月28日井下压力计测井筒压力梯度为0.070Mpa/100m左右,井筒基本为纯气柱。(2)下井下压力计在井深2950m处遇阻表明油管不通畅,气井生产参数变化的原因为油管下部节流所致。 二、**井位于**气藏顶部,该气藏为砂岩孔隙性纯气藏,该井于1977年4月23日完井,井深1375.7m,油层套管7〞×1203.4米油管21/2〞×1298.8米,衬管5〞×1195.2~1324.9米,完井测试套压9.23MPa,油压8.83MPa,产气量19.4×104m3/d,产水微。1978年2月3日10:00开井投产,投产初期套压8.82MPa,油压8.54MPa,产气21.2×104m3/d,产水0.4m3/d。1990年12月,套压3.82MPa,产气4.3×104m3/d。 请依据该井1978~1990年的采气曲线特征划分生产阶段,并描述出该井各生产阶段的生产特征。 答;根据该井采气曲线特征大致划分为四个生产阶段: (1)上升阶段(产层净化阶段):在此阶段,气井产量、井口压力、无阻流量随着井下渗滤条件的逐渐改善而逐步上升。 (2)稳产阶段:产量基本上保持不变,仅压力下降,在曲线上表现出产量平稳而压力下降的生产过程。 (3)递减阶段:随差开采,当气井能量不足以克服地层的流动阻力、井筒的阻力和地面设备的阻力时,产气量明显下降,递减速度快。

相关文档