文档库 最新最全的文档下载
当前位置:文档库 › 结晶水合物析出问题的考查

结晶水合物析出问题的考查

结晶水合物析出问题的考查
结晶水合物析出问题的考查

结晶水合物析出问题的考查

魏东

在一定温度下,在结晶水合物对应的饱和溶液中,蒸发溶剂或加入相应的无水化合物都可使结晶水合物析出,值得注意的是结晶水合物与无水盐的析出不同,其晶体的析出同时会带出溶液中的水。

在与之相关的计算问题中,常利用由质量守恒原理得出的下列关系:

1. 蒸发溶剂时

溶液中减少的溶质质量=析出晶体中溶质质量

溶液中减少的溶剂的质量=蒸发的溶剂的质量+析出晶体中结晶水的质量

2. 当增加溶质时

溶液中减少的溶质质量+加入的溶质质量=析出晶体中溶质质量

溶液中减少的溶剂的质量=析出晶体中结晶水的质量

例1. 在一定温度下,向足量的饱和溶液中加入1.06g无水,搅拌

后静置,最终所得晶体的质量()

A. 等于1.06g

B. 大于1.06g而小于2.86g

C. 等于2.86g

D. 大于2.86g

解析:饱和溶液中加入1.06g无水,析出的晶体为

��

106g 286g

1.06g

2.86g

但因析出晶体带出溶液中的水,使原来溶解在这部分水中的溶质也随之析出,故最终得到晶体的质量必定大于2.86g。答案为D项。

变式1:某温度时的溶解度为25g,在该温度下,将16g无水硫酸铜粉末加入

a g水中,充分溶解后溶液中有蓝色硫酸铜晶体析出,则a的取值范围是()A. 9<a<64 B. 9<a≤64

C. 18<a<90

D. 18≤a≤90

解析:要求a的取值范围,就要确定两个极值。当16g无水硫酸铜加入x g水中,

溶液恰好饱和时,有,解得x=64。当溶液中有晶体析出时,即溶液已经达到了饱和状态,此时应有a<x=64。当16g无水硫酸铜加入到y g水中,析

出的晶体将y g水全部转化为结晶水带出,根据的组成有

,解得y=9。而本题应有溶液剩余,故有a>y=9。答案为A项。

例2. 在一定温度下,向足量硫酸铜饱和溶液中加入a g无水硫酸铜粉末并搅拌,

析出b g晶体,根据上述已知条件及数据,下列物理量中可以求出的是()

①该温度下的溶解度

②原饱和溶液失掉水的质量

③原饱和溶液失掉溶质的质量

④析出晶体中含的质量

⑤原饱和溶液的物质的量浓度

A. ①③B.①②③④⑤

C. ①②③④

D. ①②④

解析:原饱和溶液失掉水的质量=;

析出晶体中含的质量=;

原饱和溶液失掉溶质的质量=析出晶体中溶质的质量-加入的溶质的质量

=。

因析出晶体后的溶液仍是饱和的,故原饱和溶液失掉的溶质溶解在原饱和溶液失掉的水中也恰好是饱和的,该温度下的溶解度可由②③两个数据求得。

根据已求得的物理量求原饱和溶液的物质的量浓度,还需要溶液的密度,而本题无法求得。故可以求出①②③④。答案为C项。

变式2:80℃时,饱和硫酸铜溶液310g,加热蒸发掉100g水,再冷却至30℃,可析

出多少克胆矾(硫酸铜80℃时溶解度为55g,30℃时为25g)?

解析:析出晶体后的溶液仍为饱和溶液,所以析出晶体之后饱和溶液中水和溶质的质量比为100:S。

设80℃ 310g饱和溶液中含x g水,则有:

溶质质量为。

蒸发掉100g水后,设析出胆矾的质量为y,则其中含结晶水为,无水硫酸铜为,析出晶体后溶液中余下水,余下溶质的质量为

。30℃时,硫酸铜的溶解度为25g,所以析出晶体后,饱和溶液中溶质和溶剂的质量比为25:100。

解出y=154g。

答:析出154g胆矾。

高考化学难点结晶水合物的析出

高考化学难点结晶水合物的析出 溶液中晶体的析出是初中学习的内容,初中学习时要求低,不能满足于高考的需要,因此有必要深入学习。 ●难点磁场 请试做下列题目,然后自我界定学习本篇是否需要。 t℃时向a g饱和Na2CO3(aq)中加入1.06 g无水Na2CO3,搅拌后静置,冷却到原温度,结果溶液全部变为晶体 (Na2CO3•10H2O)。求: (1)S(Na2CO3)与a的关系式,S=_____________(S代表溶解度)。 (2)a的取值范围。 ●案例探究 [例题]已知某温度下,无水Na2CO3的溶解度是10.0 g/(100 g水)。在该温度下,向足量的饱和Na2CO3(aq)中加入1.06 g无水Na2CO3,搅拌后静置。试求最终所得晶体的质量。 命题意图:考查学生对析出结晶水合物的计算能力。 知识依托:溶解度的概念和计算。 错解分析:常见错解有三:一是忽略析出的碳酸钠晶体中含有结晶水,二是不知道析出的碳酸钠晶体中含多少结晶水,三是认为析出的碳酸钠晶体中只含有1.06 g碳酸钠和相应的结晶水。

解题思路:解答本题有两种方法,一是过程思维法,二是终态思维法。 方法1(过程思维法):先求加入的1.06 g无水Na2CO3形成并析出晶体的质量m1(Na2CO3•10H2O)及溶液中由此减少的水的质量m1(H2O) Na2CO3 ~ Na2CO3•10H2O ~ 10H2O 106 g 286 g 180 g 1.06 g m1(Na2CO3•10H2O) m1(H2O) m1(Na2CO3•10H2O)=2.86 g m1(H2O)=1.80 g 再求溶解在1.80 g水中Na2CO3的质量m2(Na2CO3),及这些Na2CO3析出所形成晶体的质量m2(Na2CO3•10H2O)和溶液由此而减少水的质量m2(H2O) m2(Na2CO3)= =0.180 g Na2CO3 ~ Na2CO3•10H2O ~ 10H2O 106 g 286 g 180 g 0.180 g m2(Na2CO3•10H2O) m2(H2O) m2(Na2CO3•10H2O)=0.486 g m2(H2O)=0.306 g 依次类推,求m3(Na2CO3)及m3(Na2CO3•10H2O)和m3(H2O),直至所得晶体质量mi(Na2CO3•10H2O)在(Na2CO3•10H2O)的和中可以忽略为止。 m3(Na2CO3)= =0.0306 g Na2CO3 ~ Na2CO3•10H2O ~ 10H2O

最新高三化学学习方法——结晶水合物的析出

最新高三化学学习方法——结晶水合物的析出 溶液中晶体的析出是初中学习的内容,初中学习时要求低,不能满足于高考的需要,因此有必要深入学习。 ●难点磁场 请试做下列题目,然后自我界定学习本篇是否需要。 t℃时向a g饱和Na2CO3(aq)中加入1.06 g无水Na2CO3,搅拌后静置,冷却到原温度,结果溶液全部变为晶体(Na2CO3·10H2O)。求: (1)S(Na2CO3)与a的关系式,S=_____________(S代表溶解度)。 (2)a的取值范围。 ●案例探究 [例题]已知某温度下,无水Na2CO3的溶解度是10.0 g/(100 g 水)。在该温度下,向足量的饱和Na2CO3(aq)中加入1.06 g无水

Na2CO3,搅拌后静置。试求最终所得晶体的质量。 命题意图:考查学生对析出结晶水合物的计算能力。 知识依托:溶解度的概念和计算。 错解分析:常见错解有三:一是忽略析出的碳酸钠晶体中含有结晶水,二是不知道析出的碳酸钠晶体中含多少结晶水,三是认为析出的碳酸钠晶体中只含有1.06 g碳酸钠和相应的结晶水。 解题思路:解答本题有两种方法,一是过程思维法,二是终态思维法。 方法1(过程思维法):先求加入的1.06 g无水Na2CO3形成并析出晶体的质量m1(Na2CO3·10H2O)及溶液中由此减少的水的质量m1(H2O) Na2CO3 ~Na2CO3·10H2O ~10H2O 106 g 286 g 180 g 1.06 g m1(Na2CO3·10H2O) m1(H2O) m1(Na2CO3·10H2O)=2.86 g m1(H2O)=1.80 g 再求溶解在1.80 g水中Na2CO3的质量m2(Na2CO3),及这些Na2CO3析出所形成晶体的质量m2(Na2CO3·10H2O)和溶液由此而减少水的质量m2(H2O) m2(Na2CO3)= g 100g 1.80 g 10.0 =0.180 g Na2CO3 ~Na2CO3·10H2O ~10H2O 106 g 286 g 180 g

10.2结晶水合物中结晶水含量 的测定_测验

10.2结晶水合物中结晶水含量的测定测试题 (满分100分考试时间:45分钟) 一、选择题(40分) 1、下列说法中正确的是() A 加热胆矾失去结晶水,得到白色的无水硫酸铜,这一过程叫风化 B 家用石碱久置后,由块状变为粉末状这一变化是物理变化 C 将固体氯化钙放置在潮湿的空气中,其表面出现水珠,这一现象叫潮解 D从冰箱中取出物品,表面很快出现水珠,这一现象叫潮解 2 实验室里需用480ml 0.1mol/L 的硫酸铜溶液,先选取500ml容量瓶进行配置,一下操作正确的是() A称取7.68g 硫酸铜,加入500ml 水 B 称取12.0g 胆矾,配成500ml溶液 C 称取8.0g硫酸铜,加入500ml水 D 称取12.5g胆矾,配成500ml溶液 3 下列关于“硫酸铜晶体中结晶水含量的测定”操作中,正确的是() A 加热胆矾,开始用小火,后逐渐加大,最后用大火加热 B 加热、冷却、称量,再加热、冷却、称量,既是恒重操作 C 加热后的冷却必须放在干燥器中进行 D 加热时发现晶体溅出坩埚,经估计后,可以在坩埚中再加一些晶体 4 测定结晶水合物中结晶水含量的实验中,必须做恒重操作的原因是() A 判断加热时结晶水合物有无晶体飞溅 B 判断加热时结晶水合物是否有其他杂质 C 判断结晶水合物是否已失去全部结晶水 D 防止结晶水合物失水后又吸潮,质量增大 5 学生在实验室分组实验测定胆矾晶体里结晶水的含量时出现了三种情

况:(1)晶体中含有受热不发生任何变化的固体物质(2)晶体中尚带蓝色便停止加热(3)晶体受热失去全部结晶水后没有放入干燥器中冷却。其中能使实验结果偏低的是() A(1)(2) B(1)(3) C(2)(3) D(1)(2)(3) 6 某种结晶水合物可以表示为ZnSO4·xH2O,28.7g这种结晶水合物全部失去结晶水后质量为16.1g 则x的值是() A 2 B 5 C 7 D 10 7 某学生称量CuSO4·5H2O时左盘放砝码4g,游码在0.5刻度处,天平平衡。右盘CuSO4·5H2O晶体的质量是() A4.5g B4g C3.5g D3g 8 加热时必须隔着石棉网的是() A 烧杯 B 蒸发皿 C 试管 D坩埚 9 p g结晶水合物A·n H2O受热失去全部结晶水后,质量变为q g,由此可以得知该晶体水合物的式量为() A 18pn/(p-q) B 18pn/q C 18pn/p D18qn/(p-q) 10下列关于硫酸铜晶体中结晶水含量测定的操作中,不必作规定的是() A硫酸铜晶体要慢慢加热 B 加热后,要放在干燥器中冷却 C 要做恒重操作 D 用电子天平称量坩埚后,要做0处理 二简答题(60分) 11 以下是某同学测定硫酸钠晶体中水含量的实验方案。 实验用品:硫酸钠晶体试样、研钵、干燥器、坩埚、三脚架、泥三角、药匙、电子天平 实验步骤:1 准确称量一个干净、干燥的坩埚 2 在坩埚中加入一定量的硫酸钠晶体试样,称重、将称重过的试样放入研钵中研细,在放回坩埚中 3 将盛有试样的坩埚加热,待晶体变成白色粉末时,立即停止加

结晶水

结晶水: 释一:又称水合水。结晶水是结合在化合物中的水分子,它们并不是液态水。很多晶体含有结晶水.但并不是所有的晶体都含有结晶水。溶质从溶液里结晶析出时,晶体里结合着一定数目的水分子,这样的水分子叫结晶水。在结晶物质中,以化学键力与离子或分子相结合的、数量一定的水分子。例如,从硫酸铜溶液中结晶出来的蓝色晶体,含有5个结晶水,其组成为CuSO4·5H2O。在这种晶体中有4个水分子直接与Cu离子配位(见水合物),另一水分子则与SO娸离子结合。 释二:在晶体物质中与离子或分子结合的一定数量的水分子。又称水合水。例如五水合硫酸铜(分子式CuSO4·5H2O )晶体中就含有5个结晶水。在不同温度和水蒸气压下,一种晶体可以生成含不同结晶水的分子,例如,在逐步升温的条件下,CuSO4·5H2O可以分步失去结晶水,依次转变为CuSO4·3H2O、CuSO4·H2O 、CuSO4 。某些水合物在加热时,可能和所含的结晶水发生水解反应,转变为氧化物或碱式盐。当一种水合物暴露在较干燥的空气中,它会慢慢地失去结晶水,由水合物晶体变成粉末状的无水物,这一过程称为风化。有些无水物在湿度较大的空气中,会自动吸收水分,转变成水合物,这一过程称为潮解。 释三:在矿物晶格中占有确定位置的中性水分子[2]H2O;水分子的数量与该化合物中其他组分之间有一定的比例。如石膏Ca〔SO4〕·2H2O、胆矾Cu〔SO4〕·5H2O、苏打Na2〔CO3〕·10H2O,分别表示其中含有2、5、10分子的结晶水。由于在不同的矿物的晶格中,水分子结合的紧密程度不同,因此结晶水脱离晶格所需的温度也就不同,但一般不超过600℃。通常为100~200℃。当结晶水逸出时,原矿物晶格便被破坏;其他原子可重新组合,形成另一种化合物。 结晶水与配位水的区别 许多物质从水溶液里析出晶体时,晶体里常含有一定数目的水分子,这样的水分子叫做结晶水。含有结晶水的物质叫做结晶水合物。 结晶水合物里的水分子属于结晶水合物化学固定组成的一部分。 水合物含一定量水分子的固体化合物。水合物中的水是以确定的量存在的,例如天水硫酸铜CuSO4的水合物的组成为CuSO4·5H2O。水合物中的水有几种不同的结合方式:一种是作为配体,配位在金属离子上,称为配位结晶水;另一种则结合在阴离子上,称为阴离子结晶水。例如CuSO4·5H2O加热到113℃时,只失去四分子水。只有加热到258℃以上,才能脱去最后一分子水。由此可见,4个水分子是作为配体配位在铜离子上的,即[Cu(H2O)4]2+;另一个水分子则结合在硫酸根上。一般认为,一个水分子通过氢键与中的氧原子相连接的。CuSO4·5H2O按水分子的结合方式,其结构式可写成[Cu(H2O)]4][SO4(H2O)]。许多其他水合硫酸盐晶体如FeSO4·7H2O、NiSO4·7H2O、ZnSO4·7H2O等,均有相同的结合方式。 在过渡金属的水合物中,相同组成的水合物往往由于其中的水分子的结合方式不同而使其性质发生变化。例如无水三氯化铬呈红紫色;其水合物为暗绿色晶体,实验式为CrCl3·6H2O。经实验证明,6个水分子中只有4个水分子和2个氯离子作为配体与铬离子结合在内界〔Cr(H2O)4Cl2]+,不论在晶态或在水溶液中均稳定存在,因此,这种水合物的结构式可写成[Cr(H2O)4Cl2]Cl·2H2O。如将暗绿色晶体的溶液冷却至0℃以下并通入氯化氢气体,则析出紫色晶体,其结构式为[Cr(H2O)6]Cl3。将紫色晶体的溶液用乙醚处理并通以氯化氢气体,就析出一种淡绿色晶体,其结构式为〔Cr(H2O)5Cl]Cl2·H2O。 水也可以不直接与阳离子或阴离子结合而依一定比例存在于晶体内,在晶格中占据一定的部位。这种结合形式的水称为晶格水,一般含有12个水分子。有些晶形化合物也含水,但无一定比例。例如沸石和其他硅酸盐矿物。一些难溶的金属氢氧化物实际上也是水合物 怎样区分我这个化合物的水分是结晶水还是游离水? 从图谱看,是水合物,不是游离水。 因为游离水会从较低温度一直持续到100度,而图中的失水在80度前就完成了。 游离水是在一定条件下可以干燥掉的,而结合水一般是不容易被干燥掉的。 学化工原理的人应该都知道! 做一个干燥失重实验就知道了! 一定条件说不好是什么条件的,有些化合物普通条件下都可能发生失水。 我一般从两方面解释这个问题,一方面TG(热重)里面从失水速度、温度来说,前后都有明显的平台,快速失重是脱去结晶水的特征;缓慢的失重,平台不明显是吸附的水。另一方面,你的DSC(差热分析)在失结晶水时应该有个比较明显的吸热峰,吸附水没有。游离水会从较低温度一直持续到100度

影响结晶的因素结晶

影响结晶的因素结晶

影响结晶的因素主要有以下几点: 1、浆料的过饱和度,这个主要由温度来控制,温度越低过饱和度越低。过饱和度越大,则,产生晶核越多,结晶体粒径越小。 2、停留时间,时间越长,则产生的结晶体粒径越大。停留时间与液位有关,液位越高,停留时间越强。 3、容器的搅拌强度,搅拌越强,容易破碎晶体,结晶体粒径越小 4、杂质成分,杂质成分较多,则比较容易形成晶核,结晶体粒径越小。 给一一偏关于结晶理论的文章: 结晶及其原理 结晶是固体物质以晶体状态从蒸汽、溶液或熔融物中析出的过程。在化学工业中,常遇到的情况是从溶液及熔融物中使固体物质结晶出来。 结晶是一个重要的化工过程,为数众多的化工产品及中间产品都是以晶体形态出现,如磷肥生产、氮肥生产、纯碱生产、盐类生产、络合物的沉析、有机物生产及胶结材料的固化等。这是因为结晶过程能从杂质含量相当多的溶液中形成纯净的晶体(形成混晶的情况除外);此外,结晶产品的外观优美,且可在较低的温度下进行。对许多物质来说,结晶往往是大规模生产它们的最好又最经济的方法;另一方面,对更多的物质来说,结晶往往是小规模制备纯品的最方便的方法。结晶过程的生产规模可以小至每小时数克,也可以大至每小时数十吨,有效体积达300m3以上的结晶器已不罕见。

近期在国际上溶液结晶的新进展主要表现在三个方面。 (1)在生物化学的分离过程中广泛采用了溶液结晶技术,如味精、蛋白质的分离与提取等。 (2)在连续和间歇结晶过程中,广泛地应用了计算机辅助控制与操作手段,对于间歇结晶过程借助CAC实现最佳操作时间表,控制结晶器内过饱和度水平,使结晶的成核与结垢问题减低到最少;对于连续结晶过程,则藉以连续控制细晶消除,以缓解连续结晶过程固有的非稳定行为——CSD周期振荡问题,稳定结晶主粒度。 (3)结晶器设计模型的最佳化。由于结晶过程是一个复杂的传热、传质过程,反应结晶(或称反应沉淀结晶过程)尤甚。在不同的物理(流体力学等)化学(组分组成等)环境下,结晶过程的控制步骤可能改变,反映出不同的结晶行为,均使结晶过程数学模型复杂化。但目前仍以使用粒数衡算模型及经验结晶动力学方程联立求解,进而建立设计模型为主。 对于不同的结晶物系,产生过饱和度的方法可能不同,可以是冷却、蒸发、盐析、加压或双相萃取等。为了适应这些不同方法的特殊要求,在国际工业结晶界已经开发出各种型式的结晶器,结构不断更新,多达30余种。实践证明,无论对于连续结晶或间歇结晶过程,细晶消除对于保证结晶产品质量都是非常有效的手段,利用它可以有效地实现结晶产品粒度分割的目的,获取指定粒度分布的结晶。实践证明,结晶器内流体力学情况是异常重要的因素,它直接影响结晶器内过饱和度水平的分布,即影响成核、成长动力学、结垢、粒度分布宽度等,近代开发的新型结晶器皆考虑了这些因素。天津大学化工系所开发的用热熔法自青海盐湖光卤石提取KCl的结晶流程中,使用了DTB型结晶器,该结晶器具有特殊W型底,可消除死区,所具有的导流筒及特制搅拌桨可保证良好均匀的流体力学状态,同时还具有消除细晶的循环。 其它结晶过程如电子元件制造中所需的单晶制取,在国外也发展迅速,而且有

结晶水合物析晶计算的解题思路

结晶水合物析晶计算的解题思路 湖南省长沙市麓山国际实验学校(410006)吉仕怀 有关溶解度的计算历来是高考的重点,但近年来的高考试题中有关析晶计算通常以选择题出现,而以大题出现的几率不大,因此该考点成了考生容易忽视的一个冷点。在高考后段复习中,应强化析晶计算的有关练习。下面略举两例说明其解题思路。 例1:80℃时,饱和硫酸铜溶液310g,加热蒸发掉100g水,再冷却至30℃,可析出多少克胆矶(80℃硫酸铜S=55g,30℃S=25g) 【解析】解法1、析出晶体后的溶液仍为饱和溶液,所以析晶之后饱和溶液中水和溶质的质量比=100:S。 设80℃310g饱和溶液中含xg水, 则310g:X=(100+55):100,X=200g。 溶质质量为(310-200)g=110g。 蒸发100g水后,设析出胆矾的质量为y,则其中含结晶水为9y/25g,无水硫酸铜为16y/25g,析晶后溶液中余下水(200-100-9y/25)g,余下溶质的质量为(110-16y/25)g. 30℃时,硫酸铜的溶解度为25g,所以析出晶体后,饱和溶液中溶质和溶剂的质量比为25:100。所以,(200-100-9y/25)g:(110-16y/25)g=100:25 解出y=154g 解法2:析晶前溶质质量为110g,析出晶体质量为y。溶液中溶质质量为 (110-16y/25)g,饱和溶液的质量为(310-100-y)g。所以 (100+25):25=(310-100-y)g:(110-16y/25)g 解出y=154g 解法3:用守恒法。 原溶液中溶质质量=析晶后饱和溶液中溶质质量+晶体中的溶质质量。 设析出xg胆矾,其中硫酸铜的质量为16x/25,结晶水的质量为9x/25。蒸发水和冷却后,溶液中溶剂的质量为100-9x/25。根据30℃硫酸铜的溶解度可知:析出晶体后溶质的质量:溶剂质量=25:100,所以溶质质量=[25(100-9x/25)÷100]g。原饱和溶液溶质的质量110g=16x/25g+[25(100-9x/25)÷100]g,解出x=154g 解法4:设析出胆矾的质量为x 余下的饱和溶液质量:余下溶质质量=(100+S):S 余下饱和溶液的质量为310-100-X,余下溶质为110-16x/25. (210-X):(110-16X/25)=125:25 解X=154g 答案:154g 点评:结晶水合物的析晶计算的基本思路是:析出结晶水合物后的溶液仍为饱和溶液,其中溶剂与溶质的质量比=100:S,或饱和溶液的质量与溶质质量之比=(100+S):S。 例2:用Na2SO3和S粉在水溶液中加热反应可制Na2S2O3。10℃和70℃时,Na2S2O3在100g 水中溶解度分别为60.0g和212g。常温下,从溶液中析出的晶体是Na2S2O3·5H2O。现取15.1gNa2SO3溶于80.0mL水中,另取5.00g硫粉加到上述溶液中,用小火加热,反应结束后过滤。滤液在100℃

五水合硫酸铜结晶水的测定

实验六 五水合硫酸铜结晶水的测定 [课时安排] 4学时 [实验目的] 1、了解结晶水合物中结晶水含量的测定原理和方法。 2、学习研钵、干燥器等仪器的使用和沙浴加热、恒重等基本操作。 [实验原理介绍] 很多离子型的盐类从水溶液中析出时,常含有一定量的结晶水(或称水合水)。结晶水与盐类结合的比较牢固,但受热到一定温度时,可以脱去结晶水分一部分或全部。CuSO 4·5H 2O 晶体在不同温度下按下列反应逐步脱水: CuSO 4·5H 2O ??→?℃ 48 CuSO 4·3H 2O +2 H 2O CuSO 4·3H 2O ??→?℃99 CuSO 4·H 2O +2 H 2O CuSO 4·H 2O ?? →?℃218 CuSO 4+H 2O 因此对于经过加热能脱去结晶水,又不会发生分解的结晶水合物中结晶水的测定,通常把一定量的结晶水合物(不含吸附水)置于已灼烧至恒重的坩埚中,加热至较高温度(以不超过被测定物质的分解温度为限)脱水,然后把坩埚移入干燥器中,冷却至室温,再取出用电子天平称量。由结晶水合物经高温加热后的失重值可算出该结晶水合物所含结晶水的质量分数,以及每物质的量的该盐所含结晶水的物质的量,从而可确定结晶水合物的化学式。由于压力不同、粒度不同、升温速率不同,有时可以得到不同的脱水温度及脱水过程。 [基本操作与仪器介绍] 1、沙浴加热,参见第三章三。 2、研钵的使用方法参见附录1。 3、干燥器的准备和使用。 由于空气中总含有一定量的水汽,因此灼烧后的坩埚和沉淀等,不能置于空气中,必须放在干燥器中冷却以防吸收空气中的水份。 干燥器是一种具有磨口盖子的厚质玻璃器皿,磨口上涂有一薄层凡士林,使其更好地密合。底部放适当的干燥剂,其上架有洁净的带孔瓷板,以便放置坩埚和称量瓶等。 准备干燥器时要用干的抹布将内壁和瓷板擦抹干净,一般不用水洗,以免不能很快干燥。放入干燥剂的量不能太多,干燥剂不要放得太满,太多容易玷污坩埚。 开启干燥器时,应左手按住干燥器的下部右手握住盖的圆顶,向前小心推开器盖。盖取下时,将盖倒置在安全处。放入物体后,应及时加盖。加盖时也应该拿住瓶身盖上圆顶,平推盖严。当放入湿热的坩埚时,应将盖留一缝隙,稍等几

高考化学最有效的解题方法及难点攻破:难点14 结晶水合物的析出

高考化学最有效的解题方法难点14 结晶水合物的析出 溶液中晶体的析出是初中学习的内容,初中学习时要求低,不能满足于高考的需要,因此有必要深入学习。 ●难点磁场 请试做下列题目,然后自我界定学习本篇是否需要。 t ℃时向a g 饱和Na 2CO 3(aq)中加入1.06 g 无水Na 2CO 3,搅拌后静置,冷却到原温度,结果溶液全部变为晶体(Na 2CO 3·10H 2O)。求: (1)S (Na 2CO 3)与a 的关系式,S =_____________(S 代表溶解度)。 (2)a 的取值范围。 ●案例探究 [例题]已知某温度下,无水Na 2CO 3的溶解度是10.0 g/(100 g 水)。在该温度下,向足量的饱和Na 2CO 3(aq)中加入1.06 g 无水Na 2CO 3,搅拌后静置。试求最终所得晶体的质量。 命题意图:考查学生对析出结晶水合物的计算能力。 知识依托:溶解度的概念和计算。 错解分析:常见错解有三:一是忽略析出的碳酸钠晶体中含有结晶水,二是不知道析出的碳酸钠晶体中含多少结晶水,三是认为析出的碳酸钠晶体中只含有1.06 g 碳酸钠和相应的结晶水。 解题思路:解答本题有两种方法,一是过程思维法,二是终态思维法。 方法1(过程思维法):先求加入的 1.06 g 无水Na 2CO 3形成并析出晶体的质量m 1(Na 2CO 3·10H 2O)及溶液中由此减少的水的质量m 1(H 2O) Na 2CO 3 ~ Na 2CO 3·10H 2O ~ 10H 2O 106 g 286 g 180 g 1.06 g m 1(Na 2CO 3·10H 2O) m 1(H 2O) m 1(Na 2CO 3·10H 2O)=2.86 g m 1(H 2O)=1.80 g 再求溶解在1.80 g 水中Na 2CO 3的质量m 2(Na 2CO 3),及这些Na 2CO 3析出所形成晶体的质量m 2(Na 2CO 3·10H 2O)和溶液由此而减少水的质量m 2(H 2O) m 2(Na 2CO 3)=g 100g 1.80g 10.0?=0.180 g Na 2CO 3 ~ Na 2CO 3·10H 2O ~ 10H 2O 106 g 286 g 180 g 0.180 g m 2(Na 2CO 3·10H 2O) m 2(H 2O) m 2(Na 2CO 3·10H 2O)=0.486 g m 2(H 2O)=0.306 g 依次类推,求m 3(Na 2CO 3)及m 3(Na 2CO 3·10H 2O)和m 3(H 2O),直至所得晶体质量m i (Na 2CO 3·10H 2O)在∑=n i i m 1(Na 2CO 3·10H 2O)的和中可以忽略为止。 m 3(Na 2CO 3)=g 100g 306.0g 10.0?=0.0306 g Na 2CO 3 ~ Na 2CO 3·10H 2O ~ 10H 2O 106 g 286 g 180 g 0.0306 g m 3(Na 2CO 3·10H 2O) m 3(H 2O)

硫酸铜结晶水含量的测定

实验:硫酸铜结晶水含量的测定 教学目标:学习测定晶体里结晶水含量的方法。 练习坩埚的使用方法,初步学会研磨操作。 教学重点:测定晶体里结晶水含量的方法。 教学难点:学会误差分析。 一、实验原理 1.反应原理 2.计算原理 Δ CuSO4 ? xH2O == CuSO4 + x H2OΔm 160+18x 160 18x m1 m2 m1-m2 x=160(m1-m2)/18m2 结晶水的质量分数= (m1-m2)/ m2 3.实验成功的关键:(1)m1、m2的数值要准确,即要准确称量。 (2)加热使晶体全部失去结晶水。 二、实验用品分析 1.称量:托盘天平、研钵(用来研碎晶体) 2.加热:坩埚、坩埚钳、三脚架、泥三角、玻璃棒、酒精灯 3.冷却:干燥器。 三、实验步骤 1.研磨 2.称量:记下坩埚与晶体的总质量m1 3.加热:缓慢加热、用玻璃棒搅拌,直到蓝色晶体完全变成白色粉末,且不再有水蒸气逸出,然后放在干燥器里冷却。 4.称量:记下坩埚与无水硫酸铜的总质量m2 5.再加热称量:再加热无水硫酸铜,冷却后再称量,至连继两次称量的质量差不超过0.1g 为止。 6.计算:CuSO4 ? xH2O 理论值:w(结晶水) = 18x/(160+18x) 实际值:w'(结晶水)= (m1-m2)/ m(硫酸铜)7.误差分析: 实验一硫酸铜晶体中结晶水含量的测定 (1)测定原理:CuS04·5H20中,Cu(H2O)42+与S042-·H20,其中前者是蓝色的,后者是_______色的。5个水分子与CuS04结合力是__________,在383 K时,Cu(H2O)42+失去4个水分子,在531 K时,才能使_________中的水失去。 (2)测定标准记量: 如果用w为托盘天平称量坩埚的质量,w2为坩埚与晶体的总质量,w3是无水CuS04与坩埚再加热,放在干燥器中冷却后的质量。设x为结晶水的物质的量,则计算x的数学表达式为值只有在4.9-5.1之间,才表明实验是成功的。 (3)测定误差分析: 你认为在_________条件下会导致实验失败。你认为产生误差的可能情况有哪些? (至少写五种) 问题:脱水后的白色CuSO4 粉未为什么要放在干燥器中冷却? 重点点拨

高中化学解题方法--结晶水合物的析出

高中化学解题方法--结晶水合物的析出 溶液中晶体的析出是初中学习的内容,初中学习时要求低,不能满足于高考的需要,因此有必要深入学习。 ●难点磁场 请试做下列题目,然后自我界定学习本篇是否需要。 t ℃时向a g 饱和Na 2CO 3(aq)中加入1.06 g 无水Na 2CO 3,搅拌后静置,冷却到原温度,结果溶液全部变为晶体(Na 2CO 3·10H 2O)。求: (1)S (Na 2CO 3)与a 的关系式,S =_____________(S 代表溶解度)。 (2)a 的取值范围。 ●案例探究 [例题]已知某温度下,无水Na 2CO 3的溶解度是10.0 g/(100 g 水)。在该温度下,向足量的饱和Na 2CO 3(aq)中加入1.06 g 无水Na 2CO 3,搅拌后静置。试求最终所得晶体的质量。 命题意图:考查学生对析出结晶水合物的计算能力。 知识依托:溶解度的概念和计算。 错解分析:常见错解有三:一是忽略析出的碳酸钠晶体中含有结晶水,二是不知道析出的碳酸钠晶体中含多少结晶水,三是认为析出的碳酸钠晶体中只含有1.06 g 碳酸钠和相应的结晶水。 解题思路:解答本题有两种方法,一是过程思维法,二是终态思维法。 方法1(过程思维法):先求加入的 1.06 g 无水Na 2CO 3形成并析出晶体的质量m 1(Na 2CO 3·10H 2O)及溶液中由此减少的水的质量m 1(H 2O) Na 2CO 3 ~ Na 2CO 3·10H 2O ~ 10H 2O 106 g 286 g 180 g 1.06 g m 1(Na 2CO 3·10H 2O) m 1(H 2O) m 1(Na 2CO 3·10H 2O)=2.86 g m 1(H 2O)=1.80 g 再求溶解在1.80 g 水中Na 2CO 3的质量m 2(Na 2CO 3),及这些Na 2CO 3析出所形成晶体的质量m 2(Na 2CO 3·10H 2O)和溶液由此而减少水的质量m 2(H 2O) m 2(Na 2CO 3)=g 100g 1.80g 10.0?=0.180 g Na 2CO 3 ~ Na 2CO 3·10H 2O ~ 10H 2O 106 g 286 g 180 g 0.180 g m 2(Na 2CO 3·10H 2O) m 2(H 2O) m 2(Na 2CO 3·10H 2O)=0.486 g m 2(H 2O)=0.306 g 依次类推,求m 3(Na 2CO 3)及m 3(Na 2CO 3·10H 2O)和m 3(H 2O),直至所得晶体质量m i (Na 2CO 3·10H 2O)在∑=n i i m 1(Na 2CO 3·10H 2O)的和中可以忽略为止。 m 3(Na 2CO 3)=g 100g 306.0g 10.0?=0.0306 g Na 2CO 3 ~ Na 2CO 3·10H 2O ~ 10H 2O 106 g 286 g 180 g 0.0306 g m 3(Na 2CO 3·10H 2O) m 3(H 2O)

物质从溶液中析出教学设计

《物质从溶液中析出》教学设计 一、设计思想 结晶不仅适用于一种可溶性固体从溶液中析出,还适合多种可溶性固体混合物的分离。学生对结晶的适用范围较难理解,也是这节课的难点。为了突破这个难点,首先通过蒸发食盐饱和溶液、冷却硝酸钾饱和溶液和硫酸铜饱和溶液这三个实验使学生认识晶体、结晶、结晶水合物的含义。当学生对基本概念有了一定了解后,随后提出新问题:工业上如何生产粗盐。学生可能一时无法回答,这时播放海水晒盐的图片。这时可用PPT展示硝酸钾和食盐的溶解度曲线,学生自然会从溶解度曲线中找到答案。在学生真正理解了结晶适用于一种可溶性固体从溶液中析出的原理后,再来学习结晶可适合多种可溶性固体混合物的分离就不困难了。 二、教学目标 1. 知识与技能 (1)应用溶解度曲线,知道物质从溶液中析出晶体的规律 (2)理解结晶的原理,知道结晶水和结晶水合物的概念。 2. 过程与方法 从溶解度曲线图,分析物质从溶液中析出的规律 3. 情感态度与价值观 体验到冬天捞碱,夏天晒盐的化学知识在生活中的运用 三、重点和难点 教学重点:理解物质从溶液中得到晶体的方法 教学难点:结晶法适合多种可溶性固体混合物的分离 四、教学用品 药品:食盐、白糖、硝酸钾、蒸馏水、面粉、硫酸铜晶体 仪器:放大镜、玻璃片、烧杯、玻璃棒、胶头滴管、石棉网、三角架、显微镜、酒精灯、火柴 媒体:投影 五、教学案例

1. 教学过程

2. 主要板书 七、教学反思 物质从溶液中析出的教学中,讲到晶体知识,我认为要强调三点:一是结晶水是晶体结构内部结合的水,从表面观察结晶水合物是“干燥”的。二是结晶水合物中所含的结晶水都是有一定比例,不是任意的,因此结晶水合物不是混合物。三是有些晶体失去结晶水或得到结晶水都有明显的化学变化特征,属于化学变化。例如硫酸铜晶体。

结晶水合物析出问题的考查

结晶水合物析出问题的考查 魏东 在一定温度下,在结晶水合物对应的饱和溶液中,蒸发溶剂或加入相应的无水化合物都可使结晶水合物析出,值得注意的是结晶水合物与无水盐的析出不同,其晶体的析出同时会带出溶液中的水。 在与之相关的计算问题中,常利用由质量守恒原理得出的下列关系: 1. 蒸发溶剂时 溶液中减少的溶质质量=析出晶体中溶质质量 溶液中减少的溶剂的质量=蒸发的溶剂的质量+析出晶体中结晶水的质量 2. 当增加溶质时 溶液中减少的溶质质量+加入的溶质质量=析出晶体中溶质质量 溶液中减少的溶剂的质量=析出晶体中结晶水的质量 例1. 在一定温度下,向足量的饱和溶液中加入1.06g无水,搅拌 后静置,最终所得晶体的质量() A. 等于1.06g B. 大于1.06g而小于2.86g C. 等于2.86g D. 大于2.86g 解析:饱和溶液中加入1.06g无水,析出的晶体为 。 �� 106g 286g 1.06g 2.86g

但因析出晶体带出溶液中的水,使原来溶解在这部分水中的溶质也随之析出,故最终得到晶体的质量必定大于2.86g。答案为D项。 变式1:某温度时的溶解度为25g,在该温度下,将16g无水硫酸铜粉末加入 a g水中,充分溶解后溶液中有蓝色硫酸铜晶体析出,则a的取值范围是()A. 9<a<64 B. 9<a≤64 C. 18<a<90 D. 18≤a≤90 解析:要求a的取值范围,就要确定两个极值。当16g无水硫酸铜加入x g水中, 溶液恰好饱和时,有,解得x=64。当溶液中有晶体析出时,即溶液已经达到了饱和状态,此时应有a<x=64。当16g无水硫酸铜加入到y g水中,析 出的晶体将y g水全部转化为结晶水带出,根据的组成有 ,解得y=9。而本题应有溶液剩余,故有a>y=9。答案为A项。 例2. 在一定温度下,向足量硫酸铜饱和溶液中加入a g无水硫酸铜粉末并搅拌, 析出b g晶体,根据上述已知条件及数据,下列物理量中可以求出的是() ①该温度下的溶解度 ②原饱和溶液失掉水的质量 ③原饱和溶液失掉溶质的质量 ④析出晶体中含的质量 ⑤原饱和溶液的物质的量浓度 A. ①③B.①②③④⑤ C. ①②③④ D. ①②④ 解析:原饱和溶液失掉水的质量=; 析出晶体中含的质量=;

(教(学)案)结晶水合物中结晶水含量的测定10.2

《结晶水合物中结晶水含量的测定》教学设计 青浦二中娟 一、设计说明 教材分析:本章教材设计了三个定量实验,目的是让学生形成定量测定的科学方法、态度和技能,结晶水含量测定是学习重量法的重要载体。在教学设计上采用了分层次递进的做法:根据物质性质确定实验原理;再根据初步设想拟定初步流程(形成实验的雏形、实验的框架);再描述具体方案(关注实验细节,如仪器、装置、药品、操作顺序等)。充分注意定量测定中的“准确性”要求,加强测定原理到实验步骤的教学。 学情分析:知识基础:学生已经学习了测定1mol气体的体积定量实验,已经初步具备了定量分析实验的相关知识。能力基础:在学习第一种定量分析方法的过程中经历过从实验原理向具体方案的转化过程,而认识的深化必须基于知识的运用,因此本实验再次为学生创设参与的空间。 二、教学目标 1、知识、技能目标 (1)掌握结晶水合物中结晶水含量的测定原理和方法 (2)初步学会瓷坩埚、研钵、干燥器等仪器的正确使用 (3)了解恒重等基本操作技能 2、过程、方法目标 (1)通过设计测定硫酸铜晶体结晶水含量的实验方案,认识观察、测量、实验条件的控制、数据处理等科学方法 (2)通过设计测定硫酸铜结晶水含量的实验流程图,认识测定物质组成、确定物质化学式的定量实验一般方法。 3、情感、态度与价值观目标 感悟定量实验中“准确性”的意识,逐步养成认真细致、实事的科学态度 三、教学重点和难点 重点:测定结晶水合物中结晶水含量的原理、恒重操作 难点:恒重操作、完善硫酸铜结晶水含量测定的实验流程图 四、教学过程设计

10.2 结晶水合物中结晶水含量的测定学案

班级 一、课前分析: 1、硫酸铜晶体在110°C开始失去部分结晶水,150°C时失去全部结晶水, 生成白色的无水硫酸铜。650°C硫酸铜分解成黑色的氧化铜。硫酸铜晶体受热时,结晶水逸出,使规则外形的晶体爆裂,有飞溅现象。室温时,白色无水硫酸铜在空气中容易变成蓝色晶体。 根据上述资料,写出CuSO 4·5H 2 O和CuSO 4 相互转换的方程式: 2、加热5克硫酸铜晶体(CuSO 4·x H 2 O)至质量不再变化,称得剩余固体 质量为 3.2克。求X的值。 二、课堂任务:实验方案设计 1、实验目的: 2、实验原理和计算式: 3、实验步骤: (1)设计确定硫酸铜晶体中结晶水含量的简单实验流程图。 所需仪器 (2)为了减小误差,确保测定准确的关键操作有那些?如何完善实验流程。 4、数据分析:

102 结晶水合物中结晶水含量的测定

10.2 结晶水合物中结晶水含量的测定 第1课时结晶水含量测定的原理 上海大学市北附属中学金晨 [设计思想] 教学设计着重三个环节:(1)以硫酸铜晶体中结晶水含量测定原理的讨论为例,概括出结晶水合物中结晶水含量的测定的基本原理和一般方法,体验定量测定中转化的思想方法。(2)通过恒重操作,进一步提升对定量实验“精确操作”学科内涵的认识。(3)胆矾结晶水含量测定的方案探讨,领悟化学实验设计遵循可观察、可控制的学科内涵。 [学科内涵] 定性认识是定量认识的基础,从定性到定量是认识发展的必然结果。科学准确的计量是实现准确定量的先决条件。科学计量的基本要求:一是准确(精度在误差允许的范围内);二是结果易于为大众认知。本节课由于实验内容相对复杂,教师以突出定量实验的设计思维为主线,重点放在展示实验设计的原理、思路和科学性上,将学生的思维引导到实验的具体过程中。本节课紧紧围绕“定什么量”、“如何定量”、“如何精确定量”三个方面展开教学,经反复讨论,相互修正,最终形成最佳的定量实验方案。 首先是“定什么量”。通过教师启发、引导和学生讨论,由直接测“结晶水的质量”转化为通过测固体样品实验前后的质量差间接测出“结晶水的质量”。从而明确本实验需要测定哪些量,运用什么实验原理将目标量转化为可测量的量。 其次是“如何定量”。教师先是安排学生分组讨论、各抒己见,初步得出主要实验步骤:称量、加热、称量、计算。再经过学生充分交流,教师适当引导和补充,共同得出本实验的实验步骤及所用到的仪器,并对接触不多或从未使用过的仪器,如电子天平、瓷坩埚及干燥器等,一一出示了实物并介绍使用方法。使学生在知道如何定量的同时,同时还知道为什么这样定量,这样才能促使他们主动思考,形成并掌握定量实验的策略性知识。 作为定量实验,“准”是核心,“准”是关键。围绕本实验“如何精确定量”,在教师启发下,学生认识到除了对实验原理和仪器有较高的要求外,实验操作也不容忽视。在此基础上教师指出准确地判断反应的终点更是其中一个重要的环节,并请学生思考:如何“精确”判断胆矾已经完全失去结晶水变成无水硫酸铜?于是引出恒重操作这一重要概念。 最后,教师适时引导学生对重量法进行总结,并启发学生进一步思考:石碱样品中结晶水含量的测定、绿矾样品中结晶水含量的测定都可以用今天学到的方法吗?引导学生将化学实验基础知识和基本操作技能运用到类似的定量实验中去,形成设计简单定量实验方案的一般思维框架,解决一些原理和操作相类似的定量问题。

2019年上海高二化学·同步讲义_第08讲_结晶水合物中结晶水的测定

第08讲 结晶水合物中结晶水的测定 一、知识梳理: (一)实验原理: 1.原理:称取一定质量的硫酸铜晶体,将其加热失去全部结晶水后再进行称量,可知道硫酸铜晶体中硫酸铜的质量和水的质量,然后根据硫酸铜和水的摩尔质量计算1 mol 硫酸铜晶体中含多少摩尔结晶水:即 4242()() :1:()() m CuSO m H O x M CuSO M H O = 2.CuSO 4·5H 2O 受热时逐步失去结晶水的过程可表示如下: 42CuSO 5 H O ? 蓝色 21022H O -???→℃CuSO 4·3H 2O 21132H O -???→℃42CuSO H O ? 蓝白色 2250H O -???→℃ 4CuSO 白色 在250℃以下,CuSO 4·5H 2O 失掉的结晶水是全量的4/5,剩下的1个水分子需要在较高的温度 下才能失去。 (二)实验仪器和装置: 1.瓷坩埚、坩埚钳、泥三角。瓷坩埚(图(A))用于加热或灼烧固体物质,加热、灼烧时应放在泥三角(图(B))上进行,如图(D)所示。热的瓷坩埚及坩埚盖取放时要用坩埚钳(图(C))。 2.干燥器。干燥器(图(E))用于保存干燥的物质。由普通厚玻璃制成,内有带孔瓷板,玻璃盖与容器应与 磨砂面保持吻合。容器内下部装有干燥剂 (如无水氯化钙、碱石灰、浓硫酸等)。

(三)恒重操作: 为了保证硫酸铜晶体加热后,全部结晶水都失去,必需做恒重操作,即在完成第一次加热、冷却、称量后,再进行第二次加热、冷却、称量,如果第二次的质量在减小,还要做第三次加热、冷却、称量,直到连续两次称量的结果相差不超过0.001 g为止。 加热后的硫酸铜晶体必须放在干燥器中冷却到室温,否则在冷却过程中又会吸收空气中的水蒸气,影响测量结果。 实验结果误差分析 能引起误差的一些操作 因变量 n值m(CuSO 4) m(H2O) 称量前坩埚未干燥 晶体表面有水 晶体不纯,含有不挥发杂质 晶体未研成粉末 粉末未完全变白就停止加热 加热时间过长,部分变黑 加热后在空气中冷却称量 加热过程中有少量晶体溅出 两次称量相差0.2 g 二、真题解析: 【例1】下列关于“硫酸铜晶体中结晶水含量的测定”操作中,肯定使测定结果偏大的是 ( ) (A)加热时硫酸铜晶体未完全变白 (B)加热时硫酸铜晶体有爆溅现象 (C)加热后硫酸铜晶体放在空气中冷却 (D)未作恒重操作 【例2】实验室里需要480 mL,0.1 mol/L的硫酸铜溶液,现选取500 ml。容量瓶进行配制,以下叙述正确的是 ( ) (A)称取7.68 g无水硫酸铜,加入500 mL水 (B)称取12.0 g胆矾配成500 mL溶液 (C)称取8.0 g无水硫酸铜,加入500 mL水 (D)称取12.5 g胆矾配成500 mL溶液

难点14 结晶水合物的析出

难点14 结晶水合物的析出 溶液中晶体的析出是初中学习的内容,初中学习时要求低,不能满足于高考的需要,因此有必要深入学习。 ●难点磁场 请试做下列题目,然后自我界定学习本篇是否需要。 t ℃时向a g 饱和Na 2CO 3(aq)中加入1.06 g 无水Na 2CO 3,搅拌后静置,冷却到原温度,结果溶液全部变为晶体(Na 2CO 3·10H 2O)。求: (1)S (Na 2CO 3)与a 的关系式,S =_____________(S 代表溶解度)。 (2)a 的取值范围。 ●案例探究 [例题]已知某温度下,无水Na 2CO 3的溶解度是10.0 g/(100 g 水)。在该温度下,向足量的饱和Na 2CO 3(aq)中加入1.06 g 无水Na 2CO 3,搅拌后静置。试求最终所得晶体的质量。 命题意图:考查学生对析出结晶水合物的计算能力。 知识依托:溶解度的概念和计算。 错解分析:常见错解有三:一是忽略析出的碳酸钠晶体中含有结晶水,二是不知道析出的碳酸钠晶体中含多少结晶水,三是认为析出的碳酸钠晶体中只含有1.06 g 碳酸钠和相应的结晶水。 解题思路:解答本题有两种方法,一是过程思维法,二是终态思维法。 方法1(过程思维法):先求加入的1.06 g 无水Na 2CO 3形成并析出晶体的质量m 1(Na 2CO 3·10H 2O)及溶液中由此减少的水的质量m 1(H 2O) Na 2CO 3 ~ Na 2CO 3·10H 2O ~ 10H 2O 106 g 286 g 180 g 1.06 g m 1(Na 2CO 3·10H 2O) m 1(H 2O) m 1(Na 2CO 3·10H 2O)=2.86 g m 1(H 2O)=1.80 g 再求溶解在1.80 g 水中Na 2CO 3的质量m 2(Na 2CO 3),及这些Na 2CO 3析出所形成晶体的质量m 2(Na 2CO 3·10H 2O)和溶液由此而减少水的质量m 2(H 2O) m 2(Na 2CO 3)=g 100g 1.80g 10.0?=0.180 g Na 2CO 3 ~ Na 2CO 3·10H 2O ~ 10H 2O 106 g 286 g 180 g 0.180 g m 2(Na 2CO 3·10H 2O) m 2(H 2O) m 2(Na 2CO 3·10H 2O)=0.486 g m 2(H 2O)=0.306 g 依次类推,求m 3(Na 2CO 3)及m 3(Na 2CO 3·10H 2O)和m 3(H 2O),直至所得晶体质量m i (Na 2CO 3·10H 2O)在 ∑=n i i m 1(Na 2CO 3·10H 2O)的和 中可以忽略为止。 m 3(Na 2CO 3)=g 100g 306.0g 10.0?=0.0306 g Na 2CO 3 ~ Na 2CO 3·10H 2O ~ 10H 2O 106 g 286 g 180 g 0.0306 g m 3(Na 2CO 3·10H 2O) m 3(H 2O)

相关文档
相关文档 最新文档